Solution of *k*-SAT by Analog Computation

Bruce MacLennan
COSC 494/594 Unconventional Computation

Variables

- Solution variables, $s_i \in [-1, 1]$
 - Negative values represent Boolean 0
 - Positive values represent Boolean 1
- Auxiliary variables, a_m ∈ [0, 1]
 - Indicate "urgency" of satisfying a clause
- Constraint matrix, $c_{mi} \in \{-1, 0, 1\}$
 - $c_{mi} = 1$, if X_i positive in clause m
 - $c_{mi} = -1$, if X_i negative in clause m
 - $c_{mi} = 0$, if X_i not in clause m
- Note that we want $\sum_i c_{mi} s_i$ to be positive

16/11/14

Unconventional Computation

Sources

- Based on a dynamical system for solving k-SAT by M. Ercsey-Ravasz and colleagues:
 - B. Molnár and M. Ercsey-Ravasz, "Asymmetric continuous-time neural networks without local traps for solving constraint satisfaction problems," PLoS ONE, vol. 8, no. 9, p. e73400, 2013.
 - R. Sumi, B. Molnár, and M. Ercsey-Ravasz, "Robust optimization with transiently chaotic dynamical systems," EPL (Europhysics Letters), vol. 106, p. 40002, 2014.
- Analog algorithm and circuit implementation in:

Brasford, D., Smith, J. M., Connor, R. J., MacLennan, B. J., Holleman, J. "The Impact of Analog Computational Error on an Analog Boolean Satisfiability Solver," *IEEE International Symposium for Circuits and Systems 2016*, Montreal, Canada, May 2016.

16/11/14

Unconventional Computation

Solution Squashing Function

$$f(s) = (|s+1| - |s-1|)/2 = \begin{cases} -1 & \text{if } s < -1, \\ s & \text{if } -1 \le s \le 1, \\ +1 & \text{if } s > 1. \end{cases}$$

· Keeps solution variables bounded

16/11/14

Unconventional Computation

Example k-SAT Problem

$$(X_1 \lor X_3 \lor X_4) \land (\overline{X_2} \lor X_3 \lor X_4) \land (X_2 \lor X_4 \lor \overline{X_5})$$

- N = 5 variables, M = 3 clauses, k = 3 literals in each
- Constraint density $\alpha = M/N$

16/11/14

Unconventional Computation

Auxiliary Squashing Function

$$g(a) = (1 + |a| - |1 - a|)/2 = \begin{cases} 0 & \text{if } a < 0, \\ a & \text{if } 0 \le a \le 1, \\ +1 & \text{if } a > 1. \end{cases}$$

· Keeps auxiliary variables bounded

16/11/14

Unconventional Computation

Dynamics of Solution Variables

$$\dot{s}_i(t) = -s_i(t) + Af[s_i(t)] + \sum_{m=1}^{M} c_{mi}g[a_m(t)]$$

- · A is self-coupling parameter
- Summation tends to force s_i to solution, weighted by urgency

16/11/14

Unconventional Computation

Bounds on Variables

$$|s_i(t)| \le 1 + A + \sum_m |c_{mi}|$$

$$-2k \le a_m(t) \le 2 + B$$

- provided they are initially in appropriate ranges: $|s_i(0)| \le 1$, and $0 \le a_m(0) \le 1$
- · Important for analog implementation

16/11/14

Unconventional Computation

Dynamics of Auxiliary Variables

$$\dot{a}_m(t) = -a_m(t) + Bg[a_m(t)] - \sum_{i=1}^{N} c_{mi} f[s_i(t)] + 1 - k$$

- B is a self-coupling parameter
- a_m decreases to the extent clause m is satisfied

16/11/14

Unconventional Computation

Pseudo-Energy Function

$$E[f(\mathbf{s})] = \mathbf{K}^{\mathrm{T}} \mathbf{K}$$
where $K_m = 2^{-k} \prod_{i=1}^{N} [1 - c_{mi} f(s_i)]$

- Increases with number of unsatisfied clauses
- · Bracketed expression is 0 in satisfied clauses
- · Not a Lyapunov function (does not decrease monotonically)

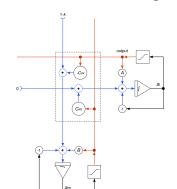
16/11/14

Unconventional Computation

Asymptotic Behavior

- · Molnár and Ercsey-Ravasz prove: the only stable fixed points of the system are solutions to the problem
- They give numerical evidence that there are no limit cycles
 - provided A and B are in appropriate range
- · Hard instances exhibit transient chaotic behavior

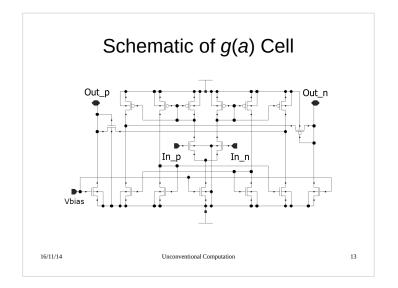
Analog Algorithm

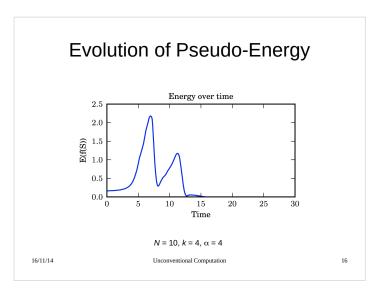


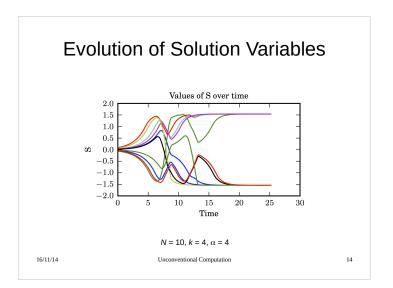
- M integrators for a_m
- N integrators for s_i
- · Instance programmed by setting c_{mi} and −c_{mi} connections

11

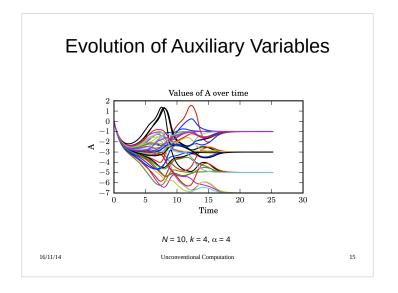
- Dotted cell reproduced MN times
- Integrators initialized to small values to start computation







Observations This particular algorithm has exponential analog-time perfomance other similar analog algorithms are much more efficient (Ercsey-Ravasz & Toroczkai, 2011) Deep theoretical connection between chaotic dynamical systems and hard instances of SAT Turbulence and computational intractability One of many examples of analog solutions of discrete problems



References M. Ercsey-Ravasz and Z. Toroczkai, "Optimization hardness as transient chaos in an analog approach to constraint satisfaction," *Nature Physics*, vol. 7, pp. 966–970, 2011. B. Molnár and M. Ercsey-Ravasz, "Asymmetric continuous-time neural networks without local traps for solving constraint satisfaction problems," *PLoS ONE*, vol. 8, no. 9, p. e73400, 2013. R. Sumi, B. Molnár, and M. Ercsey-Ravasz, "Robust optimization with transiently chaotic dynamical systems," *EPL (Europhysics Letters)*, vol. 106, p. 40002, 2014. Brasford, D., Smith, J. M., Connor, R. J., MacLennan, B. J., Holleman, J. "The Impact of Analog Computational Error on an Analog Boolean Satisfiability Solver," *IEEE International Symposium for Circuits and Systems 2016*, Montreal, Canada, May 2016. X. Yin, B. Sedighi, M. Varga, M. Ercsey-Ravasz, Z. Toroczkai, X. Hu, "Efficient Analog Circuits for Boolean Satisfiability," arXiv:1606.07467v1.