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D.
Pattern Formation
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Differentiation
& Pattern Formation

• A central problem in
development: How do cells
differentiate to fulfill
different purposes?

• How do complex systems
generate spatial & temporal
structure?

• CAs are natural models of
intercellular communication

photos ©2000, S. Cazamine
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Zebra

figs. from Camazine & al.: Self-Org. Biol. Sys. 9/17/08 4

Vermiculated Rabbit Fish

figs. from Camazine & al.: Self-Org. Biol. Sys.
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Activation & Inhibition
in Pattern Formation

• Color patterns typically have a charac-
teristic length scale

• Independent of cell size and animal size

• Achieved by:
– short-range activation  local uniformity

– long-range inhibition  separation
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Interaction Parameters

• R1 and R2 are the interaction ranges

• J1 and J2 are the interaction strengths
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CA Activation/Inhibition Model

• Let states si  {–1, +1}

• and h be a bias parameter

• and rij be the distance between cells i and j

• Then the state update rule is:

si t +1( ) = sign h + J1 s j t( )
rij <R1

+ J2 s j t( )
R1 rij <R2
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Example
(R1=1, R2=6, J1=1, J2=–0.1, h=0)

figs. from Bar-Yam
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Effect of Bias
(h = –6, –3, –1; 1, 3, 6)

figs. from Bar-Yam 9/17/08 10

Effect of Interaction Ranges

R2 = 6
R1 = 1
h = 0

R2 = 6
R1 = 1.5

h = 0

R2 = 8
R1 = 1
h = 0

R2 = 6
R1 = 1.5
h = –3

figs. from Bar-Yam
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Demonstration of NetLogo
Program for Activation/Inhibition

Pattern Formation:
Fur

Run AICA.nlogo
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Differential Interaction Ranges

• How can a system using strictly local
interactions discriminate between states at
long and short range?

• E.g. cells in developing organism

• Can use two different morphogens diffusing
at two different rates
– activator diffuses slowly (short range)

– inhibitor diffuses rapidly (long range)
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Digression on Diffusion
• Simple 2-D diffusion equation:

• Recall the 2-D Laplacian:

• The Laplacian (like 2nd derivative) is:
– positive in a local minimum

– negative in a local maximum

2A x,y( ) =
2A x,y( )
x 2

+
2A x,y( )
y 2

˙ A x, y( ) = c 2A x,y( )
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Reaction-Diffusion System
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reactiondiffusion
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Example:
Activation-Inhibition System

• Let  be the logistic sigmoid function

• Activator A and inhibitor I may diffuse at
different rates in x and y directions

• Cell is “on” if activator + bias exceeds
inhibitor

A

t
= dAx

2A

x 2
+ dAy

2A

y 2
+ kA mA A + B I( )[ ]

I

t
= dIx

2I

x 2
+ dIy

2I

y 2
+ kI mI A + B I( )[ ]
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NetLogo Simulation of
Reaction-Diffusion System

1. Diffuse activator in X and Y directions
2. Diffuse inhibitor in X and Y directions
3. Each patch performs:

stimulation = bias + activator – inhibitor + noise
if stimulation > 0 then

set activator and inhibitor to 100
else

set activator and inhibitor to 0
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Demonstration of NetLogo
Program for Activation/Inhibition

Pattern Formation

Run Pattern.nlogo
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Abstract Activation/Inhibition
Spaces

• Consider two axes of cultural preference
– E.g. hair length & interpersonal distance
– Fictitious example!

• Suppose there are no objective reasons for
preferences

• Suppose people approve/encourage those with
similar preferences

• Suppose people disapprove/discourage those with
different preferences

• What is the result?
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Emergent Regions of Acceptable
Variation

9/17/08 20

A Key Element of
Self-Organization

• Activation vs. Inhibition

• Cooperation vs. Competition

• Amplification vs. Stabilization

• Growth vs. Limit

• Positive Feedback vs. Negative Feedback

– Positive feedback creates

– Negative feedback shapes
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Reaction-Diffusion Computing

• Has been used for image processing
– diffusion  noise filtering
– reaction  contrast enhancement

• Depending on parameters, RD computing
can:
– restore broken contours
– detect edges
– improve contrast
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Image Processing in BZ Medium

• (A) boundary detection, (B) contour enhancement,
(C) shape enhancement, (D) feature enhancement

Image < Adamatzky, Comp. in Nonlinear Media & Autom. Coll.
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Voronoi Diagrams

• Given a set of
generating points:

• Construct polygon
around each gen. point
of set, so all points in
poly. are closer to its
generating point than
to any other
generating points.

Image < Adamatzky & al., Reaction-Diffusion Computers 9/17/08 24

Some Uses of Voronoi Diagrams

• Collision-free path planning

• Determination of service areas for power
substations

• Nearest-neighbor pattern classification

• Determination of largest empty figure
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Computation of Voronoi Diagram
by Reaction-Diffusion Processor

Image < Adamatzky & al., Reaction-Diffusion Computers 9/17/08 26

Mixed Cell Voronoi Diagram

Image < Adamatzky & al., Reaction-Diffusion Computers
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Path Planning via BZ medium:
No Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers 9/17/08 28

Path Planning via BZ medium:
Circular Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers
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Mobile Robot with Onboard
Chemical Reactor

Image < Adamatzky & al., Reaction-Diffusion Computers 9/17/08 30

Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers 9/17/08 32

Actual Path: BZ Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Bibliography for
Reaction-Diffusion Computing

1. Adamatzky, Adam. Computing in Nonlinear
Media and Automata Collectives. Bristol: Inst.
of Physics Publ., 2001.

2. Adamatzky, Adam, De Lacy Costello, Ben, &
Asai, Tetsuya. Reaction Diffusion Computers.
Amsterdam: Elsevier, 2005.
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Segmentation

(in embryological development)
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Vertebrae

• Humans: 33, chickens: 55, mice: 65,
corn snake: 315

• Characteristic of species

• How does an embryo “count” them?

• “Clock and wavefront model” of Cooke &
Zeeman (1976).
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NetLogo Simulation of
Segmentation

Run Segmentation.nlogo
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Segmentation References
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