CS 420/594
(Advanced Topics in Machine Intelligence)

Complex Systems and Self-Organization

Bruce MacLennan
http://www.cs.utk.edu/~mclennan/Classes/420

CS 420 vs. CS 594

• CS 420: Undergraduate credit (but graduate students can count one 400-level course)
• CS 594: Graduate credit, additional work

Contact Information

• Instructor: Bruce MacLennan
 maclennan@cs.utk.edu
 Claxton Complex 217
 Office Hours: 2:00-3:30 MW (or make appt.)
• Teaching Assistant: Yifan Tang
 ytang@cs.utk.edu
 Claxton Complex 124
 Office Hours: 5:00-6:00 W (or make appt.)

Grading

• You will conduct a series of computer experiments, which you will write up
• Some of these will be run on off-the-shelf simulators
• Others will be run on simulators that you will program
• Graduate students will do additional experiments and mathematical exercises
• No exams
Prerequisites

- CS 420 & 594: None per se, but you will be required to write some simulations (in Java, C++, or whatever)
- CS 594: Basic calculus through differential equations, linear algebra, basic probability and statistics

Textbooks

Contents of Flake CBN

What We Will Cover
Reading for Next Week

- Flake: Ch. 1 (Introduction)
- Flake: Ch. 15 (Cellular Automata)
- 594: Bar-Yam:
 - Secs. 0.1 – 0.5 (Overview)
 - Sec. 1.5 (Cellular Automata)

Course Web Site

- www.cs.utk.edu/~mclennan/Classes/420
- Syllabus
- Link to Flake CBN site (with errata, software, etc.)
- Link to Bar-Yam (CS 594) online text
- Links to other interesting sites
- Handouts:
 - assignments
 - slides in pdf formats (revised after class)

Discussion

- What is a complex system?
- What is an emergent property?
- What is self-organization?

Weaver’s Stages in the Progress of Science

- Simple systems
- Disorganized complexity
- Organized complexity
Complex vs. Simple Systems

- Have many parts
- Parts are interdependent in behavior
- Difficult to understand because:
 - behavior of whole understood from behavior of parts
 - behavior of parts depends on behavior of whole

Examples of Complex Systems

- government
- family
- person (physiology)
- brain
- world ecosystem
- local ecosystem (desert, rainforest, ocean)
- weather
- corporation
- computer
- ant colony
- university
What are the universal properties shared by all complex systems?

Defining Properties

- Elements (& their numbers)
- Interactions (& their strengths)
- Formation/operation (& their timescales)
- Diversity/variability
- Environment (& its demands)
- Activities (& their objectives)

Ockham’s Razor

- *Pluralitas non est ponenda sine necesitate.*
- “Plurality should not be posited without necessity”
- Advocated by William of Ockham (1285-1347/49)
 – also spelled “Occam”
- A law of economy fundamental to science
Universal Properties

- By Ockham’s Razor:
 - for explaining system properties/behavior…
 - don’t make use of particulars of elements unless necessary
- Often discover: properties & behavior of the system are independent of the specifics of the elements
- E.g., ant colonies and neural networks obey similar laws

Emergence

- The appearance of macroscopic patterns, properties, or behaviors
- that are not simply the “sum” of the microscopic properties or behaviors of the components
 - non-linear but not chaotic
- Macroscopic order often described by fewer & different variables than microscopic order
 - e.g. ant trails vs. individual ants
 - order parameters

Self-Organization

- Order may be imposed from outside a system
 - to understand, look at the external source of organization
- In self-organization, the order emerges from the system itself
 - must look at interactions within system
- In biological systems, the emergent order often has some adaptive purpose
 - e.g., efficient operation of ant colony
Why Are Complex Systems & Self-Organization Important for CS?

- Fundamental to theory & implementation of massively parallel, distributed computation systems
- How can millions of independent computational (or robotic) agents cooperate to process information & achieve goals, in a way that is:
 - efficient
 - self-optimizing
 - adaptive
 - robust in the face of damage or attack

Some of the Natural Systems We Will Study

- adaptive path minimization by ants
- wasp and termite nest building
- army ant raiding
- fish schooling and bird flocking
- pattern formation in animal coats
- coordinated cooperation in slime molds
- synchronized firefly flashing
- soft constraint satisfaction in spin glasses
- evolution by natural selection
- game theory and the evolution of cooperation
- computation at the edge of chaos
- information processing in the brain

Some of the Artificial Systems We Will Study

- artificial neural networks
- simulated annealing
- cellular automata
- ant colony optimization
- artificial immune systems
- particle swarm optimization
- genetic algorithms
- other evolutionary computation systems