Neural Computational Models for One-Shot Learning

Presented by Gangotree Chakma

April 26, 2017

Outline

- Learning Mechanism
 - Biological Neural mechanism
 - · Learning in the cortical sheet
 - One-Shot Learning
- Motivation and Background
- Computational One-Shot Learning Models and Implementation
- Future of One-Shot Learning Models

Learning Mechanism

- Biological Neural Mechanism
 - Dendritic computation
 - Neuromodulation
- Learning in the Cortical Sheet
 - Specific architectural features of 6-layered cortical sheet
 - Unsupervised learning via prediction

Learning Mechanism (contd.)

- One-Shot Learning
 - Faster than Associative learning
 - Human learning in single exposure to stimulus
 - Instead of gradient descent training, continuous weight updates of object templates
 - Implement Bayesian Learning

Motivation and Background

- Survival instinct
- Fast mapping in word learning
- Object Categorization

- Challenges:
 - Representation: How to model and Categorize?
 - Learning: How many models we acquire?
 - Detection: How do we detect a new image?
- Complexities:
 - Diverse shape and appearance
 - Highly variable appearance
 - Complex model features
 - Almost impossible to model class variability

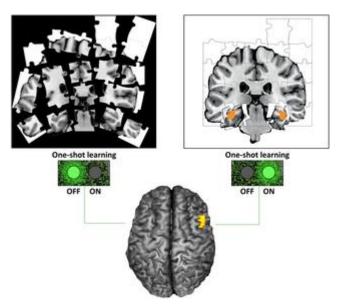
- Bayesian Model (*Li Fei Fei et al.*)
 - Learning and recognition of categories
 - Limited training examples
 - Ability to learn with minimal supervision
 - Captures features (shape and appearance) of object categories

Bayesian Model

$$R = \frac{p(\mathcal{O}_{fg}|\mathcal{I}, \mathcal{I}_t)}{p(\mathcal{O}_{bg}|\mathcal{I}, \mathcal{I}_t)} = \frac{p(\mathcal{I}|\mathcal{I}_t, \mathcal{O}_{fg}) \ p(\mathcal{O}_{fg})}{p(\mathcal{I}|\mathcal{I}_t, \mathcal{O}_{bg}) \ p(\mathcal{O}_{bg})}$$
$$R \propto \frac{\int p(\mathcal{I}|\boldsymbol{\theta}, \mathcal{O}_{fg}) p(\boldsymbol{\theta}|\mathcal{I}_t, \mathcal{O}_{fg}) \ d\boldsymbol{\theta}}{\int p(\mathcal{I}|\boldsymbol{\theta}_{bg}, \mathcal{O}_{bg}) p(\boldsymbol{\theta}_{bg}|\mathcal{I}_t, \mathcal{O}_{bg}) \ d\boldsymbol{\theta}_{bg}}$$
$$= \frac{\int p(\mathcal{I}|\boldsymbol{\theta}_{bg}) p(\boldsymbol{\theta}|\mathcal{I}_t, \mathcal{O}_{fg}) \ d\boldsymbol{\theta}}{\int p(\mathcal{I}|\boldsymbol{\theta}_{bg}) p(\boldsymbol{\theta}_{bg}|\mathcal{I}_t, \mathcal{O}_{bg}) \ d\boldsymbol{\theta}_{bg}}.$$

I: Object to be categorized
I_t: Training set
O_{fg}: Foreground Category
O_{bg}: Background Clutters
Θ: Parameter for foreground
category
Θ_{bg}: Parameter for foreground
category

Fei-Fei, Li, Rob Fergus, and Pietro Perona. "One-shot learning of object categories." *IEEE transactions on pattern analysis and machine intelligence* 28.4 (2006): 594-611.


- Learning in Bayesian Model
 - Shape and appearance means are set to the means of the training data itself
 - Learning is halted when the largest parameter change per iteration falls below a certain threshold
 - Background images are not used in learning except for one instance
 - Learning a category takes roughly less than a minute on a 2.8 GHz machine

- Uncertainty in Causal Relationship model of Caltech
 - The relationship between the outcome and the stimulus
 - The more uncertainty in causal relationship between a stimulus and an outcome, the higher the learning rate to resolve the uncertainty
 - The hippocampus is selectively switched on when oneshot learning is predicted to occur, and the ventrolateral prefrontal cortex may act as a switch to turn on and off one-shot learning as required

- Uncertainty in Causal Relationship model of Caltech
 - Researchers analyzed behavioral data and functional magnetic resonance imaging (fMRI)
 - Results revealed that the uncertainty was associated with increased activation of PFC with hippocampus

Weaver, Janelle. "How one-shot learning unfolds in the brain." *PLoS Biol* 13.4 (2015): e1002138.

Future of One-shot Learning Models

- Future of AI combined with machine learning
- Substantial implications for real-world situations such as medical diagnoses, lawsuit cases, and psychiatric diseases, such as schizophrenia
- Memory Augmented Neural Network (MANN) to quickly retrieve data from new inputs

Thank You

