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4. Learning Mechanisms

Overview of Learning
• Biology: synaptic plasticity
• Computation:
— Self organized:

Ø statistical regularities ⇒ internal models
Ø long time scale

— Error-driven: getting the right answers
Ø outcomes ⇒ expectations
Ø short time scale

— Integration of two forms of learning
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A. Biology of Synaptic Plasticity
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Mechanisms of Synaptic Weight Change

• Amount of neurotransmitter released
• Nonspecific (extra-synaptic) neurotransmitter
• Change in number of post-synaptic receptors
• Rapid change in shape of dendritic spines
• Formation of new synapses
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Synapses Change Strength
(in response to patterns of activity)
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(slide < O’Reilly)

Spike Timing Dependent Plasticity 
(STDP)

1. Vm elevated by backpropagating 
action potential

2. Repels Mg+ opening NMDA 
channels

3. Presynaptic neuron fires, releasing 
glutamate

4. Glutamate binds unblocked 
NMDA channels, allowing 
Ca++ influx

5. Ca++ increases number & efficacy 
of AMPA receptors

6COSC 494/594 CCN2/5/17
(fig. < O’Reilly, Comp. Cog. Neurosci.)
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Hebb’s Rule

• “When an axon of cell A is near enough to excite a 
cell B and repeatedly or persistently takes part in 
firing it, some growth process or metabolic change 
takes place in one or both cells such that A’s 
efficiency, as one of the cells firing B, is increased.”
— Donald Hebb

• I.e., neurons that fire together, wire together
• ∆𝑊 = 𝑥𝑦

where x is sending activity and y is receiving activity

2/5/17 COSC 494/594 CCN 7

Hebb’s Rule Learns Correlations
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(slide < O’Reilly)

Long-term Potentiation (LTP)
vs. Long-term Depression (LTD)

LTP vs. LTD depends on 
Ca++ concentration over 
several 100 msec

Records possible causal 
connection

Actual situation is more 
complicated with 
multiple APs

9

(figs. < O’Reilly, Comp. Cog. Neurosci.)
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Causal Learning?
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(slide < O’Reilly)

Let’s Get Real…
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(slide < O’Reilly)

Urakubo et al. (2008) Model

l Highly detailed combination of 3 existing strongly-
validated models:

122/5/17 COSC 494/594 CCN

(slide < O’Reilly)



4. Learning Mechanisms 2/5/17

COSC 494/594 CCN 5

B. XCAL & BCM Models
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XCAL = Linearized BCM
• Bienenstock, Cooper & 

Munro (1982) – BCM
• Adaptive threshold θM

ü Lower when less active
ü Higher when more
ü Homeostatic
ü Weights can decrease

142/5/17 COSC 494/594 CCN

(slide based on O’Reilly)

Evidence for Floating Threshold

152/5/17 COSC 494/594 CCN

(slide based on O’Reilly)
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Homeostatic Behavior

Floating threshold adapts to long-term postsynaptic activity
Tends to equalize activity among neurons

16

(fig. < O’Reilly, Comp. Cog. Neurosci.)
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LTP/LTD Approximation
Piecewise linear approximation 

to LTP/LTD
Typical θd = 0.1
Floating threshold

17

(fig. < O’Reilly, Comp. Cog. Neurosci.)
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∆𝑊 = 𝜖𝑓()*+ 𝑥𝑦 ,, 𝑦 .

Note: ∆𝑊 ≈ 𝜖𝑥, 𝑦, − 𝑦.

Computation of Floating Threshold

2/5/17 COSC 494/594 CCN 18
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Integrating Over Experience

• Units that are activated (initially) by a wide range of stimuli 
end up representing an average of all of these stimuli
— The unit will learn what they have in common

• Units that are activated (initially) by a narrow range of 
stimuli end up representing very specific features
— If a unit is only activated by a single stimulus, it will only 

represent that stimulus

• Thus the learning rule allows you to represent concepts at 
varying levels of abstraction, depending on the excitability 
of the unit

2/5/17 COSC 494/594 CCN 19

(slide based on Frank)

Multiple Units

• One detector can only represent one “thing” (pattern 
of correlated features)

• Goal: We want to have different units in the network 
learn to “specialize” for different things, such that 
each thing is represented by at least one unit

• Random initial weights and inhibitory competition 
are important for achieving this goal

2/5/17 COSC 494/594 CCN 20

(slide based on Frank)

Simple Competitive Learning

• Competitive learning network
— two layers, randomly initialized weights
— second is self-reinforcing, mutually inhibitory
— “winner takes all” dynamics

• Learning
— winner moves toward last 
— weight vectors move to centers of clusters

21COSC 494/594 CCN2/5/17
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Competitive Network

22

W
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Diagram of Competitive Learning

W1

W2

x
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𝐖2 3 𝐱 = 𝐖2 	 𝐱 	cos𝜑2

If the Wj are normalized,

	𝐖23 𝐱 = 𝐱 	cos𝜑2

𝜑2

𝜑1

𝑦2 = :𝑊2;𝑥; = 𝐖2 3 𝐱
<

;=>

𝑦2 > 𝜃 if  𝑥 	cos𝜑2 > 𝜃

𝜃1

𝜃1

𝜃2

Self-Organized Learning
• Inhibitory competition
— ensures sparse representation

• Hebbian “rich get richer”
— adjustment toward last pattern matched

• Slow threshold adaptation
— adjusts receptive fields
— equalizes cluster probabilities

• Homeostasis
— distributes activity among neurons
— more common patterns are more precisely represented

• Gradually develops statistical model of environment
24COSC 494/594 CCN2/5/17



4. Learning Mechanisms 2/5/17

COSC 494/594 CCN 9

emergent demonstration:
Self_Organizing

2/5/17 COSC 494/594 CCN 25

C. Error-driven Learning

COSC 494/594 CCN 262/5/17

Self-organized vs. Error-driven Learning

• Last time we discussed self organized Hebbian
learning
— Leverage correlations to grow detectors that 

correspond to things in the world (cats, professors...)
• Today we will discuss error-driven (task) learning
— Task = producing a specific output pattern in response 

to an input pattern
— e.g., reading; giving the correct answer to 3 + 3

272/5/17 COSC 494/594 CCN

(slide based on Frank)
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Task Learning

• Task learning encompasses:
— Giving an appropriate response to a stimulus
— Arriving at an accurate interpretation of a situation
— Generating a correct expectation of what will 

happen next
• In all of the above cases, there is a correct 

answer...

2/5/17 COSC 494/594 CCN 28

(slide < Frank)

Floating Threshold = Medium Term 
Synaptic Activity (Error-Driven)

292/5/17 COSC 494/594 CCN

(slide < O’Reilly)

Error-Driven Learning
• For achieving intended outcomes
• Fast threshold adaptation
• Short-term outcome – medium-term expectation

ü “plus phase” – “minus phase”

• Depends on bidirectional connections
ü communicates error signals back to earlier layers

• Contrastive Attractor Learning (CAL)
ü approximately equivalent to backpropagation algorithm 

when combined with bidirectional connections
30COSC 494/594 CCN2/5/17
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Backpropagation:
Mathematics of Error-driven Learning

312/5/17 COSC 494/594 CCN

(slide < O’Reilly)

Credit/Blame Assignment via GeneRec

2/5/17 COSC 494/594 CCN 32

(fig. < O’Reilly, Comp. Cog. Neurosci.)

The Plus Phase helps identify bridging units that are well connected to 
both the input and the target output, and GeneRec adjusts weights to 
maximize the activity of these units. — M. Frank

More precisely…
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Minus Phase:

Clamp 𝑥AB (inputs)

𝑦2B = 𝑓 ∑ 𝑥AB𝑊A2 + ∑ 𝑊2;𝑧;B�
;

�
A

𝑧;B = 𝑓 ∑ 𝑦2B𝑊2;�
2

Plus Phase:

Clamp 𝑧;G (target outputs)

∆𝑊2; = 𝑦2B 𝑧;G − 𝑧;B = 𝑦2B𝛿;	where	𝛿; = 	 𝑧;G − 𝑧;B

𝑦2G = 𝑓 ∑ 𝑥AB𝑊A2 + ∑ 𝑊2;𝑧;G�
;

�
A

∆𝑊A2 = 𝑥AB 𝑦2G − 𝑦2B = 	 𝑥AB𝛿2	where	𝛿2 = 𝑦2G − 𝑦2B

zk

yj

xi

Wjk

Wij
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Two Issues
• Two issues: 
— Need weights to be symmetric
— Why should we use minus phase sending activity instead of plus 

phase?

• Solution: Average together plus and minus phase sending 
activation, and average together feedforward and feedback 
weight changes

2/5/17 COSC 494/594 CCN 34

∆𝑊A2 = 𝜖 MN
OGMN

P

Q
𝑦2G − 𝑦2B +

RS
OGRS

P

Q
𝑥AG − 𝑥AB

= T
Q

𝑥AG + 𝑥AB 𝑦2G − 𝑦2B + 𝑥AG − 𝑥AB 𝑦2G + 𝑦2B

= 𝜖 𝑥AG𝑦2G − 𝑥AB𝑦2B

(slide based on Frank)

Contrastive Attractor Learning
Network learns contrast between:

early phase/expectation (minus)
late phase/outcome (plus)

Gets more quickly to late phase, 
which has integrated more 
constraints

35COSC 494/594 CCN2/5/17

𝑓()*+ 𝑐, 𝜃V = W
𝑐 − 𝜃X if	𝑐 > 𝜃X𝜃[

−𝑐 1 − 𝜃X otherwise

∆𝑊 = 𝜖𝑓()*+ 𝑥𝑦 ,, 𝑥𝑦 ^

≈ 𝜖𝑓()*+ 𝑥,𝑦,, 𝑥^𝑦

≈ 𝜖 𝑥,𝑦, − 𝑥^𝑦

Backpropagation Algorithm
• Adjusts weights in multilayer artificial neural net by “steepest 

descent” in order to minimize error
— does this by estimating partial derivatives of error with respect to weights

• (Re)invention in 1986 rejuvenated artificial neural net research
— had been neglected for 15 years

• Basis for current “deep learning” methods

• Uses biologically implausible backwards signal propagation through 
synapses

• Nevertheless, the biologically plausible XCAL algorithm is a good 
approximation to BP

2/5/17 COSC 494/594 CCN 36
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Relation to BP Algorithm
(backward propagation of errors)

2/5/17 COSC 494/594 CCN 37

𝛿2 	= 𝑦2G − 𝑦2B

= 𝑓 ∑ 𝑥AB�
A 𝑊A2 + ∑ 𝑊2;𝑧;G�

; − 𝑓 ∑ 𝑥AB𝑊A2 + ∑ 𝑊2;𝑧;B�
;

�
A

≈ 𝑓′ ∑ 𝑥AB𝑊A2 + ∑ 𝑊2;𝑧;B�
;

�
A 	(∑ 𝑊2;𝑧;G�

; − ∑ 𝑊2;𝑧;B�
; )

= 𝑦2′ ∑ 𝑊2; 𝑧;G − 𝑧;B�
;

= 𝑦2′ ∑ 𝑊2;𝛿;�
;

Summary: Error-driven Learning

• Adjusts expectations to better match outcomes 
(better prediction)

• Uses later, better information to train earlier 
expectations (later training earlier)

• Allows network to more quickly settle into attractor 
(quicker convergence)

• But at this time there is limited empirical support for 
medium timescale floating threshold

2/5/17 COSC 494/594 CCN 38

emergent demonstration:
Pattern_Associator

2/5/17 COSC 494/594 CCN 39
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emergent demonstration:
Error_Driven_Hidden

2/5/17 COSC 494/594 CCN 40

Weight Bounding

• Biologically, synaptic weights are bounded
• Approximate computationally by exponential 

approach to limits 0 and 1:
if dwt > 0 then wt = wt + (1–wt)×dwt;

else wt = wt + wt×dwt;

• Gradual approach preserves signal better than 
clipping

2/5/17 COSC 494/594 CCN 41

Contrast Enhancement
• To enhance contrast in activities for midrange 

weights, distinguish:
— internal weight w determined by learning
— contrast-enhanced weight 𝑤c  determines synaptic efficacy

• Contrast enhancement 
function:

2/5/17 COSC 494/594 CCN 42
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D. What drives learning?

COSC 494/594 CCN 432/5/17

Learning Signals?

• What constitutes an “outcome”?
• Dopamine bursts arise from unexpected rewards 

or punishments (reinforcers)
— violation of expectation
— needs correction

• Dopamine modulates synaptic plasticity
— controls λ:

• Probably not the whole story

44COSC 494/594 CCN2/5/17

Learning Situations

45

(fig. < O’Reilly, Comp. Cog. Neurosci.)
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Leabra

462/5/17 COSC 494/594 CCN

(fig. < O’Reilly)

Leabra = Learning 
in an Error-driven 
and Associative, 
Biologically 
Realistic Algorithm

emergent demonstration:
Family_Trees

2/5/17 COSC 494/594 CCN 47

Supplementary
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Oja’s Rule (1)

• To avoid instability due to unlimited growth, 
suppose we keep the weight vectors normalized:

𝐰e =
𝐰 + 𝜖𝑦𝐱
𝐰 + 𝜖𝑦𝐱

• Consider one component: 𝑤′2 =
fSGTRMS

∑ fgGTRMg h�
g

i/h

• Call RHS 𝑓(𝜖) and expand in Taylor series:
𝑓 𝜖 = 𝑓 0 + 𝜖𝑓e 0 + 𝜖Q𝑓ee 0 + ⋯

2/5/17 COSC 494/594 CCN 49

Oja’s Rule (2)
• You can show (algebra!):

𝑤′2 ≈
𝑤2
𝐰

+ 𝜖
𝑦𝑥2
𝐰

−
𝑤2 ∑ 𝑦𝑥;𝑤;�

;

𝐰
+ 𝑂 𝜖Q

• If w is normalized, 
𝑤′2 = 𝑤2 + 𝜖 𝑦𝑥2 − 𝑤2𝑦: 𝑥;𝑤;

�

;
= 	𝑤2 + 𝜖 𝑦𝑥2 − 𝑤2𝑦Q

• In vector form, ∆𝐰 = 𝜖𝑦𝐱 − 𝜖𝑦Q𝐰
• This is Hebbian learning with decay

2/5/17 COSC 494/594 CCN 50

Stability and Convergence
• Under broad conditions, will stabilize: 0 = ∆𝐰 = 𝜖 𝐱𝑦 − 𝑦Q𝐰

• Note 𝑦 = ∑ 𝑥;𝑤;�
; = 𝐱n𝐰 = 𝐰n𝐱

• Therefore, 0 = 𝜖 𝐱 𝐱n𝐰 − 𝐰n𝐱 𝐱n𝐰 𝐰
0 = 𝜖 𝐱𝐱n 𝐰 −𝐰n 𝐱𝐱n 𝐰𝐰
0 = 𝐱𝐱n 𝐰 −𝐰n 𝐱𝐱n 𝐰𝐰

• The parenthesis is the covariance matrix 𝐑 = 𝐱𝒙n

• Hence 𝐑𝐰 = 𝐰n𝐑𝐰 𝐰

• Therefore w is an eigenvector of R with eigenvalue 𝜆 = 𝐰n𝐑𝐰

• In fact, you can show 𝜆 is the largest eigenvalue, and therefore w is 
the first principal component, which accounts for most variance in x

2/5/17 COSC 494/594 CCN 51
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Summary: Hebb’s and Oja’s Rules

• A single Hebbian neuron with decay (Oja’s Rule) 
extracts the first principal component of a stationary 
input

• The variance of this component is given by the 
corresponding (maximum) eigenvalue

• Oja’s Rule can be extended into a generalized 
Hebbian algorithm that extracts all the principal 
components and their variances

2/5/17 COSC 494/594 CCN 52


