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Hopfield Network
• Symmetric weights: wij = wji

• No self-action: wii = 0
• Zero threshold: θ = 0
• Bipolar states: si ∈ {–1, +1}
• Discontinuous bipolar activation function:
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What to do about h = 0?
• There are several options:

 σ(0) = +1
 σ(0) = –1
 σ(0) = –1 or +1 with equal probability
 hi = 0 ⇒ no state change (si′ = si)

• Not much difference, but be consistent
• Last option is slightly preferable, since

symmetric
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Positive Coupling

• Positive sense (sign)
• Large strength
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Negative Coupling

• Negative sense (sign)
• Large strength
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Weak Coupling
• Either sense (sign)
• Little strength
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State = –1 & Local Field < 0

h < 0
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State = –1 & Local Field > 0

h > 0
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State Reverses

h > 0
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State = +1 & Local Field > 0

h > 0
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State = +1 & Local Field < 0

h < 0
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State Reverses

h < 0
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NetLogo Demonstration of
Hopfield State Updating

Run Hopfield-update.nlogo
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Hopfield Net as Soft Constraint
Satisfaction System

• States of neurons as yes/no decisions
• Weights represent soft constraints between

decisions
– hard constraints must be respected
– soft constraints have degrees of importance

• Decisions change to better respect
constraints

• Is there an optimal set of decisions that best
respects all constraints?
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Demonstration of Hopfield Net
Dynamics I

Run Hopfield-dynamics.nlogo
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Demonstration of Hopfield Net
Dynamics II

Run initialized Hopfield.nlogo
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Convergence

• Does such a system converge to a stable
state?

• Under what conditions does it converge?
• There is a sense in which each step relaxes

the “tension” in the system
• But could a relaxation of one neuron lead to

greater tension in other places?
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Quantifying “Tension”
• If wij > 0, then si and sj want to have the same sign

(si sj = +1)
• If wij < 0, then si and sj want to have opposite

signs (si sj = –1)
• If wij = 0, their signs are independent
• Strength of interaction varies with |wij|
• Define disharmony (“tension”) Dij between

neurons i and j:
Dij = – si wij sj
Dij < 0  ⇒  they are happy
Dij > 0  ⇒  they are unhappy
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Total Energy of System
The “energy” of the system is the total

“tension” (disharmony) in it:
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Review of Some Vector Notation
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Another View of Energy
The energy measures the number of neurons

whose states are in disharmony with their
local fields (i.e. of opposite sign):
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Do State Changes Decrease Energy?
• Suppose that neuron k changes state
• Change of energy:
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Energy Does Not Increase

• In each step in which a neuron is considered
for update:
E{s(t + 1)} – E{s(t)} ≤ 0

• Energy cannot increase
• Energy decreases if any neuron changes
• Must it stop?
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Proof of Convergence
in Finite Time

• There is a minimum possible energy:
– The number of possible states s ∈ {–1, +1}n is

finite
– Hence Emin = min {E(s) | s ∈ {±1}n} exists

• Must show it is reached in a finite number
of steps
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Steps are of a Certain Minimum Size
If hk > 0, then (let hmin = min of possible positive h)
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If hk < 0, then (let hmax = max of possible negative h)
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Conclusion

• If we do asynchronous updating, the
Hopfield net must reach a stable, minimum
energy state in a finite number of updates

• This does not imply that it is a global
minimum
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Lyapunov Functions
• A way of showing the convergence of discrete-

or continuous-time dynamical systems
• For discrete-time system:

– need a Lyapunov function E (“energy” of the state)
– E is bounded below (E{s} > Emin)
–  ΔE < (ΔE)max ≤ 0 (energy decreases a certain

minimum amount each step)
– then the system will converge in finite time

• Problem: finding a suitable Lyapunov function
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Example Limit Cycle with
Synchronous Updating

w > 0 w > 0
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The Hopfield Energy Function is
Even

• A function f is odd if f (–x) = – f (x),
for all x

• A function f is even if f (–x) = f (x),
for all x

• Observe:
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Conceptual
Picture of

Descent on
Energy
Surface

(fig. from Solé & Goodwin)
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Energy
Surface

(fig. from Haykin Neur. Netw.) 11/1/07 32

Energy
Surface

+
Flow
Lines

(fig. from Haykin Neur. Netw.)
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Flow
Lines

(fig. from Haykin Neur. Netw.)

Basins of
Attraction


