7. Motor Control and
Reinforcement Learning
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A. Action Selection and Reinforcement

B. Temporal Difference Reinforcement Learning
C. PVLV Model

D. Cerebellum and Error-driven Learning
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Sensory-Motor Loop

 Why animals have nervous systems but plants do
not: animals move

— a nervous system 1s needed to coordinate the movement
of an animal’s body

— movement 1s fundamental to understanding cognition
e Perception conditions action
e Action conditions perception

— profound effect of action on structuring perception 1s
often neglected
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Overview

* Subcortical areas: * Cortical areas:
o basal ganglia o frontal cortex
» reinforcement learning » connections to basal ganglia &
(reward/punishment) cerebellum
> connections to “what” pathway o parietal cortex
o cerebellum » maps sensory information to

. . motor outputs
» error-driven learning

»  connections to cerebellum
» connections to “how” pathway
o disinhibitory output
dynamic
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Learning Rules Across the Brain

Learning Signal Dynamics

Area Reward Error SelfOrg Separator Integrator Attractor

o e
| Corbollom .- - | - -

+ - R ot e
e e e

= has to some extent ... = defining characteristic — definitely has
- =not likely to have ... ---=definitely does not have
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Primitive, Basic Learning. ..

Learning Signal Dynamics

Area Reward Error SelfOrg Separator Integrator Attractor

e e
| Cerebellum  [--- | o[-

* Reward & Error = most basic learning signals
(self organized learning 1s a luxury...)

e Simplest general solution to any learning problem 1s a
lookup table = separator dynamics
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A. Action Selection and
Reinforcement
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Anatomy of Basal Ganglia

Lim S-J, Fiez JA and Holt LL - Lim S-J, Fiez JA and Holt LL (2014) How may the basal ganglia contribute to
auditory categorization and speech perception? Front. Neurosci. 8:230. doi: 10.3389/fnins.2014.00230
http://journal.frontiersin.org/article/10.3389/fnins.2014.00230/full
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Basal Ganglia and Action Selection
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Basal Ganglia: Action Selection

Motor Oculomotor Prefrontal Orbitofrontal Cingulate

PM. M1, S1 FEF ) pLpec, prc \PLPFC) ppc. pm @ HIP, EC, IT

Cortex

Striatum Caudate Caudate @
y \
Thalamus @ @ @
motor eye strategies future costs
actions movement & plans rewards

* Parallel circuits select motor actions and “cognitive” actions
across frontal areas
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Release from Inhibition

| | IIII""””MIIIIII |
(Caudate Nucleusj FH isiam

-)
Substantia Nigra
Pars Reticulata |

Tonic Inhibition Disinhibition Tonic Inhibition

()

— ( Superior ||
Colliculus j HMIII

Saccadic Eye Movement /
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Motor Loop Pathways

 Direct: striatum inhibits T 2/(1)?:2;

GP1 (and SNr)

 [Indirect: striatum 1nhibits
GPe, which inhibits GP1 [
(and SNr) 7T YOS g

* Hyperdirect: cortex excites
STN, which diffusely
excites GP1 (and SNr)

e (GP1 inhibits thalamus,
which opens motor loops

to brainstem

3/4/20 COSC 421/521 12




Basal Ganglia System

e  Striatum e  Thalamus”
*  matrix clusters (inhib.) = cells fire when both:
»  direct (Go) pathway — GPi >  excited (cortex)
» indirect (NoGo) path — GPe »  disinhibited (GPi)
= patch clusters =  disinhibits FC deep layers
>  to dopaminergic system *  Substantia nigra pars compacta (SNc)
*  Globus pallidus, int. segment (GPi)" =  releases dopamine (DA) into striatum
= tonically active . excites D1 receptors (Go)

= inhibits D2 receptors (NoGo)
*  Subthalamic nucleus (STN)

m inhibit thalamic cells

*  Globus pallidus, ext. segment (GPe)

: : = hyperdirect path
= tonically active Y LSS [0 LT

. : : = input from cortex
= inhibits corresponding GP1 neurons

. diffuse excitatory output to GPi
u global NoGo delays decision

*and substantia nigra pars reticulata (SNr) R “olliculus (SC)
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3/4/20

Dopamine System

GPe - Globus pallidus externus
GPi -Globus pallidus internus
PUT - Putamen

SN - Substantia nigra

STN - Nucleus subthalamicus
THA - Thalmus

Mesencephalon

COSC 421/521
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What 1s Dopamine Doing?

Dopamine carries the brain’s reX)rd signal
reward prediction error

stimulus reward

Wise & Romper, 89 Schultz et. al, 98
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Basal Ganglia Reward Learning
(Frank, 2005...; O’Reilly & Frank 2006)

a) Dopamine Burst b) Dopamine Dip

— excitatory _
--@ inhibitory Striatum

--4 dopamine -
@ Dlrect\ Indlrect

Dopamine | _

* Feedforward, modulatory (disinhibition) on cortex/motor
(same as cerebellum)
» Co-opted for higher level cognitive control — PFC

Striatum

@ Dlrect\ Indlrect

Dopamine

-

——
=
—'
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Basal Ganglia Architecture:
Cortically-based Loops

Functional territories
Bifmbic | [ Associative |  Sensory Motor |

Cerebral cortex

o

Strigtum

P H /
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Fronto-basal Ganglia Circuits 1n
Motivation, Action, & Cognition

DA

i 3
Fast learning
Ar&sociations
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ChR2-mediated excitation of direct- and indirect-pathway
MSNs in vivo drives activity in basal ganglia circuitry
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Human Probabilistic Reinforcement

Patients with
Parkinson’s disease
(PD) are impaired in
cognitive tasks that
require learning from
positive and negative
feedback

Likely due to depleted
dopamine

But dopamine
medication actually
worsens performance in
some cognitive tasks,
despite improving it in
others

Frank, Seeberger &

O'Reilly (2004)
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Learning

Train

=

Test

A (80/20) B (20/80) .
00S¢€ .

< 7)

C (70/30) D (30/70)

5 X

E (60/40) F (40/60)
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Testing the Model.:
Parkinson’s and Medication Effects

»—» Seniors
e—-® PD OFF
¢ - ¢ PD ON

Probabilistic Selection
Test Performance

100
901 .
>
3 _
5 80r T
§ I
= 701 .
g 5
$ 60} ]
50 .
Choose A Avoid B Frank, Seeberger &
Test Condition O’Reilly (2004)
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BG Model: DA Modulates Learning from
Positive/Negative Reinforcement

A »— |ntact
e —- @ Simulated PD
- +- — + Simulated DA Meds
— ; Frontal Cortex
excitato ars :
—® inhibitor:/y Probabilistic Selection
—4 modulatory striatum BG Model Go/NoGo Associations

] Go A NoGo B
SNc GPi Test Condition

(A) The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect

(NoGo) pathways of the basal ganglia.
‘ AYAAAS

(B) M. Frank’s neural network model of this circuit.
(C) Predictions from the model for the probabilistic selection task

3/4MU:hael J. Frank et al. Science 2004;306:1940-1943 COSC 421/521

Published by AAAS



emergent Demonstration:
BG

A simplified model compared to Frank, Seeberger, & O’Reilly (2004)

3/4/20 COSC 421/521 23




3/4/20

Anatomy of BG Gating Including
Subthalamic Nucleus (STN)

Frontal Cortex

striatum

PFC-STN provides an override mechanism

COSC 421/521
(slide < Frank)
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Subthalamic Nucleus: Dynamic
Modulation of Decision Threshold

preSMA/AcC  Conflict!

H(P(choice))

striatum

0 0.25 0.50 0.75 1.0
Probability of a Positive Outcome

Conflict (entropy) in choice prob = delay decision!
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B. Temporal Difference
Reinforcement Learning
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Classical Conditioning

e Forward conditioning

— unconditioned stimulus (US): doesn’t depend on experience
— leads to unconditioned response (UR)
— preceding conditioned stimulus (CS) becomes associated with US
— leads to conditioned response (CR)
e Extinction
— after CS established, CS is presented repeatedly without US
— CR frequency falls to pre-conditioning levels
e Second-order conditioning

— CS1 associated with US through conditioning
— (S2 associated with CS1 through conditioning, leads to CR
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Reinforcement Learning: Dopamine

No prediction
Reward occurs

phasfidind il of st b
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Temporal Differences Learning

e V) =7r) +yir(t+ 1) +y%r(t+2) + -
=r(t)+ylr@t+ 1) +yrt+2)+ -]

e V@) =7r®t) +yV(t+1)

e 0=(r(t) +yV(t+ 1)) =V ()

e 5=(r(@®) +yV(t+1)) =V ()

o f=yV(t+1) == thisis the future!

3/4/20 COSC 421/521 29
(slide based on O’Reilly)




Network Implementation

1 A
_ 05 trial: 15
;;
= 0 trial_name: t=15
05

phase: PLUS_PHASE

i 24t t ¢ t ¢ f .
/s 4 6 s 0 12 14 16 18 20 extrwl
TrialOutputDeta trial

CO C1 €2 €3 CH €S5S C6 CT C8 CHCHWCUHNCRCBCHCIS CWCT CRCHN

1 B2 B3 B4 BS B6 BT BR BY BI0 Bil BJ2Z B3 B4 BI5 Bi6 BI7 B

A2 A3 A4 AS A6 AT A8 A9 A0 AL AR AB A A_I6 A_I7
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The RL-cond Model

e ExtRew: external reward r(¢) (based on mput)

e TDRewPred: learns to predict reward value

— minus phase = prediction V(¥) from previous trial

— plus phase = predicted V(#+1) based on Input
e TDRewlnteg: Integrates ExtRew and TDRewPred
— minus phase = V(¢) from previous trial
— plus phase = V(t+1) + r(¢)
e TD: computes temporal dif. delta value = dopamine signal

— compute plus — minus from TDRewlInteg
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CSC Experiment

e A serial-compound stimulus has a series of distinguishable
components

A complete serial-compound (CSC) stimulus has a component for
every small segment of time before, during, and after the US

— Richard S. Sutton & Andrew G. Barto, “Time-Derivative Models of Pavlovian

Reinforcement,” Learning and Computational Neuroscience: Foundations of
Adaptive Networks, M. Gabriel and J. Moore, Eds., pp. 497-537. MIT Press,

1990
e RL-cond.proj implements this form of conditioning

— somewhat unrealistic, since the stimulus or some trace of it must persist until
the US
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3/4/20

RL-cond.proj

apach: 9

[ total_trials: 189 trial: 8

frial_name; =8

quarter: 4
{ phase: PLUS_FPHASE
q‘ rt_cycies: 1 tof_cycle: 189040
+ wos_err: O exl_rew: 0
18 20
TradOutpuCula
0 <-time -» 10 15
C
B
input —
’
TORewintag
TORewPred
ExtRew TD
RiCondiMNat Valuea: act

COSC 421/521
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emergent Demonstration:
RL

A simplified model of temporal difference reinforcement learning
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Actor - Critic

a) Dopamine Burst

@tal Co@

Striatum

A ’ \
‘@’ \\
\
\
Direct \
Dopamine
3/4/20

. ndlrect

-
-
———

output

— excitatory
--@ inhibitory
--4 dopamine

COSC 421/521
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! | .
A e
@ D|rect\ Indirect

Dopamine

b) Dopamine Dip

Striatum

-
=
-
——
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Opponent-Actor Learning (OpAL)

e Actor has independent G and N weights
e Scaled by dopamine (DA) levels during choice

e Choice based on relative activation levels

e Low DA: costs amplified, B B
benefits diminished = choice 1 I [
i . G| |G N1 G| |6 N(1)
e High DA: benefits amplified, e T e e
costs diminished = choice 3 D
e Moderate DA = choice 2 - | a—
e Accounts for differing costs & oo Al
bene fits H :{2] Act(3) Acm)‘ IA(t(2] Act(3)
Choice: 3 Choice: 1
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C. PVLV Model
of DA Biology

A model of dopamine firing in the brain
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Brain Areas Involved in Reward Prediction

e Lateral hypothalamus (LHA): provides a primary reward signal for
basic rewards like food, water etc.

e Patch-like neurons in ventral striatum (VS-patch)

— have direct inhibitory connections onto dopamine neurons in VTA and SNc

— likely role in canceling influence of primary reward signals when they’re
successfully predicted

e (Central nucleus of amygdala (CNA)

— important for driving dopamine firing at the onset of conditioned stimuli
— receives input broadly from cortex

— projects directly and indirectly (via VS-patch) to the VTA and SNc¢ (DA
neurons)

— neurons in the CNA exhibit CS-related firing
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PVLV Model of Dopamine Firing

e Two distinct systems: Primary Value (PV) and Learned Value (LV)

DA signal at time of external reward (US):
Opy = PVe —PVj=7r—7

DA signal for LV when PV not present/expected:
5]V — LVe — LVI

e LV, is excitatory drive from CNA responding to CS (eventually
canceled by LV))

e LV, and LV, values learned from PV, when rewards present/expected
 Hence, CS (or some trace) must still be present when US occurs

e CNA supports 15t order conditioning, but not 2" order (that’s in BLA)
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Biology of Dopamine Firing

VVVVV

itator
__:ehcbioyy US/PV. /\ o

— e __ N A __
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More Detailed Description of PVLV

e  Major issue: Which of PV/LV systems should be in charge of overall dopamine
system?

e PV and LV learning occur when PV present or expected (indicated by PV, > 0,,,)
*  PVrsystem learns: 0Wpyr = Tpresent — PV (Improves prediction)

e Recall alternative DA signals:
Opy = PVe — PV;, Oy = LV, — LV;

 Novelty Value (NV) signal reflects stimulus novelty

e Opverall dopamine signal:
Spy(t) — 8py(t — 1) if PV, > Op,y

§ = [61,(t) — 6, (t — D] + [NV(t) = NV(t —1)] otherwise
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More Detailed Description (ctu’d)

 Learning PV, weights:
dwpy = £(PVe — PVj)x

e Learning LV weights 1s conditional on PV filter:
e(PVe — LVp)x if PV, > 0O,

5le = .
0 otherwise
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PVLV.proj Model

* PV in Ventral Striatum system

* LV in Amygdala system cs iz
: \ ¥ _
« VTA, and VS adapt to US+ T
@ Matrix (phasic CS's)
LV
« Eventually VTA, bursts for CS ladale) R precicaius)
Context || Learns AN { {
onset (vHip, OFC) at US i" » [pv* - us™],
3 L8 |[us - pvi.
° [CS-]+
« LHB+RMTg and VS adapt to s |
td__| (DA+)[diP
> il -
/ VTA, |« T
(DA-)
« VTA_, and VS adapt to US— Us+ s
(LHA, etc) (PBN, etc)

* Eventually DA dip for CS

simplified!
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emergent Demonstration:
PVLV
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D. Cerebellum and
Error-driven Learning

“The blessing of dimensionality”
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The Motor Control System

Motor regions of
cerebral cortex

Thalamus

3/4/20

—»| Basal ganglia
Y
— Cerebellum < »| Brainstem
I Y
—)( Spinal cord

(}—) Motor response
{(movement)

!

Sensory
receplors

Sensory feedback from muscle |

COSC 421/521
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Functions of Cerebellum

e Maintenance of equilibrium and posture

e Timing of learned, skilled motor movement

— any motor movement that improves with practice
— timing, fluency, rhythm, coordination

— 1nvolved in cognitive processes too
e Correction of errors during the execution of movements
— error-driven learning

e Many inputs from cortical motor and sensory areas

e Influences cortical motor outputs to spinal chord
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Cerebellar Microstructure

Nature Reviews | Neuroscience

COSC 421/521
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Cerebellum

e Inputs from parietal cortex and motor areas of frontal cortex
e Three layers, very many cortical maps
e Single basic circuit replicated throughout

e 200 million mossy fiber inputs (each to 500 granule cells)

— projection of input into hyperdimensional space

— separator learning and dynamics

e 40 billion granule cells (input from 4-5 mossy fibers)
e 15 million Purkinje cells (input from 200,000 granule cells)

— matrix organization

— enormous integration and cross connection

e Climbing fibers (one per Purkinje, from inferior olive)
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F(x)

3/4/20

Lookup Table & Pattern Separation

””””
,/

Lookup Table --
store learned
input/output
pairs

COSC 421/521
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Cerebellar Error-driven Learning

Golai

Purkinje
cell

cells <
N
SN
A \\\\\\\\\\\ SR 5 Molecular
\\\\\\\\\ x4+¥d layer
0 &~
» % ‘ i'& ‘ \:7\\\é ] _4"." \
\ﬂ %&? — " | \Granular
\\ X ‘&\“ j e ¥ t layer
<@ <
> 4 ' & 4~ \Medullary
x l layer
l
P\ ~Recurrent

l ‘\ collaterals

\C!imbing
fiber

4

’
!
f g
]

—
RS

\ Purkinje axons

©EDS g~

Separation may be easier in higher dimensions

feature
—_—
map

hyperplane

complex in low dimensions simple in higher dimensions

Cerebellum =
Support Vector Machine

* Granule cells = high-dimensional encoding (separation)

* Purkinje/Olive = delta-rule error-driven learning
* Classic i1deas from Marr (1969) & Albus (1971)

3/4/20
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Cerebellum 1s Feed Forward

Feed-forward circuit:

Parallel fibers

Input (PN) — granules — —
Purkinje — Output (DCN)

Granule
Climbing cells

/ fiber /\

Purkinje
Key idea: does delta-rule cel f
learning bridging small
temporal gap: DN M
l 10 fibers

S(100) — R(?)
T Error(#+100)
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Mesostructure

Microzone: defined by group of adjacent PCs
contacted by CFs with same receptive profiles

3/4/20

= Microzone-+.x
Zone cooe.:_,__':

Purkinje celli X
dendritic< i\ Parallel

trees }Zfibers

comprises hundreds of PCs and several hundreds Unfolded
of thousands of other neurons cerebellar

cortex
shaped as narrow strips a few PCs wide and several dozens of PCs in length
a fraction of a millimeter in width and several millimeters in length

parallel fibers (PFs) extend for several millimeters, crossing width of microzone and extending into
neighbors

estimated that cat has about 5000 microzones, human has several hundred thousand

Multizonal micro-complexes (MZMCs): basic functional units of cerebellar cortex

each comprises several microzones receiving common CF input and delivering their PC output to
the same region of the cerebellar nuclei

seem to have an integrated function

constituent microzones may be in different regions of the cortex, which receive different MF input
and may be associated with different aspects of motor control

MZMCs may provide for parallel processing and integration of inputs
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Spinocerebellum

Macrostructure

Cerebrocerebellum

Cerebellar Output

spinocerebellum medial

fastigial ! descending
. systems

Flocculus

Nodulus

motor

m— / execution

interposed — descending
systems

areas motor
b—>p
dentate 4& 6 planning

cerebellum

vestibular balance &

o 0 ——
nuclei eye movements

vestibulocerebellum
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Properties of Hyperdimensional Spaces

e Hyperdimensional spaces = spaces of very high dimension
e  (Consider vectors of 10,000 bits

— measure distance by Hamming distance (HD)

— or normalized Hamming distance (NHD)

e  Mean HD = 5000, SD = 50 (binomial distribution)

o <107 of space closer than NHD = 0.47 or farther than 0.53 (£300 = £6 SD)
e  Therefore random vectors almost surely have NHD = 0.5£0.03

e  Vectors with <3000 changed bits still accurately recognized

e Ref: Pentti Kanerva (2009), Hyperdimensional Computing: An Introduction to
Computing in Distributed Representation with High-Dimensional Random Vectors,
Cognitive Computation, 1(2)
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Orthogonality of Random

Hyperdimensional Bipolar Vectors
* 99.99% probability of being within

46 of mean |u ' V| =t
e Iti1s 99.99% probable that random iff u v] jcos6] < 4n
n-dimensional vectors will be iff n|cos 8| <4n

within € = 4/4/n orthogonal
e £=4% forn=10,000

iff [cosO|<4/n=¢

* Probability of being less Pr{|cos|> ¢} = erfc(ﬂ)
orthogonal than ¢ decreases V2
exponentially with n N éexp (_gzn / 2) N % D (_2 o /3)

e The brain gets approximate
orthogonality by using random

high-dimensional vectors
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Hyperdimensional Pattern Associator

Suppose py, P, -, Pp are a set of random hyperdimensional bipolar vectors (inputs)
e Letqq,qy, ..., qp be arbitrary bipolar vectors (outputs)

e Define Hebbian linear associator matrix

; P
M=— E %
N qxPx

k=1

e Then Mp,, = q (table lookup)

e To encode a sequence of random vectors pq, Py, ..., Pp:

1 T
M= Nz Pr+1Pk
k=1

e Then Mpj, = pr+1 (sequence readout)
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Some math...

e Suppose pq, P2, ---, Pp are random hyperdimensional bipolar vectors
1
* Suppose M ==%7_, q;p}
1
* Then, Mp, = (N =1 qu37) Pk
1
= ~(qkPk + Xj=k 9;P; )Pk
1 1
= ;qkpz;pk +~ 22k q;P) Pk
= Qi + X2 q,Pj Pxk
e For random hyperdimensional vectors, pJT-p k=0

e Therefore, Mp, = qy
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BG + Cerebellum Capacities

e [earn what satisfies basic needs, and what to avoid
(BG reward learning)

— And what information to maintain in working memory
(PFC) to support successful behavior

e Learn basic Sensory — Motor mappings accurately
(Cerebellum error-driven learning)

— Sensory — Sensory mappings? (what 1s going to happen
next)
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BG + Cerebellum Incapacities

e Generalize knowledge to novel situations
— Lookup tables don’t generalize well...
e Learn abstract semantics
— Statistical regularities, higher-order categories, etc
* Encode episodic memories (specific events)
— Useful for instance-based reasoning
e Plan, anticipate, simulate, etc...

— Requires robust working memory
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emergent Demonstration:
Cereb
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