F Abrams-Lloyd theorem

F.1 Overview

1. All experiments to date confirm the linearity of QM, but what would be the consequences of slight nonlinearities?

2. We will see that nonlinearities can be exploited to solve NP problems (and in fact harder problems) in polynomial time.

3. This demonstrates clearly that computability and complexity are not purely mathematical matters. Because computation is inherently physical, fundamental physics is intertwined with fundamental computation theory.

4. Quantum state vectors lie on the unit sphere and unitary transformations preserve angles between vectors.

5. Nonunitary transformations in effect stretch the sphere, so the angles between vectors can change. Unitary transformations can be used to position the vectors to the correct position for the nonunitary transformation.

6. The following algorithm exploits a nonlinearity to separate vectors that are initially close together.
Figure III.42: Quantum circuit for Abrams-Lloyd algorithm. The first measurement produces 0 with probability greater than 1/4, but if it yields a nonzero state, we try again. The \mathfrak{N} parallelogram represents a hypothetical nonlinear quantum state transformation, which may be repeated to yield a macroscopically observable of the solution and no-solution vectors.

F.2 Basic algorithm

¶1. Lyapunov exponent: The Lyapunov exponent λ describes the divergence of trajectories in a dynamical system.

¶2. If $\Delta \theta(0)$ is the initial separation, then the separation after time t is given by $|\Delta \theta(t)| \approx e^\lambda |\Delta \theta(0)|$.
If $\lambda > 0$ the system is usually chaotic.

¶3. Suppose there is some nonlinear operation \mathfrak{N} with a positive Lyapunov exponent over some finite region of the unit sphere.

¶4. Oracle: Suppose we have an oracle $P : 2^n \to 2$.
We want to determine if there is an x such that $P(x) = 1$.

¶5. Suppose we are given a quantum gate array U_P as in Grover’s algorithm.
It is defined on a n-qubit data register and a 1-qubit result register.

¶6. Step 1: See Fig. III.42.
As usual, apply the Walsh-Hadamard transform to the data register to get a superposition of all possible inputs:

$$|\psi_0\rangle = (W_n|0\rangle)|0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in 2^n} |x, 0\rangle.$$
7. Step 2 (apply oracle): Apply the oracle to get a superposition of input-output pairs:

$$|\psi_1\rangle = U_P|\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in 2^n} |x, P(x)\rangle.$$

8. Step 3 (measure data register): First, apply the Walsh transformation to the data register to get:

$$|\psi_2\rangle = (W_n \otimes I)|\psi_1\rangle$$

$$= \frac{1}{\sqrt{2^n}} \sum_{x \in 2^n} (W_n|x\rangle)|P(x)\rangle$$

$$= \frac{1}{\sqrt{2^n}} \sum_{x \in 2^n} \left[\frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-)^{x \cdot z}|z\rangle \right] |P(x)\rangle.$$

The last step applies by Eq. III.22 (¶13, p. 112).

9. That is,

$$|\psi_2\rangle = \sum_{x \in 2^n} \sum_{z \in 2^n} \frac{1}{2^n} (-)^{x \cdot z}|z\rangle P(x).$$

10. Consider the amplitude of the state $z = 0$:

$$\sum_{x \in 2^n} \frac{1}{2^n} (-)^{x \cdot 0}|0\rangle P(x) = \sum_{x \in 2^n} \frac{1}{2^n}|0\rangle P(x).$$

11. At least half of the 2^n vectors x must have the same value, $a = P(x)$ (since $P(x) \in 2$).

12. Therefore the amplitude of $|0, a\rangle$ is at least 1/2.

And the probability of observing $|0, a\rangle$ is at least 1/4.

(If we happen to observe $|x_0, 1\rangle$, then of course we have our answer.)

13. Measurement: In this case measurement of the data register yields the state:

$$|\psi_2\rangle \stackrel{\dagger}{\longrightarrow} Z^{-1} \left(\frac{s}{2^n}|0\rangle|1\rangle + \frac{2^n - s}{2^n}|0\rangle|0\rangle \right) = Z^{-1}|0\rangle \left(\frac{s}{2^n}|1\rangle + \frac{2^n - s}{2^n}|0\rangle \right),$$

where s is the number of solutions (the number of x such that $P(x) = 1$) and Z^{-1} renormalizes after the state collapse.
14. The information we want is in the result qubit, but if s is small (as expected), then measurement will almost always yield $|0\rangle$.

15. For $s \ll 2^n$, the vector $Z^{-1}|0\rangle \left(\frac{s}{2^n}|1\rangle + \frac{2^n-s}{2^n}|0\rangle\right)$ is very close to the vector $|0, 0\rangle$. Therefore, we would like to drive them apart.

16. **Step 4:** Applying the nonlinear operator \mathcal{N} repeatedly will separate the vectors at an exponential rate.

17. “[E]ventually, at a time determined by a polynomial function of the number of qubits n, the number of solutions s, and the rate of spreading (Lyapunov exponent) λ, the two cases will become macroscopically distinguishable.”

18. **Step 5 (measure result register):** Measure the result qubit. If the vectors have been sufficiently separated, there will be a significant probability of observing $|1\rangle$ in the $s \neq 0$ case.

19. If η is the angular extent of the nonlinear region, it might take $O((\pi/\eta)^2)$ trials to get $|1\rangle$ with high probability. For large η, just one iteration might be sufficient.

F.3 Discussion of further results

1. The preceding algorithm depends on exponential precision, but Abrams and Lloyd present another algorithm that is robust against small errors.

2. Each iteration doubles the number of components that have $|1\rangle$ in the result qubit. After n iterations it yields a result with probability 1, and so it’s linear.

3. Scott Aaronson doubts that the required nonlinear OR gate can be implemented.

4. Abrams and Lloyd say:
 “We have demonstrated that nonlinear time evolution can in fact be exploited to allow a quantum computer to solve NP-complete and #P problems in polynomial time.”
 Nevertheless, “we believe that quantum mechanics is in all likelihood
exactly linear, and that the above conclusions might be viewed most profitably as further evidence that this is indeed the case.”