C Formal models

C.1 Sticker systems

C.1.a Basic operations

The sticker model was developed by Rosweis et al. in the mid-1990s. It depends primarily on separation by means of hybridization and makes no use of strand extension and enzymes. It implements a sort of random-access binary memory. Each bit position is represented by a substrand of length \(m \). A memory strand comprises \(k \) contiguous substrands, and so has length \(n = km \) and can store \(k \) bits. Sticker strands or stickers are strands that are complementary to substrands representing bits. When a sticker is bound to a bit, it represents 1, and if no sticker is bound, the bit is 0. Such a strand, which is partly double and partly single, is called a complex strand.

Computations begin with a prepared library of strings. A \((k, l)\) library uses the first \(l \leq k \) bits as inputs to the algorithm, and the remaining \(k - l \) for output and working storage. Therefore, the last \(k - l \) are initially 0. There are four basic operations, which act on multi-sets of binary strings:

- **Merge:** Creates the union of two tubes (multi-sets).
- **Separate:** The operation separate\((N, i)\) separates a tube \(N \) into two tubes: \(+ (N, i)\) contains all strings in which bit \(i \) is 1, and \(- (N, i)\) contains all strings in which bit \(i \) is 0.
- **Set:** The operation set\((N, i)\) produces a tube in which every string from \(N \) has had its \(i \)th bit set to 1.
- **Clear:** The operation clear\((N, i)\) produces a tube in which every string from \(N \) has had its \(i \)th bit cleared to 0.

C.1.b Set cover problem

The set cover problem is a classic NP-complete problem. Given a finite set of \(p \) objects \(S \), and a finite collection of subsets of \(S \) \((C_1, \ldots, C_q \subset S)\) whose union is \(S \), find the smallest collection of these subsets whose union is \(S \). For an example, consider \(S = \{1, 2, 3, 4, 5\} \) and \(C_1 = \{3, 4, 5\}, C_2 = \{1, 3, 4\}, C_3 = \{1, 2, 5\}, C_4 = \{3, 4\} \). In this case there are three minimal solutions: \(\{C_1, C_3\}, \{C_3, C_4\}, \{C_2, C_3\} \).
algorithm Minimum Set Cover:

Data representation: The memory strands are of size \(k = p + q \). Each strand represents a collection of subsets, and the first \(q \) bits encode which subsets are in the collection; call them *subset bits*. For example, 1011 represents \(\{C_1, C_3, C_4\} \) and 0010 represents \(\{C_3\} \). Eventually, the last \(p \) bits will represent the union of the collection, that is, the elements of \(S \) that are contained in at least one subset in the collection; call them *element bits*. For example, 0101 10110 represents \(\{C_2, C_4\} \{1, 3, 4\} \).

Library: The algorithm begins with the \((p + q, q)\) library, which must be initialized to reflect the subsets’ members.

Step 1 (initialization): For all strands, if the \(i \) subset bit is set, then set the bits for all the elements of that subset. Call the result tube \(N_0 \). This is accomplished by the following code:

Initialize \((p + q, q)\) library in \(N_0 \)

for \(i = 1 \) to \(q \) do
 separate\((+ (N_0, i), -(N_0, i))\) \hspace{1cm} //separate those with subset \(i \)
 for \(j = 1 \) to \(|C_i|\) do
 set\((+ (N_0, i), q + c^j_i)\) \hspace{1cm} //set bit for \(j \)th element of set \(i \)
 end for
 \(N_0 \leftarrow \text{merge} (+ (N_0, i), -(N_0, i)) \) \hspace{1cm} //recombine
end for

Step 2 (retain covers): Retain only the strands that represent collections that cover the set. To do this, retain in \(N_0 \) only the strands whose last \(p \) bits are set.

for \(i = q + 1 \) to \(q + p \) do
 \(N_0 \leftarrow + (N_0, i) \) \hspace{1cm} //retain those with element \(i \)
end for
C. FORMAL MODELS

3.2 Filtering Models

Separate on 1

Separate on 2

Separate on 3

Separate on 4

Figure IV.11: Sorting of covers by repeated separations. [source: Amos, Fig. 3.4]

Step 3 (isolate minimum covers): Tube N_0 now holds all covers, so we have to somehow sort its contents to find the minimum cover(s). Set up a row of tubes N_0, N_1, \ldots, N_q. We will arrange things so that N_i contains the covers of size i; then we just have to find the first tube with some DNA in it.

Sorting: For $i = 1, \ldots, q$, “drag” to the right all collections containing C_i, that is, for which bit i is set (see Fig. IV.11). This is accomplished by the following code:\(^\text{10}\)

\[
\text{for } i = 0 \text{ to } q - 1 \text{ do }
\text{for } j = i \text{ down to } 0 \text{ do }
\text{separate}((N_j, i + 1), -(N_j, i + 1)) \text{ //those that do & don’t have } i
\]

\(^{10}\)Corrected from Amos p. 60.
\[N_{j+1} \leftarrow \text{merge}(+(N_j, i + 1), N_{j+1}) \] //move those that do to \(N_{j+1} \)
\[N_j \leftarrow -(N_j, i + 1) \] //leave those that don’t in \(N_j \)
end for
end for

Detection: Find the minimum \(i \) such that \(N_i \) contains DNA; \(N_i \) contains the minimum covers.

The algorithm is \(O(pq) \).

C.2 Splicing systems

It has been argued that the full power of a TM requires some sort of string editing operation. Therefore, beginning with Tom Head (1987), a number of **splicing systems** have been defined. The splicing operations takes two strings \(S = S_1S_2 \) and \(T = T_1T_2 \) and performs a “crossover” at a specified location, yielding \(S_1T_2 \) and \(T_1S_2 \). **Finite extended splicing systems** have been shown to be computationally universal (1996).

The **Parallel Associative Memory (PAM) Model** was defined by Reif in 1995. It is based on a restricted splicing operation called **parallel associative matching** (PA-Match) operation, which is named Rsplice. Suppose \(S = S_1S_2 \) and \(T = T_1T_2 \). Then,

\[\text{Rsplice}(S, T) = S_1T_2, \quad \text{if } S_2 = T_1, \]

and is undefined otherwise. The PAM model can simulate nondeterministic TMs and parallel random access machines.