

Notation

- L layers of neurons labeled 1, ..., L
- N_l neurons in layer l
- s^l = vector of outputs from neurons in layer l
- input layer $s^1 = x^q$ (the input pattern)
- output layer $\mathbf{s}^L = \mathbf{y}^q$ (the actual output)
- \mathbf{W}^l = weights between layers l and l+1
- Problem: find how outputs y_i^q vary with weights W_{jk}^l (l = 1, ..., L-1)

29/04 2

Error Back-Propagation We will compute $\frac{\partial E^q}{\partial W_{ij}^l}$ starting with last layer (l = L - 1) and working back to earlier layers (l = L - 2,...,1)

Delta Values

Convenient to break derivatives by chain rule:

$$\frac{\partial E^q}{\partial W_{ii}^{l-1}} = \frac{\partial E^q}{\partial h_i^l} \frac{\partial h_i^l}{\partial W_{ii}^{l-1}}$$

Let
$$\delta_i^l = \frac{\partial E^q}{\partial h_i^l}$$

So
$$\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$$

11/29/04

Output-Layer Derivatives (1)

$$\begin{split} \delta_i^L &= \frac{\partial E^q}{\partial h_i^L} = \frac{\partial}{\partial h_i^L} \sum_k \left(s_k^L - t_k^q \right)^2 \\ &= \frac{\mathrm{d} \left(s_i^L - t_i^q \right)^2}{\mathrm{d} h_i^L} = 2 \left(s_i^L - t_i^q \right) \frac{\mathrm{d} s_i^L}{\mathrm{d} h_i^L} \\ &= 2 \left(s_i^L - t_i^q \right) \sigma' \left(h_i^L \right) \end{split}$$

11/29/0

Output-Layer Derivatives (2)

$$\frac{\partial h_i^L}{\partial W_{ij}^{L-1}} = \frac{\partial}{\partial W_{ij}^{L-1}} \sum_k W_{ik}^{L-1} s_k^{L-1} = s_j^{L-1}$$

$$\therefore \frac{\partial E^q}{\partial W_{ij}^{L-1}} = \delta_i^L s_j^{L-1}$$
where $\delta_i^L = 2(s_i^L - t_i^q)\sigma'(h_i^L)$

11/29/04

Hidden-Layer Derivatives (1)

Recall
$$\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{ij-1}^{l-1}}$$

$$\delta_{i}^{l} = \frac{\partial E^{q}}{\partial h_{i}^{l}} = \sum_{k} \frac{\partial E^{q}}{\partial h_{k}^{l+1}} \frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}} = \sum_{k} \delta_{k}^{l+1} \frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}}$$

$$\frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}} = \frac{\partial \sum_{m} W_{km}^{l} s_{m}^{l}}{\partial h_{i}^{l}} = \frac{\partial W_{kl}^{l} s_{i}^{l}}{\partial h_{i}^{l}} = W_{kl}^{l} \frac{\mathrm{d}\sigma(h_{i}^{l})}{\mathrm{d}h_{i}^{l}} = W_{kl}^{l}\sigma'(h_{i}^{l})$$

$$\therefore \delta_{i}^{l} = \sum_{k} \delta_{k}^{l+1} W_{ki}^{l}\sigma'(h_{i}^{l}) = \sigma'(h_{i}^{l}) \sum_{k} \delta_{k}^{l+1} W_{ki}^{l}$$
11/29/04

Hidden-Layer Derivatives (2)
$$\frac{\partial h_i^l}{\partial W_{ij}^{l-1}} = \frac{\partial}{\partial W_{ij}^{l-1}} \sum_k W_{ik}^{l-1} s_k^{l-1} = \frac{dW_{ij}^{l-1} s_j^{l-1}}{dW_{ij}^{l-1}} = s_j^{l-1}$$

$$\therefore \frac{\partial E^q}{\partial W_{ij}^{l-1}} = \delta_i^l s_j^{l-1}$$
where $\delta_i^l = \sigma'(h_i^l) \sum_k \delta_k^{l+1} W_{ki}^l$

Derivative of Sigmoid

Suppose
$$s = \sigma(h) = \frac{1}{1 + \exp(-\alpha h)}$$
 (logistic sigmoid)

$$D_h s = D_h [1 + \exp(-\alpha h)]^{-1} = -[1 + \exp(-\alpha h)]^{-2} D_h (1 + e^{-\alpha h})$$

$$= -(1 + e^{-\alpha h})^{-2} (-\alpha e^{-\alpha h}) = \alpha \frac{e^{-\alpha h}}{(1 + e^{-\alpha h})^2}$$

$$= \alpha \frac{1}{1 + e^{-\alpha h}} \frac{e^{-\alpha h}}{1 + e^{-\alpha h}} = \alpha s \left(\frac{1 + e^{-\alpha h}}{1 + e^{-\alpha h}} - \frac{1}{1 + e^{-\alpha h}} \right)$$

$$= \alpha s (1 - s)$$
11/29/04

Summary of Back-Propagation Algorithm Output layer: $\delta_i^L = 2\alpha s_i^L (1 - s_i^L) (s_i^L - t_i^g)$ $\frac{\partial E^g}{\partial W_{ij}^{L-1}} = \delta_i^L s_j^{L-1}$ Hidden layers: $\delta_i^I = \alpha s_i^I (1 - s_i^I) \sum_k \delta_k^{I+1} W_{ki}^I$ $\frac{\partial E^g}{\partial W_{ij}^{I-1}} = \delta_i^I s_j^{I-1}$

Training Procedures

- Batch Learning
 - on each epoch (pass through all the training pairs),
 - weight changes for all patterns accumulated
 - weight matrices updated at end of epoch
 - accurate computation of gradient
- Online Learning
 - weight are updated after back-prop of each training pair
 - usually randomize order for each epoch
 - approximation of gradient
- · Doesn't make much difference

11/29/04

16

VIII. Review of Key Concepts

11/29/04

Complex Systems

- Many interacting elements
- Local vs. global order: entropy
- Scale (space, time)
- · Phase space
- · Difficult to understand
- · Open systems

11/29/04 22

Many Interacting Elements

- · Massively parallel
- Distributed information storage & processing
- Diversity
 - avoids premature convergence
 - avoids inflexibility

11/29/04 23

Complementary Interactions

- Positive feedback / negative feedback
- · Amplification / stabilization
- Activation / inhibition
- Cooperation / competition
- Positive / negative correlation

Emergence & Self-Organization

- Microdecisions lead to macrobehavior
- Circular causality (macro / micro feedback)
- Coevolution
 - predator/prey, Red Queen effect
 - gene/culture, niche construction, Baldwin effect

11/29/04 25

Pattern Formation

- Excitable media
- Amplification of random fluctuations
- Symmetry breaking
- · Specific difference vs. generic identity
- · Automatically adaptive

11/29/04 26

Stigmergy

- Continuous (quantitative)
- Discrete (qualitative)
- Coordinated algorithm
 - non-conflicting
 - sequentially linked

11/29/04 27

Emergent Control

- Stigmergy
- Entrainment (distributed synchronization)
- · Coordinated movement
 - through attraction, repulsion, local alignment
 - in concrete or abstract space
- Cooperative strategies
 - nice & forgiving, but reciprocal
 - evolutionarily stable strategy

Attractors

- · Classes
 - point attractor
 - cyclic attractor
 - chaotic attractor
- · Basin of attraction
- Imprinted patterns as attractors
 - pattern restoration, completion, generalization, association

11/29/04 29

Wolfram's Classes

- Class I: point
- Class II: cyclic
- · Class III: chaotic
- Class IV: complex (edge of chaos)
 - persistent state maintenance
 - bounded cyclic activity
 - global coordination of control & information
 - order for free

11/29/04 30

Energy / Fitness Surface

- Descent on energy surface / ascent on fitness surface
- Lyapunov theorem to prove asymptotic stability / convergence
- Soft constraint satisfaction / relaxation
- Gradient (steepest) ascent / descent
- · Adaptation & credit assignment

11/29/04 31

Biased Randomness

- Exploration vs. exploitation
- Blind variation & selective retention
- Innovation vs. incremental improvement
- Pseudo-temperature
- Diffusion
- · Mixed strategies

Natural Computation

- Tolerance to noise, error, faults, damage
- Generality of response
- Flexible response to novelty
- Adaptability
- Real-time response
- · Optimality is secondary

11/29/04 33

Student Course Evaluation!
(Do it online)