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Chapter 4

Basic Complex Analysis

Although real numbers are sufficient for most applications of field computa-
tion, complex numbers are sometimes required, as in Fourier analysis and the
application of field computation is in quantum computation. Therefore the
goal of this chapter is to provide an intuitive understanding of basic complex
analysis, especially as it applies in Hilbert spaces; a systematic presentation
of complex analysis is beyond its scope. In addition to standard material,
this chapter includes a brief discussion of hyperbolic trigonometry and its
applications in special relativity theory, which is intended to build intuition
by stressing the analogies with ordinary (circular) trigonometry.

4.1 Argand diagram

As everyone knows, complex numbers involve i = v/—1. However, it will be
better at this point to forget about v/—1 and understand complex numbers
by means of the Argand diagram (Fig. 4.1). As a matter of history, mathe-
maticians were dubious about imaginary numbers, and questioned their le-
gitimacy, until familiarity with the Argand diagram showed that they could
be thought of as ordinary two-dimensional vectors. For in the Argand dia-
gram we simply represent the complex number x + iy as a vector (z,y). (In
this sense “i” can be thought of as a place holder or tag to distinguish the
Y-coordinate from the X-coordinate.) Then operations on complex numbers
can be interpreted as operations on two-dimensional vectors, without con-
cern for v/—1. When complex numbers are represented in this way, they are
said to lie in the complex plane. Real numbers lie along the positive and
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42 CHAPTER 4. BASIC COMPLEX ANALYSIS
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Figure 4.1: Argand diagram. z = x + iy = re®.

negative X-axis, and (pure) imaginary numbers along the positive and neg-
ative Y-axis; other points represent complex numbers with both (nonzero)
real and imaginary parts. Therefore, in the complex plan the X-axis is called
the real axis and the Y-axis is called the imaginary axis. (Why we should
bother with complex numbers, and not simply make do with two-dimensional
vectors, will become apparent as we proceed.)

Remark 4.1.1 Notice that, unlike the real numbers, there is no natural
sense tn which the complex numbers can be ordered.

Definition 4.1.1 (Cartesian components) The R : C - R and S : C —
R operators extract the Cartesian components (real and imaginary parts, re-
spectively) of a complex number:

Rz +iy) = =,
Sz +1y) =
4.2 (Geometrical Interpretations

The simplest use of the Argand diagram is to understand the addition and
subtraction of complex numbers.
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Definition 4.2.1 (Complex addition) Addition (or subtraction) of com-
plex numbers is equivalent to vector addition in the Argand diagram:

(x+iy) + (@ +iy) = (@ +2) +ily +y).

Definition 4.2.2 (Complex multiplication) (z + iy)(2’ + i) = (x2’ —
yy') +i(zy +ya').

Remark 4.2.1 The definition of multiplication may seem mysterious, but it
is motivated by the equation i> = —1. Thus,

(z +iy) (2" +y) = 22’ +iyx’ + i’z + iPyy = (22’ — yy') +i(xy + ya').
Further, we will see that it has important implications independent of \/—1.

Definition 4.2.3 (Complex conjugate) The complex conjugate Z of a com-
plex number z is obtained by negating its imaginary part:

T4y =x —1y.
The notation z* is also used for the complex conjugate.

Remark 4.2.2 The complex conjugate reflects the vector across the real (X)
axis. Symmetry suggests that there ought to be an operation to reflect a
complex number x + iy across the imaginary (Y), yielding —x + iy, but it is
not especially useful, so it doesn’t have a name. Of course, simple negation
reflects a complex number across both azes simultaneously, —(x+iy) = —x —

1y.

Exercise 4.2.1 Prove the following:

T = (a")'=x
r+y = T+7y
Ty = TY
rly = T/y
Exercise 4.2.2 Show that
%Z:z—i—z and %Z:z—z

2 21
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The Argand diagram suggests that the magnitude (“length”) of a complex
number is a significant quantity. The length, for course, is y/x? + 32, but
this can be expressed conveniently in terms of the complex conjugate (which
is one of the reasons the complex conjugate is useful), since:

(z +iy)(z —iy) = 2* +izy — vy — i*y* = 2° + 5~
Therefore we have:
Definition 4.2.4 (Magnitude) |z| = v/2Z.

Remark 4.2.3 Notice that this is consistent with the usual definition of the
absolute value of a real number, since for a real v, 7 = r; hence |r| = /1T =
V2. (Recall that, by convention, \/ represents the nonnegative square root.)

Remark 4.2.4 The complex magnitude is a norm.

Remark 4.2.5 The distance between complex numbers is |z — Z'|; it is the
norm metric.

Exercise 4.2.3 What would be wrong with defining the magnitude of a com-
plex number by |z| = V22, Would it be a norm? Would |z — 2’| be a metric?

Exercise 4.2.4 Show that |Rz| < |z| and |Sz| < |z|.
Exercise 4.2.5 Show that |z — w| > ||z| — |w]].

Proposition 4.2.1 The reciprocal of a complex number is given by
T 1y
22 + y2 72 + y2 '

(z+iy) ' = (4.1)
Exercise 4.2.6 Derive the preceding formula by solving wz = 1 for w; note
that the real and complex parts of the equation can be solved separately.

Exercise 4.2.7 Write 2! in terms of the complex conjugate and the mag-
nitude. Does this simplify deriving Fq. 4.17

Exercise 4.2.8 Derive the formula for dividing two complex numbers; you
should get a formula in the form X 4+ 1Y .

Remark 4.2.6 The complex numbers form an (algebraic) field; that is, there
are both additive and multiplicative identities and inverses, both operations
are communtative and associative, and multiplication distributes over addi-
tion.
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4.3 Polar representation

4.3.1 Defined

Of course two-dimensional vectors can be represented in polar coordinates as
well as in rectangular coordinates, but the polar representation is especially
relevant to complex numbers. The radius is, of course, the magnitude of the
complex number, also called the modulus.

Definition 4.3.1 (Magnitude or modulus) mod z = |z| = /2% + 2.

The angle is measured counterclockwise from the positive X-axis and is called
the argument, phase, amplitude or angle of the complex number. It can be
defined as follows:

Definition 4.3.2 (Argument or phase) arg(z + iy) = arctan(y/z).

Remark 4.3.1 The mathematically most convenient way to measure angles
15 in radians, which is defined to be the area within a circle enclosed by twice
the angle divided by the square radius of the circle. That is, if A is the area
enclosed by the angle, then its radian measure is 0 = 2A/r?. Since the circle
has area wr?, an angle of ™ radians corresponds to 180° (since twice the angle
includes the whole area), w/2 radians corresponds to 90°, 27 radians to 360°,
etc. In general, if o is an angle in degrees, then 6 = 2w (a/360°).

Notation 4.3.1 Because we are often interested in angles that are fractions
or multiples of a complete cycle (2m radians), I have invented a kind of
monogram, 2, that I will use for 2w whenever it represents a complete cycle

(360°).1

Remark 4.3.2 We write arctan(y/x) so that the signs of x andy can be used
to determine the quadrant of the complex plane in which the number falls.
Thus arctan(+1/ + 1) = w/4, arctan(+1/ — 1) = 37/4, arctan(—1/ — 1) =
5w /4, and arctan(—1/ + 1) = 7w /4, even through they all represent only two
slopes, +1 and —1.

Tt turns out that the convention of using a single symbol for 27 goes back at least as
far as H. Laurent’s Traité D’Algebra (1889). In recent years some mathematicians have
proposed using 7 (standing for one turn) for 27, and others have advocated for a different
monogram: . See Palais (2001) and http://www.math.utah.edu/ palais/pi.html
(accessed 2012-05-10).
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Remark 4.3.3 It is often useful to consider arg a mutiple-valued function
(like arcsin, arccos, etc.). Thus, for example,

arg(—1) = +m, 37, 457, . ..

Then, it is necessary to be clear about the range of arg’s values; unless oth-
erwise stated we will take it to be [0,2m). When the range is not important,
we may equations such as

argz =0 (mod 2r)
to indicate that angles are to be compared modulo 2r.

Remark 4.3.4 If z is a complex number with magnitude r and phase 0, it’s
easy to see that the real part is given by Rz = rcosf and the imaginary part
by Sz = rsind.

Remark 4.3.5 Notice every complex number has multiple polar represen-
tations (a property, of course, of any polar representation), since sinf =
sin(2r 4+ 0) and cos@ = cos(2r + ). In general, for any n = 0,+1,+2,.. .,
sinf = sin(2rn + 0) and cos @ = cos(2tn + 6). We will see that this period-
icity in the phase of complexr numbers makes them especially convenient for
representing periodic phenomena such as waves.

Exercise 4.3.1 Given z = re', show geometrically that

z+Z zZ—Z
0 = inf =
7 COS 5 T SIn 5

4.3.2 cis function
Suppose 1 = |z] and 6 = arg z; then it’s easy to see:
2 =Rz +1Qz =rcos +irsinf = r(cos + isinf).

This equation shows, in effect, how the complex number can be reconstituted
from it magnitude and argument. For this purpose the “cis” (cos+isin,
pronounced “sis”) function is often used.

Definition 4.3.3 (cis function) cisf = cos# + isin#.
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Thus z = rcisf, or, more generally,
z = |z| cis(arg z). (4.2)
Proposition 4.3.1 cisf cis¢ = cis(6 + ¢).
Exercise 4.3.2 Prove this. Hint: recall from trigonometry,
sin(f + ¢) = sinf cos¢ + cosf sin @,
cos(0+ @) = cosf cos¢p+sinf sin .

Remark 4.3.6 The equation cisf cis¢ = cis(6 + ¢) suggests that cis has
some similarities to the exponential function; we shall see that this is more
than coincidental.

4.4 Complex exponentials

4.4.1 FEuler’s Formula
4.4.1.1 IMAGINARY EXPONENTIALS

For the most part complex numbers have the same properties as real numbers,
but of course it’s necessary to analyse each property individually; here we
will assume complex numbers are like real numbers unless stated otherwise.
However, it is informative to look (informally) at the effect of taking the
exponential of an imaginary number, exp(if) = €. To do this we use the
familiar power series for e”:

2  ad
1+I+5+§+'“.
Substituting 60 for x we have:
212 313 4 04
0 R Al A A A A
e’ = 14+ ot
92 .93 94
= 1+z9——2!—z—3!—|——4l—|—

02 o - E
= (1_54_1_...)+Z(9_§+5_...>’

where in the last line the real terms have been separated from the imaginary
terms. As it turns out, the first parenthesized formula is the series for cos6
and the second is that for sin#. Thus we discover,
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Proposition 4.4.1 (Euler’s Formula) ¢ = cosf + isinf = cisf.

It’s now easy to discover the exponential of an arbitrary complex number
T +1y:
"t = %W = €% cisy.
There is, however, an even more fruitful way to look at the complex expo-
nential, since from Eq. 4.2 we see that any complex number can be written
as a complex exponential:
z = |z|e'™e,

Or, looked at another way, re? is a complex number with magnitude (radius)

r and phase angle 6.

Exercise 4.4.1 Show that |e*T%| = |e”|.

Exercise 4.4.2 Use Euler’s formula to prove that the following formulas are
correct for real 0:

0 —if 0 _ —if
cosf = %, sinf = — (4.3)

They also hold (by definition) for complex numbers.

Notice that —1 has a magnitude of 1 and a phase angle of 7 (i.e. 180°);
thus we have the famous equation,

et = —1.

Since a 2t (360°) rotation brings us back where we started, we also have the

less famous formula,

Obviously a phase angle that is any integral multiple of 2t will bring us back
to 1. Similarly,
eﬂ'i/? — Z.,

6371'1/2 —

Exercise 4.4.3 Show re = re!@™+0 form =0,1,....
Exercise 4.4.4 Show (re)* = re=".

Exercise 4.4.5 Show ret? = re~ iz =0)
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4.4.1.2 MULTIPLICATION

Proposition 4.4.2 Complex numbers can be multiplied by multiplying their
magnitudes and adding their phase angles:

(re?)(se'?) = (rs)el?+9),

Remark 4.4.1 This proposition provides a geometric interpretation of com-
plex multiplication, based on the proportion,

1l:2 o w:wz.

To multiply geometrically, construct a triangle with the sides 1 and z. Then
construct a similar triangle on w, with the 1 of the first triangle correspond-
ing to the w of the second. The result wz will be the side of the second
triangle corresponding to the side z of the first. (Interestingly, this is exactly
analogous to the construction Descartes used for defining the product of two
real magnitudes; see ch. 4 of my book in progress, Word and Flux.)

Exercise 4.4.6 Do the construction suggested by the preceding remark, and
show that the magnitudes and phase angles are correct, as given in the propo-
sition.

Remark 4.4.2 Therefore a compler number, as a vector, can be rotated by
multiplying by a suitable imaginary power of e. That is, to rotate z counter-
clockwise through an angle of 0, use €?z; for a clockwise rotation use e~ z.

Exercise 4.4.7 Give a rule for dividing complex numbers in terms of their
magnitudes and phase angles.

Remark 4.4.3 We have seen that we can consider the complex number x+1iy
as a two dimensional vector (z,y) with ordinary vector addition and a special
multiplication rule. Similarly, we can consider the complex number re? as a
pair (r,0) with a special operation that multiplies the magnitudes and adds the
phase angles. In particular, whenever you have pairs of numbers for which
you want to add the first components and multiply the second components, it
may be worthwhile to think of them as complex numbers in polar coordinates.

We will see an example shortly (Section 4.4.2).
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4.4.1.3 POWERS AND ROOTS

Proposition 4.4.3 (De Moivre’s Theorem) A complex number can be
raised to the p > 1 power by raising its magnitude to the p power and by
multiplying its phase by p: (re®®)P = (rP)e'?.

Roots can be extracted in a similar way, but complex number bring some
additional complications, as we will see by considering the “n n-th roots of
unity.” Consider first the square-root; we want to consider complex numbers
z satisfying 2z? = 1. Writing the equation in polar form, we have

1 = (TeiG)Q — T2€2i9.

To solve this, we must have r = 1, but we may have 6 be any angle such
that 20 = 2rm (for some m = 0,1,...). If we restrict our attention to 6 in
the range [0, 2r) (the principal square-roots), we see that § = 0, 7 both solve
the equation. Therefore, 1 has two square roots, ¢’ = 1 and e™ = —1. This
is obvious enough, since 12 = (—1)% = 1.

Now however we will apply the same method to determine the cube-roots
of unity. Since (re?)3 = r?e®  we again have r = 1, but now seek 6 € [0, 2r)
such that 3¢ = 2wm. Hence, 0 = 0, (1/3)2r and (2/3)2r are solutions.

Exercise 4.4.8 Confirm that these 6 are solutions.

Hence, we find that 1 has three cube-roots, two of which are complex:
1 e2ri/3 p2ri2/3
In general we can see that 1 has n (principal) n-th roots, having phase
angles satisfying nf = 2rm (m =0,1,...), so § = 2rm/n. Hence,
Proposition 4.4.4 The n principal n-th roots of unity are:

2r/n _i2r2/n 2r(n—1)/n
1,eZ/n gizm2/n  pizr(n=1)/n

In general, the principal values are ¢2™/™ m =0,1,...,n— 1.
Proposition 4.4.5 The n principal n-th roots of a complex number z = re®

are:
%7 {L/; ei(@Jr?ﬂ')/n7 <7;6i(9+2ﬂ2)/n7 e %ei[9+21'(n71)}/n'
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In general, the principal values are

m

, 0
Y e OrEmn = Y cis (— + 27r—)
n n
form=0,1,....,.n—1.

Exercise 4.4.9 Prove this proposition.

4.4.2 Periodic Change
4.4.2.1 INTRODUCTION TO PERIODIC CHANGE

The polar representation of complex numbers makes them especially conve-
nient for representing periodic processes, especially those involving sinusoidal
change.

Remark 4.4.4 [t is generally convenient to measure the rate of periodic
change in radians per second, its angular velocity or angular frequency. This
15 generally symbolized by w, so we may write sinwt. In some cases it 1s more
meaningful to measure the rate of periodic change by its frequency, measured
in cycles per second or Hertz. This is generally symbolized by f or v; since
there are 2t radians per cycle, sinwt = sin 21 ft = sin 2rvt, for example.

Suppose we have an object rotating counter-clockwise at w radians per sec-
ond; then its motion in the plane of rotation can be written z(t) = ™.
This assumes that at time ¢ = 0 the object is at an angle of zero, that is, at
location (1,0), since 2(0) = €™° = 1. If instead it starts at the angle ¢ we
simply write

Z(t) _ ei(wt+¢) _ €i¢€iwt.

The factor e simply advances the phase of the rotation by ¢ radians. Obvi-
ously, arbitrary phase shifts correspond to different imaginary exponentials.

A complex exponential representation of a periodic change may be ad-
vantageous even is it is not a circular motion in two dimensions. In some
cases, two different aspects of the change correspond to the real and imag-
inary parts of a complex number. For example, in simple harmonic motion
(such as a pendulum or oscillating spring), the position of the object is pro-
portional to sinwt and its velocity is proportional to coswt. Therefore, the
position and velocity can be combined into one complex number and written

coswt + i sinwt = ciswt = ™.
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(I've assumed that the position and velocity are measured in suitable units
so that the motion in the complex plane is circular.)

Since the state of a simple harmonic oscillator is determined entirely by
its displacement and velocity, the complex number e™! corresponds to its
state. In this case the complex plane is the (Poincaré) phase space of the
oscillator, since it represents all its possible states. The curve e? = 1, that
is, the unit circle, is this system’s trajectory or orbit in phase space; it shows
the possible sequence of states independent of time.

The complex exponential representation can yield additional insight into
the structure of a periodic process. For example, in Newtonian mechanics
the kinetic energy of a motion is proportional to the velocity squared, K o
cos? wt in this case. With a suitable choice of units we can write K = cos? wt.
Also, in many simple harmonic systems the restoring force is proportional to
the displacement (F' < — sinwt), so the potential energy, which is the integral
of the force, is proportional to the square of the displacement, U o sin® wt;
with suitable units, U = sin® wt. Hence the total energy in the system is

E =K+ U = cos®wt + sin® wt = 1.

That is the total energy is conserved; the cos? and sin? terms reflect the
fraction of the energy in the kinetic or potential form, respectively. That
is, K = Ecos’wt and U = Esin®wt. Further, as ™! rotates, we can see
the energy shift back and forth between kinetic energy (proportional to the
square of the real component, representing velocity) and potential energy
(proportional to the square of the imaginary component, representing dis-
placement).

Remark 4.4.5 For the record, K = mv?/2 and U = kx*/2, where k is the
force constant of an ideal spring, ' = —kx (Hookes Law). In this example,

v(t) = wceoswt and x(t) = sinwt, where the angular frequency is determined
by w? = k/m.

Even when there aren’t two components corresponding to the real and
imaginary parts, it may be advantageous to treat a sinusoidal motion as the
real (or imaginary) part of a complex exponential, since it is often easier to
manipulate exponentials than sines and cosines. That is, it may be convenient
to treat a real signal coswt as Re™!. As you probably know, periodic signals,
such as sounds, can be broken down into sines and cosines (or into sines with
phase shifts). Therefore, they can equally, and often more conveniently, be
broken down into complex exponentials.
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Finally, as you probably know, Fourier analysis involves breaking a peri-
odic wave into sines and cosines, or into sinusoids at various phases. There-
fore, it is not surprising that it can also be viewed as an analysis of a signal
into complex exponentials with complex coefficients. We will take up these
topics in Ch. 6, Fourier Analysis; here we mention them only to motivate the
study of complex exponentials.

Exercise 4.4.10 Let z = pe®. Show that
ze™! + Ze T = 2pcos(f + wt) = 2psin(f + wt + 2r/4).

Hint: Write et in cis form. This shows that a “conjugate pair of complex
exponentials” is equivalent to an “amplitude and phase-shifted sinusoid.”

Exercise 4.4.11 Show that
a—1b
2

acoswt + bsinwt = ze™' +ze ™, where z =

Hint: Write the sine and cosine in their complex exponential forms. Thus
a mixture of a sine and a cosine is equivalent to a conjugate pair of com-
plex exponentials, which the preceding exercise shows to be equivalent to an
amplitude and phase-shifted sinusoid.

Remark 4.4.6 These two exercises show the equivalence of: (1) a mixture
of a sine and cosine of the same frequency (with parameters a and b), (2) an
amplitude and phase-shifted sinusoid (with parameters p and 0), and (3) a
conjugate pair of complex exponentials (with parameters Rz and Sz). There-
fore, a Fourier series for a signal can be equivalently viewed as a superposi-
tion of: (1) in-phase sines and cosines, (2) sinusoids of the same kind but
differing phases, or (3) conjugate pairs of complex exponentials.

4.4.2.2 PHASORS

In this section I will discuss briefly a technique used in electrical engineer-
ing for analyzing circuits; it also has applications to understanding signal
processing in the dendritic trees of neurons. Many passive electrical compo-
nents, such as resistors, capacitors and inductors (coils) are linear. So also,
to a first approximation, the passive conductance and membrane capacitance
of dendrites is linear. Linearity means that if we know the behavior of a sys-
tem L on complex exponentials (i.e. sines and cosines) of various frequencies
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L(e™*), then we know its behavior on any periodic signal s(t) = >, cxe™".
This is because,

Lis(t)] =L (Z ckeiw’“t> = Z crL(e™xh).

k k

It turns out that resistors, capacitors and inductors have only two effects
on sine waves: to attenuate them and to shift their phase; so also RLC
(resistor-inductor-capacitor) circuits have only these two effects. Therefore,
the effects of these circuits and their components are conveniently represented
by complex numbers Z = Ae?, where A represents an amplitude change and
0 represents a phase shift.

Remark 4.4.7 The impedance of a R-ohm resistor is R, that s, it does not
affect the phase.

Remark 4.4.8 At a frequency of w rad./sec., the impedance of a L-henry
inductor is iwL.

Remark 4.4.9 At a frequency of w rad./sec., the impedance of a C-farad
capacitor is 1/iwC'.

Exercise 4.4.12 Write the impedance 1/iwC' in rectangular form, that is,
in the form R+ iX.

Remark 4.4.10 When an impedance Ae' is written in rectangular coordi-
nates R+1X, the real part R is called a resistance and the imaginary part X
is called a reactance. Therefore, any arbitrary RLC circuit, no matter how
complicated has the effect of a resistance combined with a reactance. If the
reactance 1s positive, it is called an inductive reactance; if it is negative, it is
called a capacitive reactance. That is, an arbitrary RLC circuit behaves like
a resistor combined with either an inductor (which causes phase leading) or
a capacitor (which causes phase lagging)

Electrical engineers often use the phasor notation AZ0, read “A angle
67 for AeZ¥/350°  The notation may be used for a circuit that causes an
amplitude change A and a phase shift of § degrees, or for a periodic signal (at
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a certain frequency) of amplitude A and phase #°. The notation is convenient
because of the simple operation rules:

AZ0 x BLp = ABL(0 + ¢),
AZ0/BZ¢ = (A)B)L(6 — &).

With this notation, voltage, current and impedance (voltage divided by cur-
rent) can all be treated as phasor quantities.

4.4.2.3 DIFFERENTIAL EQUATIONS

In section 4.4.1.1 we saw the relation between the MacLauren series for the
exponential, sine and cosine functions; here we look at the relation between
these functions from another perspective. These functions can also be defined
in terms of simple differential equations. For example f(z) = sinz is the
unique solution of f”(x) = — f(z) with initial conditions f(0) = 0 and f'(0) =
1. Likewise, f(x) = cosz is the unique solution of the same equation but
with initial conditions f(0) =1, f'(0) = 0.

Exercise 4.4.13 Show that f(t) = sinwt is a solution to f"(t) = —w?f(x)
with initial conditions f(0) =0 and f'(0) = w. (You are not asked to prove
uniqueness. )

Exercise 4.4.14 Show that f(t) = coswt is a solution to f"(t) = —w?f(x)
with initial conditions f(0) = 1 and f'(0) = 0. (You are not asked to prove
uniqueness. )

These differential equations give us an alternate way of deriving Euler’s for-
mula from reasonable expectations about the meaning of e?. To see this,
write

e = E(0) +iF(0); (4.4)
we will solve for £ and F. Since ¢ = 1 we must have E(0) = 1 and
F(0) = 0. Now differentiate Eq. 4.4 (assuming, or postulating, it differenti-
ates normally), to get 4

ie' = E'(0) +iF'(0).
Substitute # = 0 and we discover (Show in detail!) that £'(0) = 0 and
F’(0) = 1. Differentiating a second time yields

—e" = E"(0) +iF"(0).



56 CHAPTER 4. BASIC COMPLEX ANALYSIS

Combining this and Eq. 4.4 shows
E"(0) +iF"(0) = —E(0) —iF(0).

Hence, E"(0) = —FE(f) with E(0) = 1 and E’(0) = 0, so we know E = cos;
similarly, F"(0) = —F(0) with F/(0) = 0 and F'(0) =1, so F' = sin.

Exercise 4.4.15 Show that f(t) = ciswt is a solution of f'(t) = iwf(t) with
initial condition f(0) = 1.

The ordinary (real) exponential function, f(x) = e” is the unique solution
to the differential equation f'(x) = f(x) with the initial condition f(0) =
1. Further, if f(t) = ce”, then f'(t) = pf(t) and f(0) = c¢. This is the
fundamental equation of exponential growth (or decay), which says that the
increase (or decrease) in a quantity is proportional to the current quantity.
The real number c is the initial quantity and the real number p is the rate of
growth (for p > 0) or decay (for p < 0).

The foregoing is still true in the system of complex numbers: f(z) = e* is
the unique solution of f/(z) = f(z) with f(0) = 1. More generally, for w € C,
ce™ is the unique solution of f’(t) = wf(t) with initial condition f(0) = ¢ (a
complex number). The complex number ¢ represents the initial state of the
system, comprising a magnitude and phase. However, the meaning of the
complex “rate” w requires some explanation.

Write w in rectangular form, w = p+iw. Then the exponential trajectory
et is seen to be a product of an exponential change in magnitude and a
periodic cycle:

iwt

(p—i—zw)tc — ept—i-zwtc _ epte c

ele =e
Thus w = p + iw defines a rate of exponential change p and an angular
frequency w.

The parameter w in e*? is sometimes called a complex frequency, since
both its components are rates and its imaginary component is a rate of
rotation. As we will see in Ch. 7?7, the “poles and zeros” of filters, which
determine their behavior, are complex frequencies. Further, we will see that
many systems can be reduced to a sum of complex exponentials, and are thus
completely characterized by a set of complex frequencies.

The two components of a complex frequency can be termed its linear rate
and its angular frequency. Therefore, we can say that many systems are a
superposition of elementary systems, each determined by a linear rate and
an angular frequency. In this sense, rectilinear and circular motion are the
two primary motions from which almost all complex motions are composed.
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Remark 4.4.11 [t is interesting that Aristotle, based on Plato’s teachings,
distinguished two fundamental motions: rectilinear and circular. This is pre-
cisely what we have in a complex frequency: if it is real, we have rectilinear
motion; if it is imaginary, we have circular motion. Aristotle said that change
in the “sublunary phenomena” (i.e. on the earth) are characterized by recti-
linear motion (e.g. a dropped object), whereas the “celestial phenomena” (i.e.
in the heavens) are characterized by circular motion (e.g. the motion of the
stars). Newton’s accomplishment was to show that a single law accounted for
both kinds of motion (terrestrial and celestial).

We may further subdivide the kinds of change based on the signs of the
rates: If w = p > 0 we have an increase; if w = p < 0 we have a decrease;
if w = iw # 0 we have a rotation (counterclockwise for w > 0, clockwise for
w < 0). If w= p+iw, then we have a combination of rectilinear and circular
motion (a spiral outward or inward).

It will be worthwhile to look at these possibilites from the perspective
of the differential equation f’(¢t) = wf(t) or, more compactly, 2 = wz. As
before, let the initial condition be z(0) = ¢, a complex number.

First suppose w = p is real; then the differential equation is z = pz,
which means that the change in z is in the same direction as z (for p > 0),
or in the opposite direction (for p < 0). (Note that 0z = pz is a little vector
parallel, or antiparallel, to z; when added to z it increases or decreases its
length, but leaves its direction unchanged.) This sort of process causes z to
move rectilinearly at an exponential rate: z(t) = e”’c. Thus the initial state
c grows or shrinks exponentially in time. We can see this clearly if we write
the initial state in polar form, ¢ = ae'; then z(t) = ae’* x €'®; that is, the
angle is independent of time.

Exercise 4.4.16 Draw z, 0z and z + 6z in this case.

Next suppose w = 1w is imaginary; then the differential equation is z = iwz.
Recall that multiplication by i is equivalent to a counterclockwise rotation
through 90°. Therefore, 2z = iwz can be thought of as a little vector perpen-
dicular to the end of z; it points in a counterclockwise direction for w > 0 and
clockwise for w < 0. When added to z it causes it to rotate (counterclockwise
or clockwise) without changing its length. This sort of process causes z to
move circularly, z(t) = e™'c. Thus the initial state c¢ rotates periodically
with constant magnitude. Putting ¢ = ae’® we have, z(t) = ae’@*9); the
magnitude is constant a, but the rotation starts with a phase angle ¢.
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Exercise 4.4.17 Draw z, 6z and z + z.

In the general case w = p+iw, we have 0z = pz+iwz, which is a composite of
motion pz parallel to z and motion iwz perpendicular to the end of z. In this
case we get a combination of exponential change and rotation, z(t) = e”'e™c.
If we write the initial state in polar form, ¢ = ae’®, then

2(t) = aet x /@He),
We see the initial magnitude a changing exponentially by e”* and the initial
phase angle ¢ rotating by wt.

Exercise 4.4.18 Draw z, 6z and z 4+ 0z .

4.4.3 Complex Logarithms
4.4.3.1 DEFINITION

Since the exponential of a complex number scales the real part exponentially
to give the magnitude, and converts the imaginary part into a phase angle,
we would expect the logarithm of a complex number to reverse this process,
deriving the real part from the logarithm of the magnitude and the imaginary
part from the phase angle. That is, since exp(z + iy) = e“e”, we expect
In(e®e%) = x + iy, or equivalently:

In(re®) = Inr + 6.

This is basically correct, but there are some complications we must consider.

The basic problem is that the complex exponential is a periodic function;
therefore it is not one-to-one, and so it does not have a unique inverse. In
particular, we can see that

In(re) = Inr +i(6 + m2r),

for m = 0,41,42,.... There are several ways we can deal with this.

First we may choose to restrict the angle to lie in a particular range, such
as [0, 27) or [—m, 7). Thus we may talk of the principal value of the logarithm,
as we talk of the principal value of the arcsine, arccosine, etc. (Often the
principal value of the logarithm is written “Ln,” just as the principal value of
the arcsine is written “Arcsin,” etc.) This convention has the disadvantage
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that the identity In(e?”) = if does not hold unless @ is restricted to the chosen
range.

Second, we may simply accept that the logarithm is a multiple-valued
function; they are not unknown in mathematics and its applications, for ex-
ample we have f(z) = £/ and f(z) = sin”'z. To use multiple-valued
functions without encountering contradictions, it’s necessary to restrict at-
tention to a particular value, as determined by context, stipulation, or con-
straints of the application. In this case we can write In(e??) = i, provided
it’s understood that the appropriate value of the logarithm must be used.

There is a third, more formal but nevertheless interesting solution, which
will be discussed in Section 4.4.3.3.

Exercise 4.4.19 Show e™* = z, for any of these interpretations of the com-
plex logarithm.

Exercise 4.4.20 Show

In(zw) =Inz+Inw (mod 2r).

4.4.3.2 GEOMETRICAL INTERPRETATIONS
For any integral values of m, observe that

€x+iy — em+i(yi27rm).

Hence the values of e repeat at vertical intervals of 2r. Therefore, if we
restrict attention to any infinitely wide “band” of height 27, the logarithm
will be single valued. These bands (which need not have their boundaires at
multiples of 7 or other “reasonable” places) are called branches of the complex
logarithm. Therefore, if we restrict attention to z in a single branch, we will
have In(e*) = z.

It will strengthen our intuitive understanding of the complex exponential
and logarithm to look at how they transform various subsets of the complex
plane.

First, observe that the exponential function maps a branch of the loga-
rithm onto the entire complex plane except for the origin (since e* = 0 has
no solution, and so In0 is undefined). Conversely, the logarithm maps the
complex plane (minus the origin) onto its chosen branch.
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4.4.3.3 RIEMANN SURFACES

forthcoming

4.4.3.4 COMPLEX POWERS

With the complex exponential and logarithm we can define arbitrary powers
of complex numbers.

Definition 4.4.1 (Complex Powers) Ifz and w are complex numbers (z #
0), then z¥ is defined 2 = e*™™=.

Remark 4.4.12 The complex power is multiple-valued because it is defined
in terms of the complex logarithm. Therefore it’s necessary to restrict atten-
tion, by context or stipulation, to a particular branch of the function (either
the logarithm or the power).

Proposition 4.4.6 The power z is single valued if and only if w is an
integer.

Proposition 4.4.7 If w = p/q is a rational number in lowest terms, then
2" has exactly q values, namely the q principal q-roots of zP.

Proposition 4.4.8 Ifw is irrational real or complex, then z* has an infinity
of values differing by e*™vt,

Remark 4.4.13 We have already seen (Prop. 4.4.5) that a complex number
has n principal n-th roots. This is consistent with the definition of the n-th
root in terms of complex powers, restricted to a branch of the logarithm:

{L/E — Zl/n _ e(lnz)/n.

If z=1e", then, form=0,1,....,n—1,
. 0
Yz = U 0TI — ofp cig (— +27rm) .
n n

Notice that the roots have equal magnitude and angles evenly distributed
around a cycle at angles 2r0/n and beginning at 6/n.

Exercise 4.4.21 Plot the principal values of ~/—64i.
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4.5 Hyperbolic Geometry

4.5.1 Hyperbolic Functions
4.5.1.1 HYPERBOLIC ANGLES

We have seen an intimate connection between the complex exponential and
the (circular) trigonometric functions (sine, cosine, etc.); in this section we
will explore an equally intimate connection with the hyperbolic trigonometric
functions. First, we review the derivation of the circular functions.

Draw a circle 22 + 9% = r? and draw a radius at angle § above the X-axis
(Fig. 4.1, p. 42). Drop perpendiculars z and y to the X- and Y-axes. We
know from trigonometry that

cos =zx/r, sinf =y/r, tanf =y/z.

Finally, we have seen (Rem. 4.3.1) that the radian measure of an angle is
twice the ratio of the included area to the radius squared.

Now we will undertake a similar construction, but based on the hyperbola
rather than the circle; our first task is to define an appropriate measure of
angles, in hyperbolic radians. Consider the (equilateral) hyperbola 2 — y* =
r?, which has its arcs lying within the left and right half planes. Draw a
ray from the origin at an angle of less than 45° from the X-axis, so that
it intersects the right-hand half of the hyperbola. (We will deal later with
angles greater than 45°.) As we did with the circular angle, we measure the
hyperbolic angle by the area bounded by the curve between the radius and
the X-axis; in particular the hyperbolic radian measure x will be the ratio of
twice the area to the square radius.

Proposition 4.5.1 Suppose a radius intersects the hyperbola x* — y? = r?
at the point (x,y). Then the hyperbolic radian measure of the angle of the
ray is In (wTer)

Exercise 4.5.1 To determine this, first show that the area B under the curve
of the hyperbola out to x is

2
B:%_T_m(“y).
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Exercise 4.5.2 Show that the required area

2
A_r_ln<x—|—y>
2 r

by subtracting B from the area of the triangle (x,y,r).

It then follows that the angle in hyperbolic radians is k = 24/r? = In (”C—JTT:’J)

Now, just as for the circular functions, we will define the hyperbolic func-
tions in terms the ratios x/r, y/r and y/z. For simplicity, use a unit circle,
sor =1and k = In(x 4+ y). Then,

coshk =z, sinhk =y, tanhk =y/z.
We therefore have two equations in two unknowns:
2 — o, (4.5)
k = In(z+vy). (4.6)
Exercise 4.5.3 Show that the solutions are

e +e " e —e™"®

TE Y=

(Thus we can “solve triangles” with the hyperbolic functions as well as with

the circular, except that we don’t have protractors for measuring hyperbolic
angles!) We have proved:

Proposition 4.5.2

coshk = %, (4.7)

sinhk = %, (4.8)

tanhw = — (4.9)
e +eF

These formulas are similar to the corresponding Eq. 4.3 for the circular sine
and cosine, to which they should be carefully compared. The preceding
derivation only applies to angles in the first octant (0° — 45°). However, by
allowing = and y to be negative, it is automatically extended to all angles
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within 45° of the X-axis. It is extended to angles within 45° of the Y-axis by,
in effect, duplicating the above derivation with the hyperbola 3% — 22 = 1,
which has its arc in the upper and lower halfplanes. That is, interchange x
and .

The equations Eq. 4.9 are true in all octants, and in fact are often stip-
ulated as the definition of the functions. In particular, although we have
justified these equations on the basis of a real-valued hyperbolic angle, we
can use them to define the hyperbolic functions for any complex argument
(just as can be done with the exponential formulas for the circular functions,
Eq. 4.3).

4.5.1.2 HYPERBOLIC FUNCTIONS

Exercise 4.5.4 Fxplore and discuss the domain and range of the hyperbolic
sine, cosine and tangent over the reals; sketch their shapes (don’t plot by
computer; use the hyperbolic law of triangles).

Exercise 4.5.5 Prove the following symmetry properties: First, the hyper-
bolic cosine (like the circular cosine) is an even function, that is, cosh(—k) =
cosh k. Second, the hyperbolic sine (like the circular sine) is an odd function,

that is, sinh(—k) = —sinh k. As a consequence, the hyperbolic tangent (like
the circular tangent) is also odd, tanh(—k) = — tanh k.
Exercise 4.5.6 Prove cosh’k — sinh®k = 1. What is the corresponding

property of the circular functions?

Exercise 4.5.7 Prove

tanh x + tanh A
tanh A) = .
anh(r + A) 1 + tanh sk tanh A

What is the corresponding property of circular functions?

Exercise 4.5.8 Prove sech® k = 1—tanh? k, where sech ks = 1/ cosh k. What
is the correponding circular property?

Exercise 4.5.9 Prove csch® k = coth? ks — 1, where cschx = 1/sinhk and
cothk = 1/tanh k. What is the corresponding circular property.
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4.5.2 Special Relativity Theory

In this section we will consider briefly special relativity since (1) it illus-
trates the use of a mixed real/imaginary coordinate system, (2) it makes use
of hyperbolic geometry and (3) it suggests ways of treating space and time
together, which has relevance to wavelet processing and spatiotemporal in-
formation processing in the brain (see my report, “Gabor Representations of
Spatiotemporal Visual Images”).

4.5.2.1 The Fundamental Invariance

Special relativity, which deals with the geometry of spacetime, is easier to
understand by comparison with the geometry of ordinary space. First, notice
that in ordinary space certain properties are dependent on the coordinate
system we use, whereas others are not. For example, the z and y coordinates
of a point (or vector) depend on the choice of axes, since they are projections
of that point (or vector) onto the axes.

Exercise 4.5.10 Diagram this situation.

On the other hand, the distance between points (or the length of a vector)
is independent of the coordinate system. Thus, if (z,y) and (2/,y’) are the
coordinates of the same vector in two different coordinate systems, we can
assert the invariant x* +x? = 2/* +y?. We say that length is invariant under
a transformation of coordinates.

In ordinary space there are two different ways we can measure the incli-
nation of a line. If we measure it by slope, then the measure depends on the
coordinate system, since the slope is y/x, which quantities are not invariant.

Exercise 4.5.11 Diagram this situation.

Further, slopes are not additive: if m and m’ are the slopes of the same line
in two different coordinate system, and p is the slope of the primed system
with respect to the unprimed, we might expect m = p + m/, but this is not
the case.

Exercise 4.5.12 In fact, the law of combination is:

/ —
LA e gy =

m= 1—pm/ 1+mp”



4.5. HYPERBOLIC GEOMETRY 65

Does this look familiar? Derive it by trigonometry. Notice also that m =~
w~+m'if u=0; that is, if the coordinate systems deviate only slightly from
each other, then slopes are approximately additive.

On the other hand, ordinary (circular) angles are additive, since they are
invariant under coordinate transformation. Therefore, if a line has angles a
and o' with respect to the X-axes of two coordinate systems, and « is the
angle of the primed X'-axis to the X-axis, then ' = a + a.

Exercise 4.5.13 Diagram this situation.

In relativity, events are located in four-dimensional spacetime; they have
coordinates (z,y,z,t). Now we will make several convenient assumptions.
First, since relativistic effects occur in the direction of motion, and not per-
pendicular to the direction of motion, we will restrict our attention to a
single space axis s, oriented in the direction of motion; thus spacetime coor-
dinates will take the form (s,¢). This will make spacetime geometry easier
to visualize and draw, and will simplify the mathematical notation.

Second, since time is an axis like the other three, we will measure them
all in the same units, meters, which will simplify the formulas. (Imagine the
needless complexity that would result from measuring north- south distances
in miles and east-west distance in kilometers.) This raises the question of
how to convert seconds to meters; what is the conversion factor? It turns
out that it is the speed of light, ¢ ~ 3 x 10® m/s. We will see that this is not
an arbitrary choice, but is in fact fundamental to the fabric of spacetime. If
T is time in seconds and ¢ is time in meters, then t = ¢T'.

Finally, in accord with the measurement of time in meters, velocity be-
comes a pure number (meters/meter), for which relativity theory uses the
symbol . If V' = s/T is time in ordinary units, we can see that § = s/t =
s/(cT') = V/e. Thus § can also be interpreted as velocity relative to the
speed of light. By “natural units” I will mean the measurement of time in
meters and velocity as a pure number.

Remark 4.5.1 In our lives we range cover a vast distance along the time
axis compared to our range on the spatial axes. Since there are about ™ x 107
seconds in a year, we go about wc x 107 ~ 3w x 10 ~ 10'® meters in a year
(i.e. one light-year). In our lifetimes we cover about 7 x 10" meters on the
time azis (that is, about 70 light-years, something between the distances to
Aldebaran and to Regulus). In the same amount of time the solar system
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moves about 7 x 10 m. relative to the cosmic background radiation (since
our motion with respect to it is about 3 x 10° m/s in the direction of Virgo).
It is this large discrepency, a ratio of 10®, between our mobility in time and
space that leads to the undetectability of relativistic effects under ordinary
conditions. Therefore, our average velocity, in natural units, is [ ~ 1073
(i.e. speed relative to background radiation divided by speed of light).

Although we measure it in spatial units, the time axis is not just another
space axis; indeed we may say that time is imaginary with respect to the
spatial axes, since one consequence of the relativity postulates is that the
fundamental invariant is s* + (it)? = s — 2.

Remark 4.5.2 This invariant follows from the first postulate of relativity
theory, which says that the velocity of light in a vacuum is the same in all
reference frames. To see this suppose that a reflective object is moving to the
right past us at a velocity 5. When it is directly opposite us at a distance
of r, suppose that it is struck by light from source distance s to our left.
The distance, as measured in our reference frame, traveled by the light is
d = Vr?+ 82, so is the time, in our frame, that it took to travel it (since
the speed of light = 1 in natural units): t = \/r? + s®. Within the reference
frame of the reflective object, however, the source appears to be a distance s’
to the left, so the distance the light travelled is d' = \/r? + s2; likewise the
time is t' = /1?2 4+ s2. Now observe:

t?—s* = (rP+s%) —s* =1

t/2 _5/2 — (7"2 +8/2) . 8/2 :?”2.
We see that t* — s* = t"? — §'2.

This quantity, s> — t2, which is invariant under a change between reference
frames in relative motion, is called the spacetime interval between two events;
it is analogous to the Euclidean distance z? + 92, which is invariant under
change of the spatial coordinate system.

Spacetime intervals can be classified according to whether s? — ¢2 is pos-
itive, negative or zero. If it is positive, the interval is called space-like and
the proper distance o is defined 0? = s? — t2. If it is negative, the interval
is called time-like and the proper time 7 is defined 72 = t? — s2. If the in-
terval is zero, it is called light-like. We will see that time-like intervals can
be crossed by subluminary signals (signals travelling less than the speed of
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light), and light-like intervals can be crossed only by things travelling at the
speed of light. Space-like intervals could be crossed only by things travelling
faster than light, which, so far as physics has been able to establish, do not
exist. Therefore, space-like intervals are causally independent; causality can
operate only across time-like and light-like intervals (i.e., those for which
t? — s > 0). Therefore, we will restrict our attention to this case (without
loss of generality, however).

Exercise 4.5.14 The invariant t*> — s> = constant should remind you of an
identity that you have seen recently. What does it suggest about the formal
relation of the quantities t and s?

4.5.2.2 MEANING OF THE HYPERBOLIC ANGLE

The invariance of spacetime interval means that, for a given pair of events,
72 = 2 — s? is constant, no matter what their distance separation s and
time separation t in a given reference frame. That is, the possible s and ¢
measurements in various reference frames is constrained by 72 = ¢ —s%. This
means that the possible (s, t) pairs lie on an equilateral hyperbola, whose arcs
lie in the positive and negative t halfplanes. From this we see, by the law of
triangles for hyperbolas, that (for some hyperbolic angle ):

s = 7sinhk,

t = Tcoshk.

From these, the invariance of the spacetime interval follows from the prop-
erties of the hyperbolic functions:

t* — 5% = 7%(cosh® k — sinh® k) = 72,

Now we must consider the meaning of the hyperbolic angle k. Observe
that the velocity can be written in terms of hyperbolic functions:

B:f:M:taHhﬁ;.
t Tcoshk
Thus, k = arctanh 3, and so it is called the velocity parameter; we may say
that the velocity parameter is the hyperbolic arctangent of the velocity (in
natural units). The significance of the velocity parameter is that it measures
the hyperbolic angle between the time axes in the two reference frames. Just
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as a slope m is related to a corresponding angle 6 by the circular tangent,
m = tanf, so a velocity is related to a corresponding velocity parameter by
the hyperbolic tangent, § = tanh k. The appearance of the circular functions
in spatial rotations is a consequence of the isotropy of  and y; the appearance
of the hyperbolic functions in spacetime transformations is a consequence of
the anisotropy of s and it (i.e., time is imaginary with respect to space).

4.5.2.3 Comparison of Lorentz & Galilean Transforms

forthcoming
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