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B.
Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum
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Escape from Local Minimum
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Motivation

* Idea: withlow probability, go against the local
field

— move up the energy surface
— make the “wrong” microdecision
* Potential value for optimization: escape fromlocal
optima
* Potential value for associative memory: escape
from spurious states
— because they have higher energy than imprinted states
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The Stochastic Neuron
Deterministic neuron: s; =sgn(h,)
Pr{s/ =+1} =©(h,)

Pr{s| = -1} =1-6(h,) Ve

Stochastic neuron :
Pr{s; = +1} =o(h,)
Pr{s;=-1} =1-0(h;)

o(h)

1

Logistic sigmoid: o(h) = W
+exp(=2A4
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Properties of Logistic Sigmoid

* AsSh — +oo,6(h) —> 1
* Ash — —oo,6(h) >0

e o0)=1/2
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Logistic Sigmoid
With Varying T
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T varying from 0.05to = (1/T==0,1,2,.

..,20)

Logistic Sigmoid
TS

’/
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—

Slope at origin = 1 /2T
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Logistic Sigmoid
T =001

Logistic Sigmoid
fa—=0isll

V
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Logistic Sigmoid
=gl




Part 3B: Stochastic Neural Networks 3/1/16

Logistic Sigmoid
=
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Logistic Sigmoid
T=100
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Pseudo-Temperature

* Temperature = measure of thermal energy (heat)
* Thermal energy = vibrational energy of molecules

¢ A source of random motion

* Pseudo-temperature = a measure of nondirected
(random) change

* Logistic sigmoid gives same equilibrium
probabilities as Boltzmann-Gibbs distribution
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Transition Probability
Recall, change in energy AE = -Ash,
=2s,h,

Pr{s, = 1ls, = ¥1} = o(xh,) = o(-s,1,)

1
L+exp(2s:h, /T)
" 1
SN exp(AE/T)

Pr{s, —=-s,}=
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Stability

* Are stochastic Hopfield nets stable?
» Thermal noise prevents absolute stability
* But with symmetric weights:

average values (s,) become time - invariant
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Does “Thermal Noise” Improve
Memory Performance?
* Experiments by Bar-Yam (pp. 316-20):
= n=100
n p= 8
e Random initial state

» To allow convergence, after 20 cycles
setT=0

* How often does it converge to an imprinted
pattern?
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Probability of Random State Converging
on Imprinted State (n=100, p=8)
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Probability of Random State Converging
on Imprinted State (n=100, p=8)

08
0.7 . .
/ SN

0.6 o

05 ./

0 2 4 6

B

311116 (fig.from Bar-Y am) 20

Analysis of Stochastic Hopfield
Network

* Complete analysis by Daniel J. Amit &
colleagues in mid-80s

e See D. J. Amit, Modeling Brain Function:
The World of Attractor Neural Networks,
Cambridge Univ. Press, 1989.

 The analysis is beyond the scope of this
course
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Phase Diagram

(C) spin-glass states

TC
(B) imprinted,
but s.g. = min.
PO, | 118 R T -
0.00 0.05 0.10 T 0.15

(A) imprinted
= minima

31116 (fig. from Domany & al. 1991) & o, =018 2 ¢>

Conceptual Diagrams
of Energy Landscape
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: 3116 (fig.from Herz & al.IntrTheory Neur.Comp ) 23

Phase Diagram Detail
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Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma

* In the early stages of search, we want a high
temperature, so that we will explore the
space and find the basins of the global
minimum

* In the later stages we want alow
temperature, so that we will relax into the
global minimum and not wander away from
it

* Solution: decrease the temperature
gradually during search
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Quenching vs. Annealing

* Quenching:
— rapid cooling of a hot material
— may result in defects & brittleness

— local order but global disorder
— locally low-energy, globally frustrated
* Annealing:

— slow cooling (or altemate heating & cooling)

— reaches equilibrium at each temperature

— allows global order to emerge

— achieves global low-energy state
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Multiple Domains

lochl
poherpn‘ce

28
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Moving Domain Boundaries
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Effect of Moderate Temperature

Energy
a4

(fig. fiom Anderson ur. Neur. Comp.)
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Effect of High Temperature

31116 (fig. from Anderson Iutr. Neur. Comp.) 31

Effect of Low Temperature

AE/T high

3/1/16 (fig. fiom Anderson ur. Neur. Comp.) 32

Annealing Schedule

* Controlled decrease of temperature

* Should be sufficiently slow to allow
equilibrium to be reached at each
temperature

 With sufficiently slow annealing, the global
minimum will be found with probability 1

* Design of schedules is a topic of research
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Typical Practical
Annealing Schedule

e Initial temperature T sufficiently high so all
transitions allowed
* Exponential cooling: Tk+1 = 0Tk
= typical 0.8 < ot <0.99
= fixed number of trials at each temp.
= expect at least 10 accepted transitions
e Final temperature: three successive
temperatures without required number of
accepted transitions
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Summary

* Non-directed change (random motion)
permits escape from local optima and
spurious states

* Pseudo-temperature can be controlled to
adjust relative degree of exploration and
exploitation
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Quantum Annealing

* See for example D-wave
Systems
<www.dwavesys.com>
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Hopfield Network for
Task Assignment Problem

¢ Six tasks to bedone (I, 1L, ..., VI)

* Six agents to do tasks (A, B, ..., F)

* They can do tasks at various rates
~ A(10, 5,4, 6,5, 1)

- B(6,4,9,7,3,2)
— etc

* What is the optimal assignment of tasks to
agents?
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Continuous Hopfield Net

e ETV g L

il

V, = oy €O

311116 38

k-out-of-n Rule
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Network for Task Assignment

2 biased by rate
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NetLogo Implementation of
Task Assignment Problem

Run TaskAssignment.nlogo
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