Computational Social Cognitive Neuroscience

Leroy Todd

What is Social Cognitive Neuroscience?

- Encompasses any cognitive process that deals with conspecifics, either in a group scenario or one-on-one
- Are the key cognitive processes that govern language, perception, memory/attention also responsible for social interaction and formation?
- What governs the social aspect of our lives?

Social Learning

- Learning is more than a person stumbling through actions themselves until they get better or passively taking in information to build self-organized structures
- Mimicry or mirroring is a heavily studied area of social cognitive neuroscience

Mirror Neurons

- Neurons primarily in the premotor cortex that activate when observing actions of other conspecifics
- Activate in the subject as if it was the subject itself doing the action
- Research indicates these neurons distinguish from biological vs non-biological actions

Learning From Others

- Vicarious Reinforcement Learning is a learning strategy where the subject observes the actions and outcomes of someone else.
- Predictions seem to take place in the dIPFC while outcomes predicted in vmPFC

$$V = V_{t-1} + \alpha \,\delta_t$$

Judging Others Intentions

- Action Imitation as a learning mechanism can work similarly to vicarious reinforcement learning
- Work or Shirk: can shirk for gain but need to think about the intentions of others.
- Self choice held in vmPFC while nonexecuted choices held in dmPFC

$$I_{t+1} = I_t * E_t$$

Learning About Others

- Learning about others is different than passively observing actions
- One game players paired with an advising confederate picked cards with hidden value

$$L_{t+1} = L_t + \beta \,\Delta_t$$

 Subjective influence counts too. Over several studies, things that violated 'social norms' saw increased activity in the ACCg

Building A Computational Model

Strategy	Vicarious reward learning	Action imitation	Bayesian inference
Generic learning rule	$Value_{t+1} = Value_t + \alpha_V^* \circ RPE$	Action _{t+1} = Action _t + α_V *APE	Intention _{t+1} = Intention _t * Evidence _t (Posterior = Prior * Likelihood)
Possible computation	oRPE = other person's actual reward – expected reward	APE = other person's action – predicted action	Bayesian update = Intention _{t+1} – Intention _t
Main neural correlate	ACC vmPFC Striatum	Inf. Parietal dIPFC	TPJ dmPFC pSTS
Example behaviors	 Reward & punishment learning Learning preferences, choices and attitude of others 	 Motor learning Learning sequences of actions Reward & preference learning when outcome unavailable or inference strategy too demanding 	 Learning other people's goals and intentions Strategic and competitive interactions Integrating multiple social signals (status, confidence, expertise, attitudes, group size, decisions, etc)
Pros & Cons	Computat Maps ont Slow lear Inflexible	tionally easy to RL framework ning	Flexible (high accuracy) Fast learning Computationally demanding Risk of overfitting

Reflexive and Reflective Systems

- Systems which govern how we think, react, judge, and otherwise function at a very high level
- Reflexive: fast operating, slow learning, bidirectional, parallel processing
- Reflective: slow operating, fast learning, symbolic

Circuitry of Multiple Neural Regions

Neural Model of Evaluation

Conclusion

- This "circuit" in the brain is a very, very rough model but has a lot of influence
- A lot more work needs to be done before we reach a computational model on the level of Emergent/Leabra
- Not even close to answering higher-order self-organization principles

References

Caroline Juliette Charpentier & John P. O'Doherty (2018): The Application of Computational Models to Social Neuroscience: Promises and Pitfalls, Social Neuroscience, DOI: 10.1080/17470919.2018.1518834

Cheong, J. H., Jolly, E., Sul, S. and Chang, L. J. (2017). Computational Models in Social Neuroscience. In Computational Models of Brain and Behavior, A. A. Moustafa (Ed.). DOI: 10.1002/9781119159193.ch17

Erratum: Social cognitive neuroscience: where are we heading? Trends in Cognitive Sciences, Volume 8, Issue 7, July 2004, Pages 293

Behrens TE, Hunt LT, Rushworth MF (2009): Computation of Social Behavior, DOI: 10.1126/science.1169694

Ajay B. Satpute, Matthew D. Lieberman (2006): Integrating automatic and controlled processes into neurocognitive models of social cognition. DOI 10.1016/j.brainres.2006.01.005

Cunningham WA, Zelazo PD (2007): Attitudes and evaluations: a social cognitive neuroscience perspective. DOI: 10.1016/j.tics.2006.12.005

