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Lecture 26
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Matching Pennies

• Al and Barb each independently picks either
heads or tails

• If they are both heads or both tails, Al wins
• If they are different, Barb wins
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Payoff Matrix

+1, –1–1, +1tail

–1, +1+1, –1head
Al

tailhead

Barb
Minimum of each

pure strategy is the same
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Mixed Strategy

• Although we cannot use maximin to select a
pure strategy, we can use it to select a
mixed strategy

• Take the maximum of the minimum payoffs
over all assignments of probabilities

• von Neumann proved you can always find
an equilibrium if mixed strategies are
permitted
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Analysis

• Let PA = probability Al picks head
• and PB = probability Barb picks head
• Al’s expected payoff:

E{A} = PA PB – PA (1 – PB) – (1 – PA) PB
+ (1 – PA) (1 – PB)

= (2 PA – 1) (2 PB – 1)
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Al’s Expected Payoff
from Penny Game
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How Barb’s Behavior Affects
Al’s Expected Payoff
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How Barb’s Behavior Affects
Al’s Expected Payoff
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More General Analysis
(Differing Payoffs)

• Let A’s payoffs be:
H = HH, h = HT, t = TH, T = TT

• E{A} = PAPBH + PA(1 – PB)h + (1 – PA)PBt
+ (1 – PA)(1 – PB)T
= (H + T – h – t)PAPB + (h – T)PA + (t – T)PB + T

• To find saddle point set ∂E{A}/∂PA = 0 and ∂
E{A}/∂PB = 0 to get:
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Random Rationality

 “It seems difficult, at first, to accept the idea
that ‘rationality’ — which appears to
demand a clear, definite plan, a
deterministic resolution — should be
achieved by the use of probabilistic devices.
Yet precisely such is the case.”

—Morgenstern
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Probability in Games of Chance
and Strategy

• “In games of chance the task is to determine
and then to evaluate probabilities inherent in
the game;

• in games of strategy we introduce
probability in order to obtain the optimal
choice of strategy.”

— Morgenstern
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Review of von Neumann’s
Solution

• Every two-person zero-sum game has a
maximin solution, provided we allow mixed
strategies

• But— it applies only to two-person zero-
sum games

• Arguably, few “games” in real life are zero-
sum, except literal games (i.e., invented
games for amusement)
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Nonconstant Sum Games

• There is no agreed upon definition of
rationality for nonconstant sum games

• Two common criteria:
– dominant strategy equilibrium
– Nash equilibrium
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Dominant Strategy Equilibrium

• Dominant strategy:
– consider each of opponents’ strategies, and

what your best strategy is in each situation
– if the same strategy is best in all situations, it is

the dominant strategy
• Dominant strategy equilibrium: occurs if

each player has a dominant strategy and
plays it
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Another Example

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

There is no dominant strategy

Example from McCain’s Game Theory: An Introductory Sketch 11/26/07 16

Nash Equilibrium

• Developed by John Nash in 1950
• His 27-page PhD dissertation:

Non-Cooperative Games
• Received Nobel Prize in Economics for it in

1994
• Subject of A Beautiful Mind
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Definition of Nash Equilibrium

• A set of strategies with the property:
No player can benefit by changing actions
while others keep strategies unchanged

• Players are in equilibrium if any change of
strategy would lead to lower reward for that
player

• For mixed strategies, we consider expected
reward
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Another Example (Reconsidered)

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

Not a Nash equilibrium
Example from McCain’s Game Theory: An Introductory Sketch

better for Alphabetter for Beta
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The Nash Equilibrium

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

Example from McCain’s Game Theory: An Introductory Sketch

Nash equilibrium
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Extensions of the Concept of a
Rational Solution

• Every maximin solution is a dominant
strategy equilibrium

• Every dominant strategy equilibrium is a
Nash equilibrium
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Cooperation Better for Both:
A Dilemma

50, 5010, 90–20, 40p = 3

90, 1020, 20–10, 50p = 2

40, –2050, –100, 0p = 1

Alpha

p = 3p = 2p = 1

BetaPrice
Competition

Example from McCain’s Game Theory: An Introductory Sketch

Cooperation
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Dilemmas

• Dilemma: “A situation that requires  choice
between options that are or seem equally
unfavorable or mutually exclusive”

– Am. Her. Dict.
• In game theory: each player acts rationally,

but the result is undesirable (less reward)
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The Prisoners’ Dilemma
• Devised by Melvin Dresher & Merrill Flood in

1950 at RAND Corporation
• Further developed by mathematician Albert W.

Tucker in 1950 presentation to psychologists
• It “has given rise to a vast body of literature in

subjects as diverse as philosophy, ethics, biology,
sociology, political science, economics, and, of
course, game theory.” — S.J. Hagenmayer

• “This example, which can be set out in one page,
could be the most influential one page in the social
sciences in the latter half of the twentieth
century.” — R.A. McCain
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Prisoners’ Dilemma: The Story
• Two criminals have been caught
• They cannot communicate with each other
• If both confess, they will each get 10 years
• If one confesses and accuses other:

– confessor goes free
– accused gets 20 years

• If neither confesses, they will both get 1
year on a lesser charge
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Prisoners’ Dilemma
Payoff Matrix

• defect = confess, cooperate = don’t
• payoffs < 0 because punishments (losses)

–10, –100, –20defect

–20, 0–1, –1cooperate
Ann

defectcooperate

Bob
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Ann’s “Rational” Analysis
(Dominant Strategy)

• if cooperates, may get 20 years
• if defects, may get 10 years
• ∴, best to defect

–10, –100, –20defect

–20, 0–1, –1cooperate
Ann

defectcooperate

Bob
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Bob’s “Rational” Analysis
(Dominant Strategy)

• if he cooperates, may get 20 years
• if he defects, may get 10 years
• ∴, best to defect

–10, –100, –20defect

–20, 0–1, –1cooperate
Ann

defectcooperate

Bob
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Suboptimal Result of
“Rational” Analysis

• each acts individually rationally ⇒ get 10 years
(dominant strategy equilibrium)

• “irrationally” decide to cooperate ⇒ only 1 year

–10, –100, –20defect

–20, 0–1, –1cooperate
Ann

defectcooperate

Bob
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Summary
• Individually rational actions lead to a result that

all agree is less desirable
• In such a situation you cannot act unilaterally in

your own best interest
• Just one example of a (game-theoretic) dilemma
• Can there be a situation in which it would make

sense to cooperate unilaterally?
– Yes, if the players can expect to interact again in the

future
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Classification of Dilemmas
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General Payoff Matrix

DD (P)DC (T)defect

CD (S)CC (R)cooperate
Ann

defectcooperate

Bob

Reward Sucker

Temptation Punishment
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General Conditions for a
Dilemma

• You always benefit if the other cooperates:
 CC > CD and DC > DD

• You sometimes benefit from defecting:
 DC > CC or DD > CD

• Mutual coop. is preferable to mut. def.
 CC > DD

• Consider relative size of CC, CD, DC, DD
 think of as permutations of R, S, T, P
 only three result in dilemmas
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Three Possible Orders

The three dilemmas: TRSP, RTPS, TRPS

CC
(R)

DC
(T)

CD
(S)

DD
(P)
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The Three Dilemmas
• Chicken (TRSP)

 DC > CC > CD > DD
 characterized by mutual defection being worst
 two Nash equilibria (DC, CD)

• Stag Hunt (RTPS)
 CC > DC > DD > CD
 better to cooperate with cooperator
 Nash equilibrium is CC

• Prisoners’ Dilemma (TRPS)
 DC > CC > DD > CD
 better to defect on cooperator
 Nash equilibrium is DD
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The Iterated Prisoners’ Dilemma

and Robert Axelrod’s Experiments
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Assumptions

• No mechanism for enforceable threats or
commitments

• No way to foresee a player’s move
• No way to eliminate other player or avoid

interaction
• No way to change other player’s payoffs
• Communication only through direct

interaction
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Axelrod’s Experiments
• Intuitively, expectation of future encounters

may affect rationality of defection
• Various programs compete for 200 rounds

– encounters each other and self
• Each program can remember:

– its own past actions
– its competitors’ past actions

• 14 programs submitted for first experiment
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IPD Payoff Matrix

1, 15, 0defect

0, 53, 3cooperate
A

defectcooperate

B

N.B. Unless DC + CD < 2 CC (i.e. T + S < 2 R),
can win by alternating defection/cooperation
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Indefinite Number
of Future Encounters

• Cooperation depends on expectation of
indefinite number of future encounters

• Suppose a known finite number of
encounters:
– No reason to C on last encounter
– Since expect D on last, no reason to C on next

to last
– And so forth: there is no reason to C at all

11/26/07 40

Analysis of Some Simple
Strategies

• Three simple strategies:
– ALL-D: always defect
– ALL-C: always cooperate
– RAND: randomly cooperate/defect

• Effectiveness depends on environment
– ALL-D optimizes local (individual) fitness
– ALL-C optimizes global (population) fitness
– RAND compromises
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Expected Scores

3.01.03.05.0ALL-D

2.250.52.254.0RAND

1.50.01.53.0ALL-C

AverageALL-DRANDALL-C⇓ playing ⇒
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Result of Axelrod’s Experiments

• Winner is Rapoport’s TFT (Tit-for-Tat)
– cooperate on first encounter
– reply in kind on succeeding encounters

• Second experiment:
– 62 programs
– all know TFT was previous winner
– TFT wins again
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Demonstration of
Iterated Prisoners’ Dilemma

Run NetLogo demonstration
PD N-Person Iterated.nlogo
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Characteristics
of Successful Strategies

• Don’t be envious
– at best TFT ties other strategies

• Be nice
– i.e. don’t be first to defect

• Reciprocate
– reward cooperation, punish defection

• Don’t be too clever
– sophisticated strategies may be unpredictable & look

random; be clear
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Tit-for-Two-Tats

• More forgiving than TFT
• Wait for two successive defections before

punishing
• Beats TFT in a noisy environment
• E.g., an unintentional defection will lead
TFTs into endless cycle of retaliation

• May be exploited by feigning accidental
defection
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Effects of Many Kinds of Noise
Have Been Studied

• Misimplementation noise
• Misperception noise

– noisy channels
• Stochastic effects on payoffs
• General conclusions:

– sufficiently little noise ⇒ generosity is best
– greater noise ⇒ generosity avoids unnecessary

conflict but invites exploitation
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More Characteristics
of Successful Strategies

• Should be a generalist (robust)
– i.e. do sufficiently well in wide variety of

environments
• Should do well with its own kind

– since successful strategies will propagate
• Should be cognitively simple
• Should be evolutionary stable strategy

– i.e. resistant to invasion by other strategies
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Kant’s Categorical Imperative

“Act on maxims that can at the same time
have for their object themselves as universal

laws of nature.”
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Reading

• CS 420/594: Flake, ch. 18 (Natural &
Analog Computation)
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Ecological & Spatial Models
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Ecological Model

• What if more successful strategies spread in
population at expense of less successful?

• Models success of programs as fraction of
total population

• Fraction of strategy = probability random
program obeys this strategy
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Variables

• Pi(t) = probability = proportional population
of strategy i at time t

• Si(t) = score achieved by strategy i
• Rij(t) = relative score achieved by strategy i

playing against strategy j over many rounds
– fixed (not time-varying) for now
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Computing Score of a Strategy

• Let n = number of strategies in ecosystem
• Compute score achieved by strategy i:

! 

S
i
t( ) = R

ik
t( )Pk t( )

k=1

n

"

! 

S t( ) =R t( )P t( )
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Updating Proportional Population

! 

Pi t +1( ) =
Pi t( )Si t( )

Pj t( )S j t( )
j=1

n

"
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Some Simulations

• Usual Axelrod payoff matrix
• 200 rounds per step
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Demonstration Simulation
• 60% ALL-C
• 20% RAND
• 10% ALL-D, TFT
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NetLogo Demonstration of
Ecological IPD

Run EIPD.nlogo
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Collectively Stable Strategy
• Let w = probability of future interactions
• Suppose cooperation based on reciprocity

has been established
• Then no one can do better than TFT

provided:

• The TFT users are in a Nash equilibrium

! 

w "max
T # R

R # S
,
T # R

T # P

$ 

% 
& 

' 

( 
) 
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“Win-Stay, Lose-Shift” Strategy

• Win-stay, lose-shift strategy:
– begin cooperating
– if other cooperates, continue current behavior
– if other defects, switch to opposite behavior

• Called PAV (because suggests Pavlovian
learning)
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Simulation without Noise
• 20% each
• no noise
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Effects of Noise

• Consider effects of noise or other sources of error
in response

• TFT:
– cycle of alternating defections (CD, DC)
– broken only by another error

• PAV:
– eventually self-corrects (CD, DC, DD, CC)
– can exploit ALL-C in noisy environment

• Noise added into computation of Rij(t)
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Simulation with Noise
• 20% each
• 0.5% noise
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Spatial Effects
• Previous simulation assumes that each agent

is equally likely to interact with each other
• So strategy interactions are proportional to

fractions in population
• More realistically, interactions with

“neighbors” are more likely
– “Neighbor” can be defined in many ways

• Neighbors are more likely to use the same
strategy
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Spatial Simulation

• Toroidal grid
• Agent interacts only with eight neighbors
• Agent adopts strategy of most successful

neighbor
• Ties favor current strategy
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Typical Simulation (t = 1)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 5)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 10)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 10)
Zooming In
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Typical Simulation (t = 20)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 50)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 50)
Zoom In
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Simulation of Spatial
Iterated Prisoners Dilemma

Run sipd.nlogo
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SIPD Without Noise
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Conclusions: Spatial IPD

• Small clusters of cooperators can exist in
hostile environment

• Parasitic agents can exist only in limited
numbers

• Stability of cooperation depends on
expectation of future interaction

• Adaptive cooperation/defection beats
unilateral cooperation or defection
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