B.
Neural Network Learning

10/22/08

Supervised Learning

* Produce desired outputs for training inputs

e Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition

* Feedforward multilayer networks

10/22/08

Feedforward Network

hidden
layers

10/22/08

Typical Artificial Neuron

7~ Q connection

31 weights

inputs< Q J Y ><g E%Si output
S
S, 0

N

threshold

10/22/08

Typical Artificial Neuron

linear activation
Q 51 combination function
. Nl

Qsj il ®@>@ Si
|

: Win T net input
5, 5 (local field)

10/22/08

Equations

[\
Net input: h, = E WS |- 0
\ /=1 /
h=Ws-0
Neuron output: = o‘(hl.)

10/22/08

Single-Layer Perceptron

10/22/08

Variables

O

10/22/08

Single Layer Perceptron
Equations

Binary threshold activation function :

I, ifh>0
abye ik} ={0 if <0

1f ij X > 6
otherwise

\ 4 N
ORI OF
»

tw-x>0

e

, fw-x<0

10/22/08

2D Weight Vector

22

w- x =||w]|x][cos ¢
COS (@ = ="

Bl
wox = [wy
w-x>60
< |w|lv >0
v >0/|w|

10/22/08

10

N-Dimensional Weight Vector
€,

normal
W vector

separating
hyperplane

10/22/08

11

Goal of Perceptron Learning

e Suppose we have training patterns x!, x?,
..., X" with corresponding desired outputs

ik, S ey
e where x? € {0, 1}, & {0, 1}

e We want to find w, 0 such that
Ww=0(wx’-0)forp=1,...,P

10/22/08

12

Treating Threshold as Weight

10/22/08 13

Treating Threshold as Weight

10/22/08 14

Augmented Vectors

(6 1)
W=l Y og 8
\Wa) \ X

We want y” = @(W-)’Z”), 1ol N 2

10/22/08

Reformulation as Positive
Examples

We have positive (y” =1) and negative (y” =0) examples
Want w- x” >0 for positive, w- X" <0 for negative
Let z” = x” for positive, z° = —x” for negative

Wantw-z" =0, forp=1,...,P

Hyperplane through origin with all z” on one side

10/22/08 16

Adjustment of Weight Vector

10/22/08

17

Outline of
Perceptron Learning Algorithm

1. 1nitialize weight vector randomly

2. until all patterns classified correctly, do:

a) forp=1, ..., Pdo:
1) if z? classified correctly, do nothing

2) else adjust weight vector to be closer to correct

classification

10/22/08 18

Weight Adjustment

~ P
" Z
WA nz”
=)
Y /W

10/22/08

19

Improvement in Performance

Ifw-z" <O,
w -z’ =(v~v+nz”)-zp

=w-z" +nz" - 2"

10/22/08

20

Perceptron Learning Theorem

o If there 1s a set of weights that will solve the
problem,

e then the PLA will eventually find it
* (for a sufficiently small learning rate)

e Note: only applies if positive & negative
examples are linearly separable

10/22/08 21

10/22/08

NetLogo Simulation of
Perceptron Learning

Run Perceptron.nlogo

L

Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates

e Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

e Classes can be arbitrary hyperpolyhedra

 Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm

10/22/08 23

Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Desired
output

input hidden output
layer layers layer

10/22/08 24

10/22/08

NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo

25

Adaptive System

Evaluation Function
System (Fitness, Figure of Merit)

Control
Algorithm

Control Parameters -

10/22/08 26

Gradient

JoF : ™
—— measures how F is altered by variation of P,

JP,
(9F/
Vop

oF
S S

\&%Pm/

VF points in direction of maximum increase in F

10/22/08

10/22/08

Gradient Ascent
on Fitness Surface

28

Gradient Ascent

/ by Discrete Step

10/22/08

10/22/08

Gradient Ascent Process
P =nVF(P)
Change 1n fitness:

. dF ~am OF dP, <an .
Eo e oP, A AU AR

F=VF-P

F =VF -nVF =q|VF| =0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

31

General Ascent 1in Fitness

Note that any adaptive process P() will increase

fitness provided :
O<F=VF-P= HVFHHPHCOS(/)

where @ is angle between VF and P

Hence we need cos@ >0

or ‘(p‘ <90

10/22/08

32

10/22/08

General Ascent
on Fitness Surface

33

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',...,t°

Suppose for parameters P the corresponding actual outputs
arey',...,y°

Suppose D(t,y) € [0,70) measures difference between

target & actual outputs

Let EY = D(tq,yq) be error on gth sample

q=1

Let F(P) = —i E‘(P)= —iD[tq,yq(P)]

10/22/08 34

Gradient of Fitness

VF =V|-Y E*|=-) VE*

q q
IE 9 J a"D(t",yq) ay?
oP, IP, Dley’) =2 oy P,

10/22/08 35

Jacobian Matrix

Define Jacobian matrix J? =

e e,

Note J? € H"" and VD(tq,

WA A

yq) = mnxl

ay; Dty

Since (VEq)k = O'qu = E
k

(1) vofe)

10/22/08

Y OB o]

b

36

Derivative of Squared Euclidean
Distance

Suppose D(t.y) =[[t -y = Y, (r;-v,)

é’D(t_y) 0 2 é)(tl B yl)z
A, N el Y
et AL E Dy
dtj_yjz
. (dyj) =—2(tj—y])
dD(t,y) 2 2(y —t)

10/22/08 37

Gradient of Error on g™ Input

JE 1 dD(tq) Jy*
JP, dy* JP,

=2(yq _tQ).Zy?

P, fq)

VE! = 2(JQ)T(yq - t?)

10/22/08

Recap
p=n3, (1) ()

To know how to decrease the differences between
actual & desired outputs,
q
oy
JP,’

which says how jth output varies with kth parameter

we need to know elements of Jacobian,

(given the gth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network
10/22/08 39

10/22/08

Multilayer Notation

w\/‘

P

40

Notation

L layers of neurons labeled 1, ..., L

N, neurons 1n layer /

s! = vector of outputs from neurons in layer /
input layer s! = x4 (the input pattern)

output layer s* = y? (the actual output)

W! = weights between layers [and [+1
Problem: find how outputs y.4 vary with
weights ijl (=l)

10/22/08 41

10/22/08

Typical Neuron

h!

42

Error Back-Propagation

q
W,
and working back to earlier layers (/=L -2,...,1)

We will compute starting with last layer (/=L -1)

10/22/08

43

10/22/08

Delta Values

Convenient to break derivatives by chain rule :

OE? OE! Oh,

oW okl gw
JE*
oh,
JE“ , Oh,

So = 0.
[-1 l [-1
&Wij &Wl.j

Let §; =

44

Output-Layer Neuron

ht
—c siL:yiQTtﬂ

10/22/08 45

Output-Layer Derivatives (1)

65_&Eq d Ek(S;I;—t,f)z

 Oht ont
d(s; -7 ; dst
k- (SdhiL) —2(SiL tq)ﬁ

10/22/08

46

Output-Layer Derivatives (2)

where 0§, = 2(SiL - tiq)g’(hiL)

10/22/08

47

Hidden-Layer Neuron

10/22/08 48

Hidden-Layer Derivatives (1)

JE“ 5 oh,
awl T dWl 1

51 A 0’;E6] ' E 0’)E6] hli-l-l %) E(S“—l é’hli-i-l
' o &R onl 4 on!

Recall

da(hi’)
dp!

01h1i+1 é)z ka Sm 0’)WkllSll
l —]

- =W/
oh, Jh; Jh! .

= Wk’ia’(h.l)

l

o - St wio () o) S

10/22/08

49

Hidden-Layer Derivatives (2)

é’hll 0,) e dWl 1 l 1 o
Pl é)Wl_IEWlk NS dW“ =
é)Wij ek I
A [y
s =0,
I
where & = O"(hil)E 5w
k

10/22/08 50

Derivative of Sigmoid

1
1+ exp(-ah)

Suppose s = o(h) = (logistic sigmoid)

-2

D,5D [t (-] =1t 1+

—ah

= —(1 by ol)_2(—ae‘“h) =qQ (1 +ee-ah)2

Uil e b, A SR 4l
e re o 5 Sl TS

=oas(l-s)

10/22/08 51

Summary of Back-Propagation
Algorithm

Output layer: §; = 2as; (1 - 57)(SZL = tf)

JE“ Pt
W L =0, 5
ij

Hidden layers: &, = as; (1 — 5)E 5. W,

k
JE"
I-1
W,

[[-1
=(5l.s].

10/22/08

52

10/22/08

Output-Layer Computation

53

Hidden-Layer Computation

AW, = ol

10/22/08

54

Training Procedures

e Batch Learning
— on each epoch (pass through all the training pairs),
— weight changes for all patterns accumulated
— weight matrices updated at end of epoch
— accurate computation of gradient

e Online Learning
— weight are updated after back-prop of each training pair
— usually randomize order for each epoch
— approximation of gradient

e Doesn’t make much difference

10/22/08 55

Summation of Error Surfaces

10/22/08

56

10/22/08

El

Gradient Computation
in Batch Learning

-

NI

E

57

10/22/08

El

Gradient Computation
in Online Learning

S

%

E

58

10/22/08

Testing Generalization

Training

Data
———

Test

Data
- g

59

Problem of Rote Learning

CITOor
4

error on
test data

error on
training
data

epoch

stop training here

10/22/08

60

Improving Generalization

Training
Data
——

Test Data
- g
- g

10/22/08

A Few Random Tips

e Too few neurons and the ANN may not be able to
decrease the error enough

 Too many neurons can lead to rote learning

e Preprocess data to:
— standardize
— eliminate irrelevant information
— capture invariances

— keep relevant information

e [f stuck in local min., restart with different random
weights

10/22/08 62

Beyond Back-Propagation

e Adaptive Learning Rate
* Adaptive Architecture

— Add/delete hidden neurons
— Add/delete hidden layers

e Radial Basis Function Networks

shhEicMic e Clic i

10/22/08 63

The Golden Rule of Neural Nets

Neural Networks are the
second-best way

to do everything!

10/22/08 E 64

