Part 5A: Genetic Algorithms

V. Evolutionary Computing

A. Genetic Algorithms

Genetic Algorithms

- Developed by John Holland in ’60s
- Did not become popular until late ’80s
- A simplified model of genetics and evolution by natural selection
- Most widely applied to optimization problems (maximize “fitness”)

Assumptions

- Existence of fitness function to quantify merit of potential solutions
 - this “fitness” is what the GA will maximize
- A mapping from bit-strings to potential solutions
 - best if each possible string generates a legal potential solution
 - choice of mapping is important
 - can use strings over other finite alphabets

Outline of Simplified GA

1. Random initial population $P(0)$
2. Repeat for $t = 0, \ldots, t_{\text{max}}$ or until converges:
 a) create empty population $P(t + 1)$
 b) repeat until $P(t + 1)$ is full:
 1) select two individuals from $P(t)$ based on fitness
 2) optionally mate & replace with offspring
 3) optionally mutate offspring
 4) add two individuals to $P(t + 1)$

Fitness-Biased Selection

- Want the more “fit” to be more likely to reproduce
 - always selecting the best
 ⇒ premature convergence
 - probabilistic selection ⇒ better exploration
- Roulette-wheel selection: probability \propto relative fitness:
 \[
 \Pr\{i \text{ mates}\} = \frac{f_i}{\sum_j f_j}
 \]

Crossover: Biological Inspiration

- Occurs during meiosis, when haploid gametes are formed
- Randomly mixes genes from two parents
- Creates genetic variation in gametes
Part 5A: Genetic Algorithms

GAs: One-point Crossover

parents | offspring

GAs: Two-point Crossover

parents | offspring

GAs: N-point Crossover

parents | offspring

Mutation: Biological Inspiration

- Chromosome mutation
- Gene mutation: alteration of the DNA in a gene
 - inspiration for mutation in GAs
- In typical GA each bit has a low probability of changing
- Some GAs models rearrange bits

The Red Queen Hypothesis

“Now, here, you see, it takes all the running you can do, to keep in the same place.” — Through the Looking-Glass and What Alice Found There

Demonstration of GA: Finding Maximum of Fitness Landscape

Run Genetic Algorithms — An Intuitive Introduction by Pascal Glauser
<www.glauserweb.ch/gentore.htm>
Demonstration of GA: Evolving to Generate a Pre-specified Shape (Phenotype)

Run Genetic Algorithm Viewer
<www.rennard.org/alife/english/gavgb.html>

Demonstration of GA: Eaters Seeking Food

http://math.hws.edu/xJava/GA/

Morphology Project by Michael “Flux” Chang

- Senior Independent Study project at UCLA
 – users.design.ucla.edu/~mflux/morphology
- Researched and programmed in 10 weeks
- Programmed in Processing language
 – www.processing.org

Complete Creature

- Neural nets for control (blue)
 – integrate-and-fire neurons
- Muscles (red)
 – decrease “spring length” when fire
- Sensors (green)
 – fire when exposed to “light”
- Structural elements (grey)
 – anchor other cells together
- Creature embedded in a fluid
 – Run users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature.html

Genotype ⇒ Phenotype

- Cells are “grown,” not specified individually
- Each gene specifies information such as:
 – angle
 – distance
 – type of cell
 – how many times to replicate
 – following gene
- Cells connected by “springs”
- Run phenome:
 – users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome.html

Effects of Mutation

- Neural nets for control (blue)
- Muscles (red)
- Sensors (green)
- Structural elements (grey)
- Creature embedded in a fluid
- Run users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack.html
Evolution

- Population: 150–200
- Nonviable & nonresponsive creatures eliminated
- Fitness based on speed or light-following
- 30% of new pop. are mutated copies of best
- 70% are random
- No crossover

Gallery of Evolved Creatures

- Selected for speed of movement
- Run
 [image link]

Why Does the GA Work?

The Schema Theorem

The Fitness of Schemata

- The schemata are the building blocks of solutions
- We would like to know the average fitness of all possible strings belonging to a schema
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism)

Effect of Selection

Let n = size of population
Let $m(S,t) =$ number of instances of schema S at time t
String i gets picked with probability $\frac{f_i}{\sum f_j}$
Let $f(S) =$ avg fitness of instances of S at time t
So expected $m(S,t+1) = m(S,t) \cdot n \cdot \frac{f(S)}{\sum f_j}$
Since $f_{av} = \frac{\sum f_i}{n}$, $m(S,t+1) = m(S,t) \frac{f(S)}{f_{av}}$
Exponential Growth

- We have discovered:
 \[m(S, t+1) = m(S, t) \cdot f(S) / f_{av} \]
- Suppose \(f(S) = f_{av} (1 + c) \)
- Then \(m(S, t) = m(S, 0) (1 + c)^t \)
- That is, exponential growth in above-average schemata

Effect of Crossover

- Let \(\lambda = \) length of genetic strings
- Let \(\delta(S) = \) defining length of schema \(S \)
- Probability (crossover destroys \(S \)):
 \[p_d = \delta(S) / (\lambda - 1) \]
- Let \(p_c = \) probability of crossover
- Probability schema survives:
 \[p_s \geq 1 - p_c \delta(S) / (\lambda - 1) \]

Selection & Crossover Together

\[m(S, t+1) \geq m(S, t) \cdot \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} \right] \]

Effect of Mutation

- Let \(p_m = \) probability of mutation
- So \(1 - p_m = \) probability an allele survives
- Let \(o(S) = \) number of fixed positions in \(S \)
- The probability they all survive is
 \[(1 - p_m)^{o(S)} \]
- If \(p_m << 1 \), \((1 - p_m)^{o(S)} \approx 1 - o(S) p_m \)

Schema Theorem: “Fundamental Theorem of GAs”

\[m(S, t+1) \geq m(S, t) \cdot \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} - o(S) p_m \right] \]

The Bandit Problem

- Two-armed bandit:
 - random payoffs with (unknown) means \(m_1, m_2 \)
 - variances \(\sigma_1, \sigma_2 \)
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
- \(k \)-armed bandit: similar analysis applies
- Analogous to allocation of population to schemata
- Suggests GA may allocate trials optimally
Goldberg’s Analysis of Competent & Efficient GAs

Paradox of GAs

- Individually uninteresting operators:
 - selection, recombination, mutation
- Selection + mutation ⇒ continual improvement
- Selection + recombination ⇒ innovation
 - fundamental to invention: generation vs. evaluation
- Fundamental intuition of GAs: the three work well together

Race Between Selection & Innovation: Takeover Time

- Takeover time $t^* =$ average time for most fit to take over population
- Transaction selection: population replaced by s copies of top $1/s$
- s quantifies selective pressure
- Estimate $t^* \approx \ln n / \ln s$

Innovation Time

- Innovation time $t_i =$ average time to get a better individual through crossover & mutation
- Let $p_i =$ probability a single crossover produces a better individual
- Number of individuals undergoing crossover $= p_c n$
- Probability of improvement $= p_i p_c n$
- Estimate: $t_i \approx 1 / (p_c p_i n)$

Steady State Innovation

- Bad: $t^* < t_i$
 - because once you have takeover, crossover does no good
- Good: $t_i < t^*$
 - because each time a better individual is produced, the t^* clock resets
 - steady state innovation
- Innovation number:
 $$I_v = \frac{t^*}{t_i} = p_c p_i \frac{n \ln n}{\ln s} > 1$$

Feasible Region
Other Algorithms Inspired by Genetics and Evolution

- Evolutionary Programming
 - natural representation, no crossover, time-varying continuous mutation
- Evolutionary Strategies
 - similar, but with a kind of recombination
- Genetic Programming
 - like GA, but program trees instead of strings
- Classifier Systems
 - GA + rules + bids/payments
- and many variants & combinations…

Additional Bibliography