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B.
Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum
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Escape from Local Minimum
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Motivation

• Idea: with low probability, go against the local
field
– move up the energy surface
– make the “wrong” microdecision

• Potential value for optimization: escape from local
optima

• Potential value for associative memory: escape
from spurious states
– because they have higher energy than imprinted states
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The Stochastic Neuron
Deterministic neuron :   s i = sgn hi( )

Pr  s i = +1{ } = hi( )
Pr  s i = 1{ } =1 hi( )

Stochastic neuron :  

Pr  s i = +1{ } = hi( )
Pr  s i = 1{ } =1 hi( )

Logistic sigmoid :  h( ) =
1

1+ exp 2h T( )

h

(h)
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Properties of Logistic Sigmoid

• As h  + , (h)  1

• As h  – , (h)  0

•  (0) = 1/2

h( ) =
1

1+ e 2h T
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Logistic Sigmoid
With Varying T

T varying from 0.05 to  (1/T =  = 0, 1, 2, …, 20)
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Logistic Sigmoid
T = 0.5

Slope at origin = 1 / 2T
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Logistic Sigmoid
T = 0.01
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Logistic Sigmoid
T = 0.1
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Logistic Sigmoid
T = 1
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Logistic Sigmoid
T = 10
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Logistic Sigmoid
T = 100
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Pseudo-Temperature

• Temperature = measure of thermal energy (heat)

• Thermal energy = vibrational energy of molecules

• A source of random motion

• Pseudo-temperature = a measure of nondirected
(random) change

• Logistic sigmoid gives same equilibrium
probabilities as Boltzmann-Gibbs distribution
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Transition Probability
Recall, change in energy E = skhk

= 2skhk

  
Pr  s k = ±1sk = m1{ } = ±hk( ) = skhk( )

Pr sk sk{ } =
1

1+ exp 2skhk T( )

=
1

1+ exp E T( )
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Stability

• Are stochastic Hopfield nets stable?

• Thermal noise prevents absolute stability

• But with symmetric weights:

average values si  become time - invariant
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Does “Thermal Noise” Improve
Memory Performance?

• Experiments by Bar-Yam (pp. 316-20):
n = 100
p = 8

• Random initial state
• To allow convergence, after 20 cycles

set T = 0
• How often does it converge to an imprinted

pattern?
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Probability of Random State Converging
on Imprinted State (n=100, p=8)

T = 1 / 

(fig. from Bar-Yam) 9/29/08 20

Probability of Random State Converging
on Imprinted State (n=100, p=8)

(fig. from Bar-Yam)
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Analysis of Stochastic Hopfield
Network

• Complete analysis by Daniel J. Amit &
colleagues in mid-80s

• See D. J. Amit, Modeling Brain Function:
The World of Attractor Neural Networks,
Cambridge Univ. Press, 1989.

• The analysis is beyond the scope of this
course
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Phase Diagram

(fig. from Domany & al. 1991)

(A) imprinted
 = minima

(B) imprinted,
but s.g. = min.

(C) spin-glass states

(D) all states melt
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Conceptual Diagrams
of Energy Landscape

(fig. from Hertz & al. Intr. Theory Neur. Comp.) 9/29/08 24

Phase Diagram Detail

(fig. from Domany & al. 1991)



Part 3B: Stochastic Neural Networks 9/29/08

5

9/29/08 25

Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma
• In the early stages of search, we want a high

temperature, so that we will explore the
space and find the basins of the global
minimum

• In the later stages we want a low
temperature, so that we will relax into the
global minimum and not wander away from
it

• Solution: decrease the temperature
gradually during search
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Quenching vs. Annealing
• Quenching:

– rapid cooling of a hot material

– may result in defects & brittleness

– local order but global disorder

– locally low-energy, globally frustrated

• Annealing:
– slow cooling (or alternate heating & cooling)

– reaches equilibrium at each temperature

– allows global order to emerge

– achieves global low-energy state
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Multiple Domains

local
coherence

global
incoherence
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Moving Domain Boundaries
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Effect of Moderate Temperature

(fig. from Anderson Intr. Neur. Comp.)
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Effect of High Temperature

(fig. from Anderson Intr. Neur. Comp.) 9/29/08 32

Effect of Low Temperature

(fig. from Anderson Intr. Neur. Comp.)
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Annealing Schedule

• Controlled decrease of temperature

• Should be sufficiently slow to allow
equilibrium to be reached at each
temperature

• With sufficiently slow annealing, the global
minimum will be found with probability 1

• Design of schedules is a topic of research
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Typical Practical
Annealing Schedule

• Initial temperature T0 sufficiently high so all
transitions allowed

• Exponential cooling: Tk+1 = Tk

typical 0.8 <  < 0.99
at least 10 accepted transitions at each temp.

• Final temperature: three successive
temperatures without required number of
accepted transitions
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Summary

• Non-directed change (random motion)
permits escape from local optima and
spurious states

• Pseudo-temperature can be controlled to
adjust relative degree of exploration and
exploitation
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