B. Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

Trapping in Local Minimum

Escape from Local Minimum
Escape from Local Minimum

Motivation

• **Idea:** with low probability, go against the local field
 – move up the energy surface
 – make the "wrong" microdecision
• **Potential value for optimization:** escape from local optima
• **Potential value for associative memory:** escape from spurious states
 – because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: $s'_i = \text{sgn}(h_i)$
$Pr\{s'_i = +1\} = \Theta(h_i)$
$Pr\{s'_i = -1\} = 1 - \Theta(h_i)$

Stochastic neuron:
$Pr\{s'_i = +1\} = \sigma(h_i)$
$Pr\{s'_i = -1\} = 1 - \sigma(h_i)$

Logistic sigmoid: $\sigma(h) = \frac{1}{1 + \exp(-2h/T)}$
Properties of Logistic Sigmoid

\[\sigma(h) = \frac{1}{1 + e^{-2\beta T}} \]

- As \(h \to +\infty \), \(\sigma(h) \to 1 \)
- As \(h \to -\infty \), \(\sigma(h) \to 0 \)
- \(\sigma(0) = 1/2 \)

Logistic Sigmoid

With Varying \(T \)

\(T \) varying from 0.05 to \(\infty \) (\(1/T = \beta = 0, 1, 2, \ldots, 20 \))

Logistic Sigmoid

\(T = 0.5 \)

Slope at origin = \(1 / 2T \)
Logistic Sigmoid
$T = 0.01$

Logistic Sigmoid
$T = 0.1$

Logistic Sigmoid
$T = 1$
Part 3B: Stochastic Neural Networks

Logistic Sigmoid
\[T = 10 \]

Logistic Sigmoid
\[T = 100 \]

Pseudo-Temperature
- Temperature = measure of thermal energy (heat)
- Thermal energy = vibrational energy of molecules
- A source of random motion
- Pseudo-temperature = a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution
Transition Probability
Recall, change in energy $\Delta E = -\Delta s_i h_i$

$= 2s_i h_i$

$Pr\{s'_i = \pm 1 | s_i = \mp 1\} = \sigma(\mp h_i) = \sigma(-s_i h_i)$

$Pr\{s_i \rightarrow -s_i\} = \frac{1}{1 + \exp(2s_i h_i / T)}$

$= \frac{1}{1 + \exp(\Delta E / T)}$

Stability

- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights:
 - average values $\langle s_i \rangle$ become time-invariant

Does “Thermal Noise” Improve Memory Performance?
- Experiments by Bar-Yam (pp. 316-20):
 - $n = 100$
 - $p = 8$
- Random initial state
- To allow convergence, after 20 cycles set $T = 0$
- How often does it converge to an imprinted pattern?
Part 3B: Stochastic Neural Networks

Probability of Random State Converging on Imprinted State \((n=100, p=8)\)

![Graph from Bar-Yam]

Analysis of Stochastic Hopfield Network

- Complete analysis by Daniel J. Amit & colleagues in mid-80s
- The analysis is beyond the scope of this course
Part 3B: Stochastic Neural Networks

Phase Diagram

- **(A)** imprinted = minima
- **(B)** imprinted, but s.g. = min.
- **(C)** spin-glass states
- **(D)** all states melt

Conceptual Diagrams of Energy Landscape

- **A**
- **B**
- **C**
- **D**

Phase Diagram Detail
Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)

Dilemma

• In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum.
• In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it.
• Solution: decrease the temperature gradually during search.

Quenching vs. Annealing

• Quenching:
 – rapid cooling of a hot material
 – may result in defects & brittleness
 – local order but global disorder
 – locally low-energy, globally frustrated

• Annealing:
 – slow cooling (or alternate heating & cooling)
 – reaches equilibrium at each temperature
 – allows global order to emerge
 – achieves global low-energy state
Multiple Domains

Moving Domain Boundaries

Effect of Moderate Temperature
Effect of High Temperature

$\Delta E/T$ low

Effect of Low Temperature

$\Delta E/T$ high

Annealing Schedule

- Controlled decrease of temperature
- Should be sufficiently slow to allow equilibrium to be reached at each temperature
- With sufficiently slow annealing, the global minimum will be found with probability 1
- Design of schedules is a topic of research
Typical Practical Annealing Schedule

- **Initial temperature** T_0 sufficiently high so all transitions allowed
- **Exponential cooling:** $T_{k+1} = \alpha T_k$
 - typical $0.8 < \alpha < 0.99$
 - fixed number of trials at each temp.
 - expect at least 10 accepted transitions
- **Final temperature:** three successive temperatures without required number of accepted transitions

Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

Quantum Annealing

- See for example D-wave Systems
 <www.dwavesys.com>
Hopfield Network for Task Assignment Problem

- Six tasks to be done (I, II, …, VI)
- Six agents to do tasks (A, B, …, F)
- They can do tasks at various rates
 - A (10, 5, 4, 6, 5, 1)
 - B (6, 4, 9, 7, 3, 2)
 - etc
- What is the optimal assignment of tasks to agents?

Continuous Hopfield Net

\[\dot{U}_i = \sum_{j=1}^{n} T_{ij} V_j + I_i - \frac{U_i}{\tau} \]

\[V_i = \sigma(U_i) \in (0,1) \]

\[k\text{-out-of-}n \text{ Rule} \]
Network for Task Assignment

NetLogo Implementation of Task Assignment Problem

Run TaskAssignment.nlogo