B. FILTERING MODELS

237

Figure IV.7: Graph G_2 for Lipton’s algorithm (with two variables, x and y). [source: Lipton (1995)]

B.2 Lipton: SAT

B.2.a Review of SAT problem

¶1. **Boolean satisfiability:** The first problem proved to be NP-complete.

¶2. Use conjunctive normal form with n variables and m clauses.

¶3. Example:

$$(x_1 \lor x'_2 \lor x'_3) \land (x_3 \lor x'_5 \lor x_6) \land (x_3 \lor x'_6 \lor x_4) \land (x_4 \lor x_5 \lor x_6),$$

where, for example, $x'_2 = \neg x_2$.

B.2.b Data representation

¶1. **Solutions:** Solutions are n-bit binary strings.

¶2. These are thought of as paths through a particular graph G_n (see Fig. IV.7).

For vertices $a_k, x_k, x'_k, k = 1, \ldots, n$, and a_{n+1},

there are edges from a_k to x_k and x'_k,

and from x_k and x'_k to a_{k+1}.

¶3. Binary strings are represented by paths from a_1 to a_{n+1}.

A path through x_k encodes the assignment $x_k = 1$ and through x'_k encodes $x_k = 0$.
The DNA encoding is essentially the same as in Adleman’s algorithm.

Algorithm

1. Suppose we have an instance (formula) to be solved:
 \[I = C_1 \land C_2 \land \cdots \land C_m. \]

2. **Step 1 (initialization):** Create a “test tube” (reaction vessel) of all possible \(n \)-bit binary strings, encoded as above. Call this test tube \(T_0 \).

3. **Step 2 (clause satisfaction):** For each clause \(C_k \), \(k = 1, \ldots, m \):
 Extract from \(T_{k-1} \) only those strings that satisfy \(C_k \), and put them in \(T_k \).
 The goal is that for every string \(\forall x \in T_k \forall 1 \leq j \leq k : C_j(x) = 1 \).
 This is done as follows.

4. **Extract operation:** Let \(E(T, i, a) \) be the operation that extracts from test tube \(T \) all (or most) of the strings whose \(i \)th bit is \(a \).

5. For \(k = 0, \ldots, m - 1 \):
 - **Precondition:** The strings in \(T_k \) satisfy clauses \(C_1, \ldots, C_k \).
 - Let \(\ell = |C_k| \), and suppose \(C_{k+1} \) has the form \(v_1 \lor \cdots \lor v_\ell \), where the \(v_i \) are literals (plain or complemented variables).
 - Let \(T^0_k = T_k \).
 - Do the following for literals \(i = 1, \ldots, \ell \).

6. **Positive literal:** Suppose \(v_i = x_j \) (some positive literal).
 - Let \(T_k^i = E(T_k^{i-1}, j, 1) \) and let \(a = 1 \).
 - These are the paths that satisfy this positive literal.

7. **Negative literal:** Suppose \(v_i = x'_j \) (some negative literal).
 - Let \(T_k^i = E(T_k^{i-1}, j, 0) \) and let \(a = 0 \).
 - These are the paths that satisfy this negative literal.

8. In either case, \(T_k^i \) are the strings that satisfy literal \(i \).
 - Let \(T_k^i = E(T_k^{i-1}, j, \neg a) \) be the remaining strings (which do not satisfy this literal).
 - Continue until all literals are processed.
9. Combine T_k^1, \ldots, T_k^l into T_{k+1}.
 \textit{Postcondition}: The strings in T_{k+1} satisfy clauses C_1, \ldots, C_{k+1}.

10. \textbf{Step 3 (detection)}: At this point, the strings in T_m satisfy C_1, \ldots, C_m, so do a \textit{detect} operation to see if there are any strings left. If there are, the formula is satisfiable; if not, not.

11. \textbf{Performance}: If the number of literals is fixed (as in 3SAT), then performance is linear in m.

12. \textbf{Errors}: The main problem is the effect of errors. But imperfections in extraction are not fatal, so long as there are enough copies of the desired sequence.

13. “A much larger (20 variable) instance of 3-SAT was successfully solved by Adleman’s group in an experiment described This is, to date, the largest problem instance successfully solved by a DNA-based computer; indeed, as the authors state, ‘this computational problem may yet be the largest yet solved by nonelectronic means’.”\footnote{Amos 140} This was in 2002. $2^{20} \approx 10^6$. It had 24 clauses.