C. QUANTUM INFORMATION

Figure III.17: Computation of function by quantum gate array [from IQC].

5.2 Quantum Parallelism

1. Since U_f is linear, if it is applied to a superposition of bit strings, it will produce a superposition of the results of applying f to them in parallel (i.e., in the same time it takes to compute it on one vector):

$$U_f(c_1x_1 + c_2x_2 + \cdots + c_kx_k) = c_1U_fx_1 + c_2U_fx_2 + \cdots + c_kU_fx_k.$$

2. For example,

$$U_f\left(\frac{\sqrt{3}}{2}|x_1\rangle + \frac{1}{2}|x_2\rangle\right) \otimes |0\rangle = \frac{\sqrt{3}}{2}|x_1, f(x_1)\rangle + \frac{1}{2}|x_2, f(x_2)\rangle.$$

3. The amplitude of a result y will be the sum of the amplitudes of all x such that $y = f(x)$.

4. Quantum parallelism: If we apply U_f to a superposition of all possible 2^m inputs, it will compute a superposition of all the corresponding outputs in parallel (i.e., in the same time as required for one function evaluation)!

5. The Walsh-Hadamard transformation can be used to produce this superposition of all possible inputs:

$$W_m|00\ldots0\rangle = \frac{1}{\sqrt{2^m}}(|00\ldots0\rangle + |00\ldots1\rangle + \cdots + |11\ldots1\rangle)$$

$$= \frac{1}{\sqrt{2^m}} \sum_{x \in 2^m} |x\rangle$$
\[= \frac{1}{\sqrt{2^m}} \sum_{x=0}^{2^m-1} |x\rangle. \]

In the last line we are obviously interpreting the bit strings as natural numbers.

\[6. \text{Hence,} \]
\[U_f W_m |0\rangle = U_f \left(\frac{1}{\sqrt{2^m}} \sum_{x=0}^{2^m-1} |x, 0\rangle \right) = \frac{1}{\sqrt{2^m}} \sum_{x=0}^{2^m-1} U_f |x, 0\rangle = \frac{1}{\sqrt{2^m}} \sum_{x=0}^{2^m-1} |x, f(x)\rangle. \]

\[7. \text{A single circuit does all } 2^m \text{ computations simultaneously!} \]

\[8. \text{“Note that since } n \text{ qubits enable working simultaneously with } 2^n \text{ states, quantum parallelism circumvents the time/space trade-off of classical parallelism through its ability to provide an exponential amount of computational space in a linear amount of physical space.” [IQC]} \]

\[9. \text{If we measure the input bits, we will get a random value, and the state will be projected into a superposition of the outputs for the inputs we measured.} \]

\[10. \text{If we measure an output bit, we will get a value probabilistically, and a superposition of all the inputs that can produce the measured output.} \]

\[11. \text{Neither of the above is especially useful, so most quantum algorithms transform the state in such a way that the values of interest have a high probability of being measured.} \]

\[12. \text{The other thing we can do is extract common properties of all values of } f(x). \]

\[13. \text{Both of these require different programming techniques than classical computing.} \]