## B. Neural Network Learning

#### Supervised Learning

- Produce desired outputs for training inputs
- Generalize reasonably & appropriately to other inputs
- Good example: pattern recognition
- Feedforward multilayer networks

0/22/08 2



















# Goal of Perceptron Learning Suppose we have training patterns x¹, x², ..., x² with corresponding desired outputs y¹, y², ..., y² where xp ∈ {0, 1}n, yp ∈ {0, 1} We want to find w, θ such that yp = Θ(w·xp − θ) for p = 1, ..., P













Outline of Perceptron Learning Algorithm 1. initialize weight vector randomly 2. until all patterns classified correctly, do: a) for p = 1, ..., P do: 1) if  $\mathbf{z}^p$  classified correctly, do nothing 2) else adjust weight vector to be closer to correct classification





#### Perceptron Learning Theorem

- If there is a set of weights that will solve the problem,
- then the PLA will eventually find it
- (for a sufficiently small learning rate)
- Note: only applies if positive & negative examples are linearly separable

10/22/08 21

# NetLogo Simulation of Perceptron Learning Run Perceptron.nlogo 2

#### Classification Power of Multilayer Perceptrons

- Perceptrons can function as logic gates
- Therefore MLP can form intersections, unions, differences of linearly-separable regions
- Classes can be arbitrary hyperpolyhedra
- Minsky & Papert criticism of perceptrons
- No one succeeded in developing a MLP learning algorithm















#### **Gradient Ascent Process**

$$\dot{\mathbf{P}} = \eta \nabla F(\mathbf{P})$$

Change in fitness:

$$\dot{F} = \frac{\mathrm{d}F}{\mathrm{d}t} = \sum\nolimits_{k=1}^{m} \frac{\partial F}{\partial P_k} \frac{\mathrm{d}P_k}{\mathrm{d}t} = \sum\nolimits_{k=1}^{m} (\nabla F)_k \dot{P}_k$$

$$\dot{F} = \nabla F \cdot \mathbf{I}$$

$$\dot{F} = \nabla F \cdot \eta \nabla F = \eta \|\nabla F\|^2 \ge 0$$

Therefore gradient ascent increases fitness (until reaches 0 gradient)

10/22/09

31

#### General Ascent in Fitness

Note that any adaptive process P(t) will increase fitness provided:

$$0 < \dot{F} = \nabla F \cdot \dot{\mathbf{P}} = ||\nabla F|| ||\dot{\mathbf{P}}|| \cos \varphi$$

where  $\varphi$  is angle between  $\nabla F$  and  $\dot{\mathbf{P}}$ 

Hence we need  $\cos \varphi > 0$ 

or 
$$|\varphi| < 90^{\circ}$$

32



#### Fitness as Minimum Error

Suppose for Q different inputs we have target outputs  $\mathbf{t}^1, ..., \mathbf{t}^Q$ 

Suppose for parameters P the corresponding actual outputs are  $y^{\text{I}},...,y^{\mathcal{Q}}$ 

Suppose  $D(\mathbf{t}, \mathbf{y}) \in [0, \infty)$  measures difference between target & actual outputs

Let  $E^q = D(\mathbf{t}^q, \mathbf{y}^q)$  be error on qth sample

Let 
$$F(\mathbf{P}) = -\sum_{q=1}^{Q} E^{q}(\mathbf{P}) = -\sum_{q=1}^{Q} D[\mathbf{t}^{q}, \mathbf{y}^{q}(\mathbf{P})]$$

10/22/0

Gradient of Fitness

$$\nabla F = \nabla \left( -\sum_{q} E^{q} \right) = -\sum_{q} \nabla E^{q}$$

$$\frac{\partial E^{q}}{\partial P_{k}} = \frac{\partial}{\partial P_{k}} D(\mathbf{t}^{q}, \mathbf{y}^{q}) = \sum_{j} \frac{\partial D(\mathbf{t}^{q}, \mathbf{y}^{q})}{\partial y_{j}^{q}} \frac{\partial y_{j}^{q}}{\partial P_{k}}$$

$$= \frac{\mathrm{d}D(\mathbf{t}^{q}, \mathbf{y}^{q})}{\mathrm{d}\mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= \nabla_{\mathbf{y}^{q}} D(\mathbf{t}^{q}, \mathbf{y}^{q}) \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

#### Jacobian Matrix

Define Jacobian matrix 
$$\mathbf{J}^q = \begin{pmatrix} \partial y_1^q / \partial P_1 & \dots & \partial y_1^q / \partial P_m \\ \vdots & \ddots & \ddots & \partial y_n^q / \partial P_m \end{pmatrix} \begin{pmatrix} \partial y_1^q / \partial P_1 & \dots & \partial y_n^q / \partial P_m \end{pmatrix}$$

Note  $\mathbf{J}^q \in \mathfrak{R}^{n \times m}$  and  $\nabla D(\mathbf{t}^q, \mathbf{y}^q) \in \mathfrak{R}^{n \times 1}$ 

Since 
$$\left(\nabla E^{q}\right)_{k} = \frac{\partial E^{q}}{\partial P_{k}} = \sum_{i} \frac{\partial y_{j}^{q}}{\partial P_{k}} \frac{\partial D(\mathbf{t}^{q}, \mathbf{y}^{q})}{\partial y_{j}^{q}},$$

$$\therefore \nabla E^q = \left(\mathbf{J}^q\right)^{\mathrm{T}} \nabla D\left(\mathbf{t}^q, \mathbf{y}^q\right)$$

## Derivative of Squared Euclidean Distance

Suppose 
$$D(\mathbf{t}, \mathbf{y}) = \|\mathbf{t} - \mathbf{y}\|^2 = \sum_i (t_i - y_i)^2$$
  

$$\frac{\partial D(\mathbf{t} - \mathbf{y})}{\partial y_j} = \frac{\partial}{\partial y_j} \sum_i (t_i - y_i)^2 = \sum_i \frac{\partial (t_i - y_i)^2}{\partial y_j}$$

$$\frac{\partial y_j}{\partial y_j} = \frac{\partial (t_j - y_j)^2}{\partial y_j} = -2(t_j - y_j)$$

$$\therefore \frac{\mathrm{d}D(\mathbf{t},\mathbf{y})}{\mathrm{d}\mathbf{y}} = 2(\mathbf{y} - \mathbf{t})$$

10/22/08

Gradient of Error on  $q^{th}$  Input

$$\frac{\partial E^{q}}{\partial P_{k}} = \frac{\mathrm{d}D \left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\mathrm{d}\mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= 2(\mathbf{y}^q - \mathbf{t}^q) \cdot \frac{\partial \mathbf{y}^q}{\partial P_q}$$

$$=2\sum_{j}\left(y_{j}^{q}-t_{j}^{q}\right)\frac{\partial y_{j}^{q}}{\partial P_{h}}$$

$$\nabla E^q = 2(\mathbf{J}^q)^{\mathrm{T}}(\mathbf{y}^q - \mathbf{t}^q)$$

10/22/09

#### Recap

$$\dot{\mathbf{P}} = \eta \sum_{q} (\mathbf{J}^{q})^{\mathrm{T}} (\mathbf{t}^{q} - \mathbf{y}^{q})$$

To know how to decrease the differences between actual & desired outputs,

we need to know elements of Jacobian,  $\frac{\partial y_j^q}{\partial P_k}$ ,

which says how jth output varies with kth parameter (given the qth input)

The Jacobian depends on the specific form of the system, in this case, a feedforward neural network

22/08

### Multilayer Notation



10/22/09

8 40

#### Notation

- L layers of neurons labeled 1, ..., L
- $N_l$  neurons in layer l
- $s^l$  = vector of outputs from neurons in layer l
- input layer  $\mathbf{s}^1 = \mathbf{x}^q$  (the input pattern)
- output layer  $\mathbf{s}^L = \mathbf{y}^q$  (the actual output)
- $\mathbf{W}^l$  = weights between layers l and l+1
- Problem: find how outputs  $y_i^q$  vary with weights  $W_{ik}^l$  (l = 1, ..., L-1)

/08

## Typical Neuron



#### Error Back-Propagation

We will compute  $\frac{\partial E^q}{\partial W^l_{ij}}$  starting with last layer (l=L-1) and working back to earlier layers (l=L-2,...,1)

10/22/08

# Delta Values Convenient to break derivatives by chain rule: $\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \frac{\partial E^{q}}{\partial h_{i}^{l}} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$ Let $\delta_{i}^{l} = \frac{\partial E^{q}}{\partial h_{i}^{l}}$ So $\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$

### Output-Layer Neuron



### Output-Layer Derivatives (1)

$$\delta_i^L = \frac{\partial E^q}{\partial h_i^L} = \frac{\partial}{\partial h_i^L} \sum_k \left( s_k^L - t_k^q \right)^2$$

$$= \frac{\mathrm{d} \left( s_i^L - t_i^q \right)^2}{\mathrm{d} h_i^L} = 2 \left( s_i^L - t_i^q \right) \frac{\mathrm{d} s_i^L}{\mathrm{d} h_i^L}$$

$$= 2 \left( s_i^L - t_i^q \right) \sigma' \left( h_i^L \right)$$

10/22/0

## Output-Layer Derivatives (2)

$$\frac{\partial h_i^L}{\partial W_{ij}^{L-1}} = \frac{\partial}{\partial W_{ij}^{L-1}} \sum_k W_{ik}^{L-1} s_k^{L-1} = s_j^{L-1}$$

$$\therefore \frac{\partial E^q}{\partial W_{ij}^{L-1}} = \delta_i^L s_j^{L-1}$$
where  $\delta_i^L = 2(s_i^L - t_i^q)\sigma'(h_i^L)$ 



Hidden-Layer Derivatives (1)

Recall 
$$\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$$

$$\delta_{i}^{l} = \frac{\partial E^{q}}{\partial h_{i}^{l}} = \sum_{k} \frac{\partial E^{q}}{\partial h_{k+1}^{l+1}} \frac{\partial h_{k+1}^{l+1}}{\partial h_{i}^{l}} = \sum_{k} \delta_{k+1}^{l+1} \frac{\partial h_{k+1}^{l+1}}{\partial h_{i}^{l}}$$

$$\frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}} = \frac{\partial \sum_{m} W_{km}^{l} S_{m}^{l}}{\partial h_{i}^{l}} = \frac{\partial W_{k}^{l} S_{i}^{l}}{\partial h_{i}^{l}} = W_{ki}^{l} \frac{\partial \sigma(h_{i}^{l})}{\partial h_{i}^{l}} = W_{ki}^{l} \sigma'(h_{i}^{l})$$

$$\therefore \delta_{i}^{l} = \sum_{k} \delta_{k}^{l+1} W_{ki}^{l} \sigma'(h_{i}^{l}) = \sigma'(h_{i}^{l}) \sum_{k} \delta_{k}^{l+1} W_{ki}^{l}$$

10/22/08

Hidden-Layer Derivatives (2)
$$\frac{\partial h_i^l}{\partial W_{ij}^{l-1}} = \frac{\partial}{\partial W_{ij}^{l-1}} \sum_k W_{ik}^{l-1} s_k^{l-1} = \frac{\mathrm{d}W_{ij}^{l-1} s_j^{l-1}}{\mathrm{d}W_{ij}^{l-1}} = s_j^{l-1}$$

$$\therefore \frac{\partial E^q}{\partial W_{ij}^{l-1}} = \delta_i^l s_j^{l-1}$$
where  $\delta_i^l = \sigma'(h_i^l) \sum_k \delta_k^{l+1} W_{ki}^l$ 

Derivative of Sigmoid

Suppose 
$$s = \sigma(h) = \frac{1}{1 + \exp(-\alpha h)}$$
 (logistic sigmoid)

$$D_h s = D_h \left[ 1 + \exp(-\alpha h) \right]^{-1} = -\left[ 1 + \exp(-\alpha h) \right]^{-2} D_h \left( 1 + e^{-\alpha h} \right)$$

$$= -\left( 1 + e^{-\alpha h} \right)^{-2} \left( -\alpha e^{-\alpha h} \right) = \alpha \frac{e^{-\alpha h}}{\left( 1 + e^{-\alpha h} \right)^2}$$

$$= \alpha \frac{1}{1 + e^{-\alpha h}} \frac{e^{-\alpha h}}{1 + e^{-\alpha h}} = \alpha s \left( \frac{1 + e^{-\alpha h}}{1 + e^{-\alpha h}} - \frac{1}{1 + e^{-\alpha h}} \right)$$

$$= \alpha s (1 - s)$$
10/22/08







# Training Procedures • Batch Learning - on each epoch (pass through all the training pairs), - weight changes for all patterns accumulated - weight matrices updated at end of epoch - accurate computation of gradient • Online Learning - weight are updated after back-prop of each training pair - usually randomize order for each epoch - approximation of gradient • Doesn't make much difference













# A Few Random Tips • Too few neurons and the ANN may not be able to decrease the error enough • Too many neurons can lead to rote learning • Preprocess data to: - standardize - eliminate irrelevant information - capture invariances - keep relevant information • If stuck in local min., restart with different random weights

# Beyond Back-Propagation • Adaptive Learning Rate • Adaptive Architecture - Add/delete hidden neurons - Add/delete hidden layers • Radial Basis Function Networks • Etc., etc., etc....

