
CS 420/594 — Fall 2009

Project 2

Creation of Spatial Structure
by Activation/Inhibition Cellular Automaton

Due September 25, 2009

Background
Activation/Inhibition Cellular Automaton
In this project you will investigate and measure the creation of spatial structure 
by an activation/inhibition CA (AICA) such as we discussed in class.1  Structure 
will be quantified in terms of spatial correlation, joint entropy, and mutual  
information (discussed below), which you will measure after the CA has 
converged to a stable state.
Recall that the state transition rule of an activation/inhibition network is given 
by a formula such as this:

sit1=sign [h J 1 ∑
r ijR1

s j t J 2 ∑
R1≤r ijR2

s j t ] .                                 (1)

Since this is a 2D CA, the cell indices are two-dimensional vectors, i=i1 , i2 , 
j= j1 , j2 .  As usual, we will also assume that the space is a torus, that is, the 

indices wrap around on the top and bottom and on the left and right edges.  For 
the purposes of this project you may assume that J 1≥0  and J 2≤0  (which are 
the usual cases).  Also, you should assume that the R1  neighborhood includes 
the cell ( i ) at its center.
The distance r ij  between cells can be measured in many different ways, for 
example by Euclidean distance (also known as the L2  metric).  For the purpose 
of this project it will be more convenient to measure distance by the L1  metric, 
which is defined:

r ij=∣i1− j1∣∣i2− j2∣ .                                                  (2)
This gives neighborhoods that are diamond-shaped, rather than circular, but that 
doesn’t really matter.

1Additional information and tips are available at Kristy’s website:
  <http://www.cs.utk.edu/~kvanhorn/cs594_bio/project2/aica.html>.
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Spatial Correlation
We are interested in the extent to which the states of cells at various distances are 
correlated to each other.  Therefore, we define the absolute spatial correlation at 
distance l  as

ρl=∣〈 si sj〉−〈si 〉 〈s j〉∣  for all i , j  such that r ij=l .2

The angle brackets mean “average value of.”  To understand this formula, 
suppose that the states 1  and −1  are equally frequent in the space.  Then the 
individual state averages are 0: 〈si 〉=〈s j〉=0 .  Therefore 〈si s j〉  is the average 
value of the product si sj  for cells that are a distance l  apart.  If these cells tend 
to be 1  at the same time, or −1  at the same time, this average will be greater 
than zero (positive correlation).  If they tend to have opposite signs, then it will 
be less than zero (negative correlation).  If they tend to have the same sign as 
often as the opposite sign, then the average will be near zero (no correlation).  By 
subtracting 〈si 〉〈 sj〉  we compensate for an overall bias toward positive or 
negative states (such as we get when h≠0 ).  We take the absolute value, because 
we are not interested in whether the spatial correlation is positive or negative, 
only its magnitude.  Note that ρ0=1−〈 si〉

2 .

Next let’s consider more explicitly how to compute ρl .  Suppose there are N 2  
cells in the space, and let C l  ( 1≤lN /2 ) be the circumference (in number of 
cells) of a neighborhood of radius l .  For the L1  metric, C l=4 l .  Thus there are 
C l  cells at a distance l  from a given cell.  Then we can see (make sure you 
really do see it!) that:

l=∣ 2
N 2C l

∑
〈 ij〉
r ij=l

si sj− 1
N 2∑

i
si

2

∣ .

The notation 〈 ij〉  under the summation means “all pairs of distinct cells i  and 
j ” (taking each pair just once); therefore there are N 2C l /2  of these pairs. 

(There is a diamond of C l  cells around each of the N 2  cells.)  Thus we are 
averaging over all pairs at a distance of l .  For purposes of computation, this 
can be made more explicit:

ρl=∣ 1
4 l N 2 ∑

i 1 ,i 2  si1 ,i2 ∑
∣ j1∣∣ j2∣=l

si1 j1 ,i2 j 2− 1
N 2 ∑

i1 ,i 2

si1 , i2
2∣ .

Notice that the second summation is over positive and negative j1 , j2  in the 

2 Note: A true correlation coefficient is normalized to [–1, 1] by dividing by 
standard deviations of the variables: ρl=∣ 〈si sj〉−〈 si〉 〈 sj〉 / s i s j∣  for all i , j  
such that r ij=l .  You can compute it this way if you want, but make sure to tell 
us.
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range −l≤ j1 , j2≤l .  The coefficient on the first summation is:

1
2

2
N 2

1
C l

=
1

4 l N 2 .

The 1

2
 factor is to avoid double counting the pairs 〈 ij〉 .   Make sure that you 

understand the formula for ρl .  Remember that cell indices wrap around both 
vertically and horizontally.

Characteristic Correlation Length
(This section is relevant to required measurements for CS 594 students. CS 420 
students can skip it, unless they want to do these measurements for extra credit.)
Often spatial correlation decreases approximately exponentially with distance, 
ρl∝e

−l /λ , where λ , the characteristic correlation length, measures how quickly 
spatial correlation decreases with distance.  By assuming that spatial correlation 
is exponentially decreasing, we can estimate λ .  Let α  be an arbitrary constant 
of proportionality ρl=αe

−l /λ .  Then,

ρ0=αe
0=α ,

ρ λ=αe
−λ /λ=αe−1=

ρ0

e
.

 

Therefore we can estimate λ≈l  such that ρl= ρ0 /e .  That is, the characteristic 
correlation length is that length at which the spatial correlation has decreased to 
1/e  of its maximum value ρ0 .  (Characteristic correlation time can be defined 
similarly.)

Mutual Information Between Distant Cells
As discussed in class, one way to measure the correlation between cell states is 
by average mutual information.  The average mutual information between cells at a 
distance l  is related to the joint entropy between cells at this distance. 
Therefore, first define the average entropy H S   of the cellular space S :

H S  = − ∑
s∈{−1,1}

Pr {s }lg Pr { s} .

Remember that we take 0 lg 0=0 .  For state counting convenience, let 
β  s =1s/2  so that β 1=1  and β −1=0  ( β  converts a bipolar number 
∈ {−1,1}  into a binary number ∈ {0,1} ).  Then the probabilities of the states 

can be computed:

Pr {1} =  1
N 2 ∑

i
β  si ,

Pr {−1}  = 1−Pr {1 }.
The probability that two cells at distance l  have state 1  is:
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P l {1 ,1 }= 2
N 2C l

∑
〈 ij〉
r ij=l

 si sj .

Similarly,

P l {−1 ,−1 }= 2
N 2C l

∑
〈 ij〉
r ij=l

−s i−s j .

These summations can be computed in the same way as ρl .  Finally,

P l {1,−1 }=P l {−1,1 }=1−P l {1,1}−P l {−1,−1} .

(Notice that there are only three distinct possibilities for cells at distance l : both 
+1, both –1, or opposite signs.) The joint entropy between cells at a distance l , 
H l , is then defined in terms of the probabilities in the usual way:

H l=−P l {1,1 }lg P l {1,1 }P l {−1,−1 } lg P l {−1,−1}P l {1,−1} lgP l {1,−1 } .

The average mutual information between two sources A  and B  is defined 
I A ,B=H AH B−H A , B .  Therefore, the average mutual information 

between cells at distance l  is defined:
I l=2H S −H l .
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Experiments
In this project you will be investigating how spatial structure (as measured by 
spatial correlation, mutual information, etc.) is affected by the parameters ( J 1 , 
J 2 , R1 , R2 , h ) of an AICA. (Graduate students should also compute 

characteristic correlation length λ ; undergraduates can do this for extra credit.) 
Make sure to check Kristy’s website for information and suggestions on doing 
your project:
  <http://www.cs.utk.edu/~kvanhorn/cs594_bio/project2/aica.html>.
The goal is to get the measures of structure for a variety of different combinations 
of parameters for each of the following three experiments.  The following table 
shows the minimum set of parameter combinations that you should use. You can 
try additional combinations to earn some extra credit.
Your CA space should be N=30  in each dimension.  Use asynchronous 
updating (i.e., update the cells one at a time rather than all at once), and update 
the states randomly, not in a systematic order, or you will get artifacts.
For each set of parameters you will make several runs, with different random 
initial states, so that you can average your results.  Do a few trial runs to see how 
much the measures vary from run to run.  If they don’t vary much, then you 
don’t need to do many runs for each set of parameters (maybe one run will be 
enough).  If they do vary, then you will have to make several runs (less than 5) 
and average them together, and you won’t have to investigate so many 
parameter values.
For each run you should allow the CA to stabilize, and then compute H S   
estimated λ  (this is optional for CS 420), and also plot  H l ,  I l , and ρl  against 
the l  values.  For each set of parameter values, compute the average of all of 
these and print them out (generate plots for H l ,  I l , and ρl ).  You don’t need 
to hand in a graph for every set of parameters, just those that are relevant to your 
hypotheses.
Following are the descriptions of specific experiments that you should try.  In 
each case, discuss and explain your results.

Descriptions of Experiments:
1. (Optional for CS 420; will earn extra credit.) Set J 2=0  to disable the 

inhibition system and set J 1=1 .  Quantify the spatial structure for at least 
the specified range of R1  and h  values.

2. (Optional for CS 420; will earn extra credit.) Set J 1=0  to disable the 
activation system and set J 2=−0.1 .  Quantify spatial structure as in 
Experiment (1) for at least the specified parameter values.

3. Set J 1=1  and J 2=−0.1 .  Investigate, as in the preceding experiments, 
the spatial structure for at least the specified values of R1 , R2 , and h .
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Based on all the preceding experiments, draw conclusions about the dependence 
of spatial correlation, joint entropy, and mutual information on the parameters of 
the AICA.  See if you can draw some quantitative conclusions.

Experiment 1
(required for 594)

Experiment 2
(required for 594)

Experiment 3
(required for 420 & 594)

R1 R2 h R1 R2 h R1 R2 h

1 15 -1 1 2 0 1 2 0
3 15 -1 1 4 -2 1 5 -4
6 15 -2 1 4 -1 1 5 -2

1 4 0 1 5 0
1 6 -5 1 9 -6
1 6 -3 1 9 -3
1 6 0 1 9 0
1 9 0 1 14 0
1 13 0 3 5 -1
4 5 0 3 5 0
4 7 -5 3 9 -6
4 7 -3 3 9 -3
4 7 0 3 9 0
4 12 0 3 14 0
9 12 -6 7 9 0
9 12 -3 7 14 0
9 12 0 12 14 0
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Convergence of AICA
Problem 1 in this part of the project is required for CS 594 students and extra-
credit for CS 420 students; Problem 2 is extra-credit for everyone.  Consider 
again the state update rule (Eq. 1, p. 1).  Recall that r ij  represents the distance 
between cells i  and j , so the first summation is over all cells within a distance 
of R1  to cell i , and the second summation is over all cells with a distance from 
R1  to R2  (Eq. 2, p. 1).  For simplicity in this part of the project, assume that the 
R1  neighborhood does not include the center cell i .  

The state of a CA can be updated either synchronously or asynchronously.  Recall 
that with synchronous updating all the states are updated simultaneously.  With 
asynchronous updating the cells are updated one at a time (usually in some 
random order).
This part of the project explores the convergence of this AICA; that is, does it 
inevitably reach a stable state?

Problems
Problem 1 (required for 594, extra-credit for 420)
Prove, by exhibiting a counter-example, that if synchronous updating is used, 
then the AICA may not reach a stable state.
Hint:  Construct a very simple AICA, obeying the above state update equation 
(Eq. 1), that cycles between two different states.

Problem 2 (extra-credit for both CS 420 and CS 594)
Prove that if the states are updated asynchronously, then the AICA must reach a 
stable state.
Hint:  Define the following function (called an energy or Lyapunov function) of the 
total state of an AICA:3

E { st }=−1

2
∑
i
si t [hJ 1 ∑

r ijR1

s j t J 2 ∑
R1≤r ijR2

s jt ] .

Show that updating any single cell, according to the state update rule, cannot 
increase this function (that is, E≤0 ).  What else do you need to show in order 
to guarantee convergence to a stable state?
Additional Extra Credit: Assume that the R1  neighborhood does include the 
center cell, and explore any additional assumptions that might be needed to 
guarantee convergence.

3 For this energy function, look in Bar-Yam on p. 630 (section 7.2.2) and p. 170 
(sec. 1.6.6).
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