Conditions for Stability

Stability of entire pattern:

\[x^n = \text{sgn} \left(x^n + \sum_{k=1}^{n} x^k \cos \theta_{km} \right) \]

Stability of a single bit:

\[x_i^m = \text{sgn} \left(x_i^m + \sum_{k=1}^{n} x^k \cos \theta_{km} \right) \]

Sufficient Conditions for Instability (Case 1)

Suppose \(x_i^m = -1 \). Then unstable if:

\[(-1) + \frac{1}{n} \sum_{k=1}^{n} x^k \cos \theta_{km} > 0 \]

\[\frac{1}{n} \sum_{k=1}^{n} x^k \cos \theta_{km} > 1 \]

Sufficient Conditions for Instability (Case 2)

Suppose \(x_i^m = +1 \). Then unstable if:

\[(+1) + \frac{1}{n} \sum_{k=1}^{n} x^k \cos \theta_{km} < 0 \]

\[\frac{1}{n} \sum_{k=1}^{n} x^k \cos \theta_{km} < -1 \]

Sufficient Conditions for Stability

\[\left| \frac{1}{n} \sum_{k=1}^{n} x^k \cos \theta_{km} \right| \leq 1 \]

The crosstalk with the sought pattern must be sufficiently small
Capacity of Hopfield Memory

- Depends on the patterns imprinted
- If orthogonal, $p_{\text{max}} = n$
 - but every state is stable ⇒ trivial basins
- So $p_{\text{max}} < n$
- Let load parameter $\alpha = p / n$

Single Bit Stability Analysis

- For simplicity, suppose x^i_k are random
- Then $x^i_k \cdot x^n$ are sums of n random ± 1
 - binomial distribution ≈ Gaussian
 - in range $-n, \ldots, +n$
 - with mean $\mu = 0$
 - and variance $\sigma^2 = n$
- Probability sum $> t$:
 $$\frac{1}{\sqrt{2\pi}} \left[1 - \text{erf} \left(\frac{t}{\sqrt{2n}} \right) \right]$$
[See “Review of Gaussian (Normal) Distributions” on course website]

Approximation of Probability

Let crosstalk $C_i^n = \frac{1}{n} \sum_{i=1}^{n} (x^i_k \cdot x^n)$
We want $\Pr\{C_i^n > 1\} = \Pr\{nC_i^n > n\}$

Note: $nC_i^n = \sum_{j=1}^{n} x^i_j x^n_j$
A sum of $n(p - 1) \approx np$ random ± 1
Variance $\sigma^2 = np$

Probability of Bit Instability

$$\Pr\{nC_i^n > n\} = \frac{1}{2} \left[1 - \text{erf} \left(\frac{n}{\sqrt{2np}} \right) \right] = \frac{1}{2} \left[1 - \text{erf} \left(\sqrt{n/2p} \right) \right]$$

Tabulated Probability of Single-Bit Instability

<table>
<thead>
<tr>
<th>(P_{\text{error}})</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>0.105</td>
</tr>
<tr>
<td>0.36%</td>
<td>0.138</td>
</tr>
<tr>
<td>1%</td>
<td>0.185</td>
</tr>
<tr>
<td>5%</td>
<td>0.37</td>
</tr>
<tr>
<td>10%</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Spurious Attractors

- **Mixture states:**
 - sums or differences of odd numbers of retrieval states
 - number increases combinatorially with \(\rho \)
 - shallower, smaller basins
 - basins of mixtures swamp basins of retrieval states \(\Rightarrow \) overload
 - useful as combinatorial generalizations?
 - self-coupling generates spurious attractors

- **Spin-glass states:**
 - not correlated with any finite number of imprinted patterns
 - occur beyond overload because weights effectively random

Basins of Mixture States

\[x_i^{\text{mix}} = \text{sgn}(x_i^1 + x_i^2 + x_i^3) \]

Fraction of Unstable Imprints

(\(n = 100 \))
Summary of Capacity Results

- Absolute limit: $p_{\text{max}} < \alpha_n = 0.138 n$
- If a small number of errors in each pattern permitted: $p_{\text{max}} \propto n$
- If all or most patterns must be recalled perfectly: $p_{\text{max}} \propto n / \log n$
- Recall: all this analysis is based on random patterns
- Unrealistic, but sometimes can be arranged

Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
Part 3: Autonomous Agents

Trapping in Local Minimum

Escape from Local Minimum

Escape from Local Minimum