Part 4B:

Neural Network Learning

B.
Neural Network Learning

10/22/08

10/22/08

Supervised Learning

* Produce desired outputs for training inputs

* Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition
* Feedforward multilayer networks

10/22/08

Feedforward Network

o S\ J
input hidden output
layer layers layer

10/22/08

Typical Artificial Neuron

Ve connection
O 51 weights

inputs <

§; output

threshold

10/22/08

Typical Artificial Neuron

linear activation
O combination function
: Nl
. i

5
. w
5

Win T net input
0 (local field)

10/22/08

Equations

Net input: h, = (Ewijsj) 6
=1
h=Ws-6

Neuron output: s.=o(h,)

10/22/08

Part 4B:

Neural Network Learning

Single-Layer Perceptron

10/22/08

10/22/08

Variables

10/22/08

Single Layer Perceptron
Equations

Binary threshold activation function :

1, ifh>0
h)=0(h) =
s o) {o, iths0
5 ifE,w,xl)B
J

Hence, y = ;
0, otherwise

!

1, ifw-x>60
0, ifw-x=<6

10/22/08

2D Weight Vector
Wa
w-x = |w]|[x]|cos ¢ @ X @
COS¢=L
Il A
wex =i
o
w x>0 i, % \
";)HVVHV >0 \/‘B/
SV >0/HWH HWH

10/22/08

W

N-Dimensional Weight Vector
©

normal
w vector
separating
hyperplane

10/22/08 11

Goal of Perceptron Learning

* Suppose we have training patterns x!, x2,
..., XP with corresponding desired outputs
YLy 2y

e where x* € {0, 1}*,y € {0, 1}

* We want to find w, 0 such that
w=0Wwx-0)forp=1,...,P

10/22/08

Part 4B:

Neural Network Learning

Treating Threshold as Weight
h= [Z wjxj] -0

n
=-0+ ijxj
j=1

10/22/08 13

Treating Threshold as Weight
h= (2 wjxj] -0

Xp =
n
-0+ ijxj
Jj=1
y
Letx,=-land w, =0
" n
h =w0x0+2wjx] =2wixj =w-'X
=1 =0
10/22/08 14

Augmented Vectors

0 -1
= w, s xlp
w=| . XEa=] e

W ot

We want y” =@(W-%"), p=1....P

10/22/08 15

Reformulation as Positive
Examples
We have positive (y” =1) and negative (y” =0) examples
Want W- X” >0 for positive, W- X” <0 for negative
Let z” = X" for positive, z” = -X” for negative
Want w-z” =0, forp=1,...,P

Hyperplane through origin with all z” on one side

10/22/08 16

Adjustment of Weight Vector

10/22/08 17

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:

a) forp=1,...,Pdo:
1) if 27 classified correctly, do nothing
2) else adjust weight vector to be closer to correct
classification

10/22/08 18

Part 4B: Neural Network Learning

10/22/08

Weight Adjustment

10/22/08 19

Improvement in Performance

Ifw-z” <0,

10/22/08 20

Perceptron Learning Theorem

If there is a set of weights that will solve the
problem,

then the PLA will eventually find it
e (for a sufficiently small learning rate)

* Note: only applies if positive & negative
examples are linearly separable

10/22/08 21

NetLogo Simulation of
Perceptron Learning

Run Perceptron.nlogo

10/22/08 22

Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates

e Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

* Classes can be arbitrary hyperpolyhedra

* Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm

10/22/08 23

Credit Assignment Problem

How do we adjust the weights of the hidden layers?
\

Desired
output

input hidden output
layer layers layer

10/22/08 24

Part 4B:

Neural Network Learning

NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo

10/22/08 25

10/22/08

Adaptive System

Evaluation Function
System (Fitness, Figure of Merit)

Control
Algorithm

Control Parameters
10/22/08 26

Gradient

oF ; .
—— measures how F is altered by variation of P,

k

129

API
_| 9F,

S|,
JF,

P,

VF points in direction of maximum increase in F’

10/22/08 27

Gradient Ascent
on Fitness Surface

10/22/08 28

QGradient Ascent
by Discrete Step

10/22/08 29

Gradient Ascent is Local

10/22/08 30

Part 4B: Neural Network Learning

10/22/08

Gradient Ascent Process
P =nVF(P)
Change in fitness :
. dF on OF dP, on .
E5sp Do ap o A
F=VF:P

F =VF-nVF =q|VF|| 20

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

10/22/08 31

General Ascent in Fitness

Note that any adaptive process P(z) will increase
fitness provided :

0<F=VF-P= HVFHHPHCOS(p

where ¢ is angle between VF and P

Hence we need cosgp >0

or |g| < 90°

10/22/08 32

General Ascent
on Fitness Surface

10/22/08 33

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',...,t°

Suppose for parameters P the corresponding actual outputs

arey',...,y°

Suppose D(t,y) € [0,%) measures difference between

target & actual outputs
LetE? = D(t",y") be error on gth sample

Let F(P) = —i E‘(P)= _i D[t“,y"(P)]

10/22/08 34

Gradient of Fitness

VF =V,

e _ip(tq’ q) =EM%

FE G)

= dD(t",y") dy!
T

‘ quD(t",y")ﬁy%Pk

10/22/08 35

Jacobian Matrix
o = T
@%R (?y%P ;

Note J7 € R and VD(t",y") [Shike

Define Jacobian matrix J¢ =

GET ! aD(t',y)
b, Lop, oy

5

Since (VE”)k

L VE"=(J) vD(t".y")

10/22/08 36

Part 4B:

Neural Network Learning

Derivative of Squared Euclidean
Distance

Suppose D(t,y) =t - y|” = Ei(t,- -y)

aD(t_y) =iz(ti_yi)2 =EM

10/22/08

Gradient of Error on ¢ Input

gE* dD(ty!) gy
oP, dy' P,

=2(yq _tq).%
k

3
=23 1-1) 5

vEr o3 (v -v)

2 Hinee BOOL, ey
2
dl/_yi
=(‘d7y])=_2(tf_yj)
dD(ty) _
E =2y-t)
Recap

P03 (1) (¢ -¥)

To know how to decrease the differences between
actual & desired outputs,

q
we need to know elements of Jacobian, u; P

k
which says how jth output varies with kth parameter

(given the gth input)
The Jacobian depends on the specific form of the system,

in this case, a feedforward neural network
10/22/08 39

Notation
* L layers of neurons labeled 1, ..., L
* N, neurons in layer [
* s’ = vector of outputs from neurons in layer /
* input layer s' = x4 (the input pattern)
« output layer s’ = y? (the actual output)
* W!= weights between layers / and /+1
* Problem: find how outputs y,¢ vary with
weights W,/ (I=1, ..., L-1)

10/22/08 41

10/22/08 38
Multilayer Notation
1
4 L AUA
/ %A\
x4 WwW! W2 (/ WL-2 WL y¢
\ \ /
e ;
s! s? ’ st st
10/22/08 40
Typical Neuron

10/22/08 42

Part 4B:

Neural Network Learning

Error Back-Propagation

; JE*
We will compute 5
W

starting with last layer (/= L -1)

and working back to earlier layers (/= L-2,...,1)

10/22/08 43

Delta Values

Convenient to break derivatives by chain rule :
JEY OE Oh!

oWl aw /T
IE"
oh!
JE‘! , oh!

0 = = 1-1
w, T ow)

Let 8! =

S

10/22/08 44

Output-Layer Neuron

10/22/08 45

Output-Layer Derivatives (1)

5
oF =%=ﬁ2k(sf —z;’)z

d(st -1f)’ ds
=(sdhl.L) = 2(s,.L - l‘f’)ﬁ
=2(s - t/)o'(hf)
10/22/08 46

Output-Layer Derivatives (2)

h} J }5 L-1_L-1 L-1
LA Wi s =85
L-1 L-1 ik Tk J
W, w4

W‘ e
ij
where 8/ = 2(s,.L -t)0’(h;L)

JE* LgL=l

10/22/08 47

Hidden-Layer Neuron

10/22/08 48

Part 4B:

Neural Network Learning

Hidden-Layer Derivatives (1)

JE‘ h!
Recall — =6/ —1~
w; w,
JE’ JE? dn" o
51=7= Gl i 5“]7"
Lo Zah;“ oh! ; “ o
0 f
et 0D Wosh awisl o dofh) .
Ty ["3 P Wkl Ty kxa(i)
oh! oh! oh! dh
E 1 1+1 L gl g1 I+1 f
8 = X8/ Wo'(h)) = o'(h]) D, 8, W,
k k
10/22/08 49

Hidden-Layer Derivatives (2)

I 11 i1
dh, l—l_dWij e

J -1
-G
-1 -1 ik Sk -1 J
W awit £ aw,

where 8] = G’(h,.’)z 5w
k

10/22/08 50

Derivative of Sigmoid

Suppose s = o(h) = !

=———— (logistic sigmoid
1+exp(—ah) (log s)

D,s=D, [l + exp(—och)]ﬁI 3 —[1 + exp(—ozh)]ﬁ2 D, (1 + e'“")

—ah

5 —(1 +e)72(—(16"’"') =a (1 je‘“”)2

e e B [B Il
Tl | i 1 Yopc | b Yonc
)

10/22/08 51

Summary of Back-Propagation

Algorithm
Output layer : 8/ =2as; (1 —st)(Y,L - t,")
L

10/22/08 52

Output-Layer Computation

10/22/08 53

Hidden-Layer Computation
1

10/22/08 54

Neural Network Learning

Training Procedures

¢ Batch Learning
— on each epoch (pass through all the training pairs),
— weight changes for all patterns accumulated
— weight matrices updated at end of epoch
— accurate computation of gradient
¢ Online Learning
— weight are updated after back-prop of each training pair
— usually randomize order for each epoch
— approximation of gradient
¢ Doesn’t make much difference

10/22/08 55

10/22/08

Summation of Error Surfaces

Gradient Computation
in Batch Learning

10/22/08 57

5
E!
B
Gradient Computation
in Online Learning
/2%
E!
B

10/22/08 58

Testing Generalization

Training

Data
———

Test
Data
——

10/22/08 59

Problem of Rote Learning

error

error on
test data

error on
training
data

epoch

stop training here

10/22/08 60

10

Part 4B:

Neural Network Learning

Improving Generalization

Training
Data

10/22/08 61

10/22/08

A Few Random Tips

¢ Too few neurons and the ANN may not be able to
decrease the error enough

¢ Too many neurons can lead to rote learning

¢ Preprocess data to:
— standardize
— eliminate irrelevant information
— capture invariances
— keep relevant information

o If stuck in local min., restart with different random
weights

10/22/08 62

Beyond Back-Propagation

Adaptive Learning Rate

Adaptive Architecture

— Add/delete hidden neurons

— Add/delete hidden layers

Radial Basis Function Networks

¢ Etc., etc., etc....

10/22/08 63

The Golden Rule of Neural Nets

Neural Networks are the
second-best way
to do everything!

10/22/08 E 64

11

