THE BEGINNING:

PSEUDO-CODE INTERPRETERS
Sl b

1.1 HISTORY AND MOTIVATION

Why Study a Primitive Language?

In this chapter we investigate a very primitive programming language, so primitive in fact
that you would never want to program in it. Furthermore, it’s not even a “real” language,
that is, it was made up specifically for this chapter. What is the purpose? Just as an archi-
tecture course might begin with an analysis of the Parthenon, or an automotive design course
with the Model T, so we may benefit by beginning the study of language design in a con-
text in which the issues are salient. Having honed our skills here, we will be better able to
apply them to more modern, sophisticated, and complex languages.

Programming Is Difficult

Almost as soon as the first computers were built, it became obvious that programming was
very difficult; this fact has not changed. Indeed, the tasks we have attempted to accomplish
with computers have grown rapidly in ambitiousness and size. Much of the difficulty of pro-
gramming stems from complexity, the necessity of dealing with many different details at one
time. Programs may contain hundreds of thousands, or even millions, of lines of code. Con-
sidering these lines (together with the operators and operands that make them up) as parts
that must be assembled individually to make a program work correctly leads to the conclu-
sion that programs are some of the most complicated objects ever constructed. One of the
primary tasks of programming languages is the conquest of this complexity.

Programming Early Compﬁters Was Especially Difficult

Although the problems addressed on early computers were smaller than many of those now
addressed, programming was still very difficult. Part of the reason was that early computers
had very little storage; a few thousand words were considered a large memory. Thus, com-

7

8

THE BEGINNING: PSEUDO-CODE INTERPRETERS

pact code was a necessity. Also, by modern standards the early computers were very slow,
so it was important that programs be coded very efficiently. Finally, early computers were
more complicated to program than the ones with which we are now familiar.

As an example of these complications, some of the drum computers (which stored both
the data and the program on a rotating magnetic drum) had a four-address instruction code,
which means that each instruction contained the address of the next instruction to execute.
This permitted a process called optimal coding, which means that when programmers coded,
for example, an ADD instruction, they would determine how far the drum had rotated while
that ADD instruction was being executed. They would then use that drum location for the
next instruction after the ADD, placing its address in the ADD instruction. In this way the next
instruction was always under the drum head when it was ready to be executed, thus saving
wasted drum revolutions and greatly increasing the speed of the program (Figure 1.1). Aside
from the difficulty of doing the calculations, there were always complications. For example,
the optimal location for the next instruction might already be occupied, in which case the
next available location in that track had to be used. Figure 1.2 shows a small part of a pro-
gram written in the mid-1950s for the IBM 650. Notice that each instruction contains in its
rightmost field (INST) the address of the next instruction (LOC).!

Needless to say, programming these machines was a tedious and error-prone process.
Much of it was done without the aid of any software tools, including assemblers. There were
other complications in programming these machines. For example, since the bits of an in-
struction often directly controlled the opening and closing of gates in the central processor,
the codes used for various operations appeared to the programmer to follow no simple rule.
This apparent irregularity made them very difficult to remember.

Many Program Design Notations Were Developed

The complexity of programming led to the development of program design notations, the
precursors of programming languages. One of the carliest of these was von Neumann and
Goldstine’s flow diagrams, which developed into the flowcharts that are still often used dur-
ing program design. Throughout the world, many different notations and languages were de-
veloped to try to conquer the complexity of programming. Some of these helped the pro-
grammer to design the memory layout and control flow of the program without being
concerned with details (such as optimal coding). Others provided mnemonics for the ma-

8)==)

1 The instructions are shown in the usual order of execution; on the drum they would be placed in the ad-
dress given in LOC.

Figure 1.1 Optimal Coding

1.1 HISTORY AND MOTIVATION 9

LOC OP DATA INST COMMENTS

1107 46 1112 1061 Shall the loop box be used?
1061 30 0003 1019

1019 20 1023 1026 Store C.

1026 60 8003 1033

1033 30 0003 1041

1041 20 1045 1048 Store B.

1048 60 8003 1105

1105 30 0003 1063

1063 44 1067 1076 Is an 02-operation called for?
.1067 10 1020 8003

8003 69 8002 1061 Go to an Ol-subroutine.

Figure 1.2 Part of an IBM 650 Program

chine operations, much like an assembly language. Konrad Zuse, in Germany, developed a
sophisticated programming notation that included a data structure definition facility. He even
outlined methods for compiling this notation in 1945! By and large, however, these languages
and notations were intended for use by people during the design process, not for direct pro-
cessing by the computer. The actual coding process was still done in numeric codes or with
the aid of simple “assembly programs” (assemblers).

Floating Point and Indexing Were Simulated

The earliest computers did not have built-in floating-point operations; these did not appear
until the IBM 704 in 1953. On the other hand, the primary application of many of these ma-
chines was in scientific and numerical computations, which require numbers of a wide range
of magnitudes. This necessitated manual scaling, a technique in which numbers were mul-
tiplied by scale factors in order to keep them within the range of the integer-arithmetic fa-
cilities of the computer. This was a very complicated process, which required a detailed
analysis of the algorithm. The difficulty of manual scaling led to the development of floating-
point subroutines, that is, of subroutines for performing basic floating-point operations (ad-
dition, subtraction, multiplication, division, square root, etc.). Although these often slowed
down a program by at least an order of magnitude, they so simplified the programming of
numerical problems that they were widely used.

Another facility missing from many early computers was indexing, the ability to add a
variable index quantity to a fixed address in order to address an element of an array. You
are probably aware from your own programming experience that the array is one of the most
common data structures; it was even more common in the scientific and numerical problems
that dominated the use of early computers. One of the important ideas of von Neumann, and
one of the distinguishing characteristics of a von Neumann machine (which includes most
computers), is that the program and data are stored in the same memory. Therefore, it is pos-
sible for a program to modify itself or another program as though it were data. Since most
early computers did not have index registers or indexed addressing modes as do modern com-
puters, it was necessary to accomplish indexing through address modification. That is, the

10

THE BEGINNING: PSEUDO-CODE INTERPRETERS

program would add the index value to the address part of a data accessing instruction. Need-
less to say, this was an error-prone process. It also consumed much of the scarce memory
with this address modification code. For this reason, it was also common to use subroutines
to perform indexing. You can probably imagine that since floating-point operations and in-
dexing account for much of what is done in numerical algorithms, most of the actual exe-
cution time was spent inside the floating-point and indexing subroutines. This justified the
use of pseudo-code interpreters, which we will discuss next.

Pseudo-Code Interpreters Were Invented

It was quickly recognized that consistent use of the floating-point and indexing subroutines
simplified the programming process; it allowed one to program as though these facilities
were provided by the hardware of the computer. This led to the idea of a pseudo-code, that
is, an instruction code that is different from that provided by the machine—and presumably
better.2 Since the program was going to spend most of its time in the floating-point and in-
dexing subroutines anyway, why not simplify programming by providing an entire new in-
struction code that was easier to use than the machine’s own? This idea was first described
in the famous Appendix D of the first programming book, The Preparation of Programs for
an Electronic Digital Computer, written by Wilkes, Wheeler, and Gill in 1951. This appen-
dix described the design of a simple pseudo-code and the design of an “interpretive subrou-
tine” for executing that pseudo-code—what we now call an interpreter. There is some indi-
cation that the authors did not realize the full significance of what they were describing,
otherwise they wouldn’t have buried it in Appendix D. They present interpreters primarily
as a means of saving memory since the pseudo-code is more compact than the machine’s
real instruction code. Other programmers soon grasped the importance of this idea and many
pseudo-code interpreters were born. Later in this chapter, we will investigate the design and
implementation of one of these.

The significance of these pseudo-code interpreters is that they implemented a virtual
computer with its own set of data types (e.g., floating point) and operations (e.g., indexing)
in terms of the real computer with its own data types and operations. ‘One advantage of the
virtual computer over the real computer was that it was higher level, that is, it provided fa-
cilities more suitable to the applications and it eliminated many details from programming.
This is an example of the Automation Principle.

The Automation Principle

Automate mechanical, tedious, or error-prone activities.

The virtual computer was also more regular, that is, simpler to understand through the
absence of special cases, which is summarized in the Regularity Principle.

2 The term pseudo-code is often now used for informal program design notations, which are not intended to
be executable by a computer (hence, pseudo). Here however pseudo-code is used in its original sense: a prim-
itive, interpreted programming language.

1.2 DESIGN OF A PSEUDO-CODE 11

The Regularity Principle

Regular rules, without exceptions, are easier to learn, use, describe, and implement.

We will see that all programming languages can be viewed as defining a virtual com-
puter that is intended to be better in some respects than the real computer. Although the in-
terpreter usually ran at least an order of magnitude slower than the real computer, most of
this time was spent in the floating-point and indexing routines that were considered neces-
sary anyway. Thus, pseudo-code interpreters were a valuable programming aid that imposed
little additional cost.

Compiling Routines Were Also Used

At this same time, another approach was being used for implementing pseudo-codes—com-
piling routines. Grace Murray Hopper and others began to use programs to extract subroutines
from libraries and combine them (a process called compiling) under the direction of a pseudo-
code. Since this process was done once, at compilation time, it did not involve the overhead
that resulted from interpretation. Therefore, the compiled program could run considerably faster
than an interpreted program. Perhaps because this approach did not encourage programmers to
look at a pseudo-code as a virtual computer, it did not produce pseudo-codes that were as reg-
ular. For this reason we will concentrate on interpreters in this chapter, and return to compil-
ing routines, which are now called compilers, when we discuss FORTRAN.

1.2 DESIGN OF A PSEUDO-CODE

Basic Capabilities Must Be Decided

In this section we design a pseudo-code. It is similar to real pseudo-codes, the languages L,
and L, designed by Bell Labs for the IBM 650 in 1955 and 1956. In Section 1.3 we discuss
the design of an interpreter for this pseudo-code. Working through this example will illus-
trate many of the steps and decisions in the design of a programming language.

For the sake of the example, we will assume that we are designing this pseudo-code for
a computer with 2000 words of 10-digit memory; this was the capacity of the 650 and is a
reasonable assumption for machines of that vintage. Of course, we will want our virtual com-
puter to provide the facilities found in any computer, such as arithmetic, control of execu-
tion flow, and input-output, but in a more regular fashion than real computers. So let’s be-
gin by making a list of some of the functions our pseudo-code should accommodate:

* Floating-point arithmetic {+, —, X, +, V")

* Floating-point comparisons (=, # , <, >, <, =)
* Indexing

¢ Transfer of control

* Input-output

12

THE BEGINNING: PSEUDO-CODE INTERPRETERS

What syntax should be used for this pseudo-code? Since many early computers did not
have facilities for alphabetic input-output, we will have to use a numeric code for the state-
ments of the language. Furthermore, since the most common input devices were card read-
ers, we will adopt the convention of writing one number (representing an operation) on each
card. Next, if we suppose that each instruction will be represented by one word, we will have
a sign and 10 digits with which to represent each instruction. How large will the addresses
be? Two digits are clearly insufficient; they would only allow 100 locations to be addressed.
Four digits are too much since they would permit addressing 10,000 locations and there are
only 2000 in the machine. So three digits seems the right choice; it permits addressing 1000
locations, which is adequate (at least it was considered adequate at that time), and leaves the
other 1000 locations for the interpreter and program. If the first 1000 locations are used for
data, then three digits will not allow addressing out of the data area. This is an example of
security, since in this case we have made it possible for the user to commit a particular class
of errors: overwriting the program or the interpreter. This illustrates another important prin-
ciple of programming language design.

The Impossible Error Principle

Making errors impossible to commit is preferable to detecting them after their com-
mission.

Instructions Have Three Operands

Let’s consider the form of the arithmetic operations since they will be the most common.
The instructions could have two, three, or four addresses:

* Two addresses: x+ty—x
e Three addresses: x +y—z2
e Four addresses: x+yXz—>w

Each of these addresses must be represented in an instruction. Therefore, four-address in-
structions require 12 digits for the operand addresses, too much to fit in a 10-digit word.
Two-address instructions will work since they only require six digits for the operand ad-
dresses, although this leaves a sign and four digits for the operation, which is excessive. This
would allow 20,000 operations, and we only have 13 in our list. Three-address instructions
will consume nine digits for the operands, leaving a sign and a digit for the operations, which
will allow the encoding of 20 operations and is adequate for our purposes. This leads to the
following format for our arithmetic instructions:

op opnl opn2 dest

where op is the operation, opnl and opn2 are the operands (x and y), and dest is the desti-
nation (z). For instance, if +1 means addition, then

+1 010 150 200

D ——

1.2 DESIGN OF A PSEUDO-CODE 13

would add the contents of location 010 to the contents of location 150 and store the result
in location 200 (we have added blanks to the code to make it more readable).

Orthogonal Design Increases Regularity

Numbers are difficult to remember, so we should design our pseudo-code so that the oper-
ations are as easy as possible to recall. To put it another way, there isn’t much point to our
pseudo-code if it isn’t simpler and more regular than the real code. Since some of the arith-
metic operations come in pairs (e.g., + and —, X and =), we can use the sign to distin-
guish these pairs. A preliminary encoding of operations is

+ —_
1 + -
2 X =
3 square square root

Notice that we have added the square function; it is useful, and since we already had its in-
verse, the square root, it is symmetric to include square.3

This is an example of orthogonal language design; that is, there are two orthogonal, or
independent, mechanisms: (1) the digit (1, 2, 3), which selects the class of operation (addi-
tive, multiplicative, quadratic), and (2) the sign, which selects the direct operation or its in-
verse. Here we have applied the Orthogonality Principle.

The Orthogonality Principle

Independent functions should be controlled by independent mechanisms.

This principle is a corollary of the Regularity Principle.
g Why does orthogonality simplify a language? If we assigned an arbitrary number to each
14 pseudo-code operation, it would be necessary for the programmer to remember 20 indepen-
f dent facts for the 20 pseudo-code operations. Instead, we reflect in the coding the distinc-

Orthogonal means right angled. What do right angles have to do with language design?
If we have two independently meaningful axes, one with m positions and another with n po-

* You may have noticed that square and square root are different from the other operations in that they are
unary, that is, they only have one operand. The extra operand position in the instruction will be unused.

14

THE BEGINNING: PSEUDO-CODE INTERPRETERS

sitions, then we can describe mn different possibilities even though we only have to memo-
rize m + n independent facts:

m
mn

1 2 3 =+ n

As m and n increase, mn grows much faster than m + n. Thus, orthogonal design becomes
more important as more possibilities must be described. When there are many possibilities,
it may be advantageous to have more than two orthogonal axes.

Even if no exceptions are necessary, orthogonality can be carried too far. For example,
we know that only 5 bits are needed to represent 20 possibilities; thus 20 instructions could
be expressed by 5 orthogonal binary choices. Although in this scheme only 10 facts need to
be remembered, it is most likely inferior, because the axes probably have no simple mean-
ing to the programmer. (Try it! Can you assign a simple meaning to each axis? You might
succeed.) In general, the independent functions controlled by the axes should be at least com-
prehensible, and preferably obvious, to the user. An orthogonal decomposition should help
the user to form a simple, accurate cognitive model of the operation of the system.

Design Principles Must Be Applied Flexibly

We have seen already four “principles”—Automation, Regularity, Impossible Error, and Or-
thogonality—and you may wonder what to make of them. The central organizing role they
have in this book was inspired by Strunk and White’s classic Elements of Style (Macmillan,
1959), wherein the principles of good writing are expressed in a number of terse rules. My
intention has been to identify the most important principles of good programming language
design and to express them as directly as possible. They may strike you as dogmatic and un-
compromising, but that is not the way they are intended. Like any other system of rules, they
make sense only if they are applied in a flexible fashion; it would be cumbersome, tedious,
and ultimately impossible to state for each principle all its exceptions, conditions, and limi-
tations. Further, as you will see later, some of the principles contradict one another, and so—
as in all design—a balance must be struck between conflicting goals. There are no rules for
this balancing task, but with experience you will acquire a good eye, which will help you to
achieve a harmonious design. One purpose of this book is to help you start to acquire this
experience.

Orthogonality May Be Inappropriate

Too much orthogonality can harm a language since the language may become cluttered with
facilities that have been included for symmetry but are of little use. That is, some of the mn
possibilities may be useless or difficult to implement. Some of them may even be illegal; in
this case, the programmer must remember them as exceptions (thus violating the Regularity

1.2 DESIGN OF A PSEUDO-CODE 15

Principle). If e is the number of exceptions, then orthogonalization is advantageous only if
m+n+e<mm-—e.

B Exercise 1-1: Explain in detail the justification for the formula m + n + e < mn — e.

B Exercise 1-2: Code an operation to add the contents of location 125 to the contents of
" 206 and store the result in 803.

B Exercise 1-3: Code an operation to divide the contents of location 401 by the contents
of location 623 and store the quotient in location 107.

B Exercise 1-4: Let the contents of locations 402 and 761 be x and y. Code instructions
to compute (x + y)? into location 100. Assume that the first 10 locations of data memory
are available for temporary storage.

B Exercise 1-5: How can the +3 and —3 operations be altered to be more regular (i.e.,
more like the other operations), while still accomplishing the square and square-root func-
tions?

Comparisons Alter Control Flow

We have said that we want our virtual computer to be regular so that it will be easier to use
than the real computer. Achieving regularity will be easier if we use the same format for our
other operations that we’ve used for the arithmetic operations. Let’s see how this applies to
the comparison operations. In some sense equal is the inverse of not equal, and greater than
or equal is the inverse of less than, so we can use signs to distinguish between each opera-
tion and its inverse. We extend the operation table as follows:

+ —_
1 + -
2 X =
3 square square root
4 if = goto if # goto
5 if = goto if < goto

For example, the instruction

+4 200 201 035

means: If the contents of (data) location 200 equal the contents of (data) location 201, then
goto the instruction in (program) location 035. Notice that it is not necessary to include the
greater and less than or equal comparisons since they can be coded by reversing their
operands (e.g., x >y is coded as y < x, operation —5). We have also omitted positive, neg-
ative, and zero tests since these can be coded using the comparisons. For instance, if we
adopt the convention that location 000 always contains the number zero, then we can jump
to location 100 if location 702 is negative by

-5 702 000 100

16

THE BEGINNING: PSEUDO-CODE INTERPRETERS

Of course, any location that we know to be zero could be used, but it is always valuable to
adopt standard coding conventions.

B Exercise 1-6: Code an instruction to jump to program location 103 if the value of data
location 732 is greater than or equal to that of location 500.

"® Exercise 1-7: Suppose data location 000 contains zero. Code an instruction to jump to

program location 803 if data location 465 is zero.

B Exercise 1-8: Code instructions to compute the absolute value of the contents of loca-
tion 231 and store the result in location 505. Assume that the instructions you write will
go into program location 102 and the succeeding program locations. State any other as-
sumptions that you make.

B Exercise 1-9: This pseudo-code does not include an unconditional jump. How could
you do an unconditional jump using the facilities provided?

Moving

What other operations do we need for programming? Certainly, one of the most common
operations is simply to move the contents of one location to another without doing any op-
eration. Strictly speaking, it is not necessary to have a separate operation for this; it could
be accomplished by adding zero. For example,

+1 150 000 280

effectively moves the contents of location 150 to location 280. Since a premise of this de-
sign is that floating-point arithmetic is quite slow, you can see that this would be a very in-

-efficient way to move values between locations. Therefore, we will use the +0 operation to

move one location to another.
Why did we choose +0 rather than +6? By picking +0 for the move, the series of codes
0, 1, 2, 3 stand for an easy-to-remember series of operations of increasing complexity:

move, add, multiply, square
This application of the Regularity Principle will make the codes easier to remember.
B Exercise 1-10: Code an instruction to move the contents of data location 100 into data

location 101.

@ Exercise 1-11*: What should be the function of the —0 operation? Our symmetric de-
sign leads us to expect it to be related to a simple move. It should be a useful operation
that is not easily or efficiently accomplished with the other operations.

4 Exercises marked by an asterisk require more thought and time than those not so marked. Exercises with
two asterisks are major projects.

1.2 DESIGN OF A PSEUDO-CODE 17

Indexing and Loops

One of the justifications for our pseudo-code was that it provided built-in indexing, so we
will turn to the design of this facility next. To perform indexing we will need the address of
the array and the address of the index variable, thus consuming two of the three address
fields in the instruction. Therefore, the only operations we can perform directly on array el-
-ements are to move them to or from other locations. We can use the codes +6 and —6 to
move from or to an array: x; — z and x — y;. The formats of these operations are

+6 xxx iii zz7
—6 xxx yyy iii

For example, if there is a 100-element array beginning at location 250 in data memory, and
location 050 contains 17, then

+6 250 050 803
will move the contents of location 267 (= 250 + 17) to location 803 (Figure 1.3). Similarly,
-6 722 250 050

will move the contents of location 722 to location 267.

Of course, one of the main reasons for using arrays is that we can write a loop to per-
form the same operation on each element of the array. To do this requires us to be able to
initialize, increment, and test index variables. We may expect that we can use the arithmetic
and comparison facilities already defined in our pseudo-code for this. But this is not so be-
cause these are floating-point operations, and indices are represented by integers. Even if this
were not so, it would be useful to abstract out the code common to all loops. By building
this into a pseudo-code operation, we eliminate another source of error. This is an example
of the Automation Principle and its corollary, the Abstraction Principle.

Figure 1.3 Indexing: +6 xxx iii zzz

XXX

T Xxx + k

— 5 zzz

18 THE BEGINNING: PSEUDO-CODE INTERPRETERS

The Abstraction Principle

Avoid requiring something to be stated more than once; factor out the recurring pattern.

Since we can use the move instruction (+0) to initialize indices, the new operation (+7)
will only have to increment and test indi¢es. To perform this operation, we need to know the
location of the index, the location of the upper bound for the loop, and the location where
the loop begins. The following format is analogous to the format of the comparisons:

+7 iii nnn ddd

Here iii is the address of the index, nnn is the address of the upper bound, and ddd is the lo-
cation of the beginning of the loop. The operation increments location iii and loops to in-
struction ddd if the result is less than the contents of nnn. What is the meaning of the —7
operation? There are several possibilities—for instance, a decrement and test operation—so
we will leave it undefined for the time being.

B Exercise 1-12: Suppose that there is an array stored in data memory beginning at lo-
cation 401. Code an instruction that moves the contents of 207 into the array element in-
dexed by location 950.

[Exercise 1-13: Suppose that an array begins at location 100 in data memory. Code in-
structions that add to location 020 the array element indexed by location 010.

B Exercise 1-14: Code an instruction that increments location 010, and loops to code lo-
cation 005 if the contents of 010 are less than the contents of 030.

B Exercise 1-15: Suppose that an array begins at location 100 in data memory, and that
location 030 contains the number of elements in the array. Code instructions that sum the
elements of the array into location 005. State any additional assumptions that you make.

Input-Output

The only functions in our list that we have not yet addressed are the input and output oper-
ations. A program is not usually useful if it can’t read data or print a result. Therefore, we
will use the +8 operation to read a card containing one 10-digit number into a specified
memory location and the —8 operation to print the contents of a memory location. (In a real
pseudo-code, a punch operation would be more common than a print operation since this
would allow the output of one program to be used as the input to another.) The complete list
of operations is summarized in Figure 1.4. Notice that we have added a stop instruction to
terminate program execution.

B Exercise 1-16: Code an instruction to read a number into location 044.

B Exercise 1-17: Suppose that an array begins at location 650 in data memory, and that
location 907 contains the number of elements in the array. Code instructions to print out
all the elements of the array. State any assumptions you make.

Ls| f [xex [yyy [ddd]

1.2 DESIGN OF A PSEUDO-CODE

s = sign, f = function, xxx = operandl,

yyy = operand2, ddd = destination

- P s + -
0 move (exercise)
1 + -

2 X =

3 square square root
4 = *

5 = <

6 x(y)—z x— y(2)
7 incr. and test (unused)
8 read print

9 stop (unused)

19

Figure 1.4 Pseudo-Code Operations

B Exercise 1-18: Suppose an array begins at location 100 in data memory. Code in-
structions to read numbers into consecutive array elements until a card containing +9 999
999 999 is read. State any assumptions you make.

Program Structure

We now know how to write individual instructions, but we have not designed a means of
constructing the program as a whole. For example, how do we arrange to get the program
loaded into memory? How do we initialize locations in the data memory? How do we pro-
vide input data for the program? The simplest solution to this problem is to have the inter-
preter read initialization cards and store their content in consecutive memory locations. Thus,
the structure of a program is

Initial
data values

+9999999999

Program
instructions

+9999999999

Input
data

20

P

THE BEGINNING: PSEUDO-CODE INTERPRETERS

000
000
000
000
000
000
000
999
000
000
005
000
005
001
000
006
005
001
002
003
000
999
000

We have used a card containing the “flag value” +9999999999 to separate the initial values
from the program and the program from the input data. The loader reads in the initial data
values and stores them in consecutive locations (starting with 000) in the data memory. Then
the loader reads in the program instructions and stores them in consecutive locations (start-
ing with 000) in the program memory. The loader does not read the input data; this is read
by the user’s program whenever it executes a +8 instruction.

Therefore, the general structure of a program is (1) declarations, (2) executable state-
ments, and (3) input data. This is not unlike the structure of a Pascal or FORTRAN program.

B EXAMPLE: Mean Absolute Value of an Array As an example of the use of this pseudo-

code, we show a program to compute the mean of the absolute values of an array. That is,
if A is the array and it has n elements, we compute

1 n
;,Zi A

The first problem is to determine the variables that will be needed and to lay out the data
memory. We have used location 000 for a constant zero. The array to be averaged occupies

000 000 (loc 0) constant O

000 000 (loc 1) index, i

000 000 (loc 2) sum of array

000 000 (loc 3) average of array

000 000 (loc 4) number of elements in array
000 o000 (loc 5) temporary location

000 000 (loc 6-999) the array

999 999 end of initial data

000 004 (loc 0) read number of elements

000 005 (loc 1) read data into temp

000 004 (loc 2) if positive, skip

005 005 (loc 3) else negate

006 001 (loc 4) move temp into array sub i

004 001 (loc 5) incr. i, test with n, loop to loc. 1
000 001 (loc 6) reinitialize i to zero

001 005 (loc 7) add array sub i

002 002 (loc 8) to sum

004 007 (loc 9) incr. i, test with n, loop to loc. 7
004 003 (loc 10) sum / number of elements— avg.
000 000 (loc 11) print average

000 000 (loc 12) stop

999 999 end of program

000 010 number of input values

input data

Figure 1.5 Pseudo-Code Program Example

1.3 IMPLEMENTATION 21

locations 006 through the end of the data memory. The complete program appears in Figure
1.5; annotations on the right explain the steps. (This is not the best program for this task; we
have written it to illustrate the use of this language.)

B Exercise 1-19: Write a simpler and more efficient pseudo-code program to accomplish
this task.

‘ B Exercise 1-20: Write a complete pseudo-code program to read in data cards (until a
‘ +9 999 999 999 flag card), add up the numbers on the cards, and print out the sum.

B Exercise 1-21: Write a complete pseudo-code program to print out the squares of the
numbers from 1 to 100.

B Exercise 1-22: Write a complete pseudo-code program to print out the first 100
Fibonacci numbers.

B Exercise 1-23: Write a pseudo-code program to read in the coefficients of a quadratic
equation and print both roots (if they exist). In solving this exercise, you will probably
find that it is valuable to make a variable map that shows the location in which various
variables are stored. It will also be useful to use symbolic labels until enough of the pro-
gram is written to determine the actual location of the instructions.

1.3 IMPLEMENTATION

Automatic Execution is Patterned after Manual Execution

} In this section we will see how to construct an interpreter for our pseudo-code. This will be
5 an example of an iterative interpreter, one of the two important kinds (the other is a recur-
sive interpreter, which is discussed in Chapter 11). How do we go about designing an in-
terpreter? We can frequently get the insight necessary to design an interpreter by investi-
gating how we would execute the language by hand. If we are to execute pseudo-code
programs by hand, we will need some way to record the state of the computation, that is,
the contents of the data memory. We will also need a listing of the program memory with
the instruction at each location, together with a record of our place in the program (the lat-
ter is also part of the state). The major data structures required by our interpreter are those
shown in Figure 1.6. Notice that we are using two arrays (each indexed from 0 to 999) to
represent the areas of memory used for data and program storage. The data and program ar-
rays are called Data and Program and the instruction pointer (which records our location
in the program) is called IP. For example, ‘Program[IP]’> represents the instruction in
the Program array designated by IP. We may find that we need some other minor data struc-
tures as we continue with the design.

5> When necessary for clarity, programming language text is surrounded by single quotation marks (* *). The
text being discussed is exactly that between the quotes (i.e., we don’t include punctuation within the quotes).
Double quotes (**) will be used for all other purposes, such as direct quotations and titles. No quotation

marks are used around displayed program text.

22

THE BEGINNING: PSEUDO-CODE INTERPRETERS

000 000 Figure 1.6 Interpreter Data Structures
Data Program
memory memory
999
Data Program
1P (instruction pointer)

The Read-Execute Cycle Is the Heart
of an Iterative Interpreter

We can now consider how a program is actually interpreted. Roughly, what we will do is
read the next instruction to be executed (as indicated by the instruction pointer), determine
the operation encoded by the instruction, and then perform that operation. When execu-
tion of the operation is completed, we will begin this process again with the next instruc-
tion to be executed. This process is called the read-execute cycle, and can be summarized
as follows:

1. Read the next instruction.

2. Decode the instruction.

3. Execute the operation.

4. Continue from step 1 with the next instruction.

Have you noticed that we have omitted a small but crucial detail? When is the instruction
pointer advanced? The natural place to do this would seem to be step 4, since this is just
prior to reading the next instruction. While this works fine as long as the program continues
to execute sequentially, it will be difficult to handle jumps since they must alter the instruction
pointer (in step 3). A better solution, and the one that is adopted in most computers (both
real and virtual), is to advance the instruction pointer at the end of step 1. Typical code for
step 1 is

instruction := Program[IP];
IP := IP+1;

The IP either is ready for the next cycle if sequential execution is to continue, or it can be
altered in step 3 in the case of a jump.

Notice that we have written the code for step 1 in a Pascal-like descriptive notation (a
program design language). Why would we want to write a pseudo-code interpreter if we
have Pascal available for programming? We wouldn’t. If we wanted to be realistic, we would
write the pseudo-code interpreter in machine language. The result would look like Figure
1.2, which is actually a small part of a pseudo-code interpreter. This would be carrying things
too far; our goal is to understand iterative interpreters, not to relive the 1950s. Therefore, we
will use a more convenient, Pascal-like notation for describing the interpreter. This will al-

1.3 IMPLEMENTATION 23

low us to see the algorithm without getting bogged down in the details of machine-language
programming.

Instructions Are Decoded by Extracting Their Parts

We will discuss each of the other steps in the read-execute cycle. Since our pseudo-code
has been designed with a regular structure, decoding is simple; we simply extract the sign,
operation code, and three address fields. For example, the destination address could be ex-
tracted by

dest := abs (instruction) mod 1000

(where ‘x mod y’ gives the remainder of dividing x by y). We will assume that the names of
these extracted parts are sign, op, opndl, opnd2, and dest.

B FExercise 1-24: Write the code to extract the other fields in an instruction.

The next step in instruction decoding is to determine what kind of operation has to be
performed. This is specified by a combination of the sign and the op fields. We can break
down the execution into cases, depending on the value of these fields. The operation to be
performed by each case is just read from Figure 1.4. The result is shown in Figure 1.7.

B Exercise 1-25: Fill in the rest of the second case-statement in Figure 1.7.

B Exercise 1-26*: Estimate the overhead of this pseudo-code interpreter. That is, esti-
mate the number of memory references made in the read-execute cycle beyond those ac-

\ if sign is '+’ then Figure 1.7 Instruction Decoding
‘ do case op of:

move;

add;

multiply;

square;

test equality;

test greater or equal;
fetch from array;
increment and test;
read;

stop.

O o J o Ul i W B O

if sign is ‘-’ then
do case op of
0: do operation from exercise;
1: subtract;

D

24

THE BEGINNING: PSEUDO-CODE INTERPRETERS

tually required for computing the result (e.g., the floating-point operation). What per-
centage of the execution time will be overhead if the average software-implemented float-
ing-point operation requires 100 memory references? What percentage is overhead if the
floating-point operations are implemented in the hardware and take just three memory
references?

Computational Instructions

Most of the computational instructions are simple to interpret. For example, to interpret a
multiplication, the two operands (Data[opndl] and Data [opnd2]) must be fetched,
multiplied by the floating-point multiplication routine, and stored at the destination location
(Data[dest]). We can express this as

Multiply:
Data[dest] := floating product (Data[opndl], Datalopnd2]).

The other computational instructions are analogous.

® Exercise 1-27: Write in a program design language the implementation of the other
computational instructions of the pseudo-code (all the codes except * 4 through 7).

Control-Flow Instructions

The control-flow instructions are implemented in an analogous manner; the only difference
is that the TP must be altered if the test is satisfied. For example,

Test equality:
if floating equality (Datalopndl], Datal[opnd2]) then
IP := dest.

B Exercise 1-28: Write in a program design language the implementation of the com-
parison operations of the interpreter.

® Exercise 1-29: We now have a complete design for the “main loop” of a pseudo-code
interpreter. In order to have a complete interpreter, it is necessary to write a loader that
will read in the initialization and program cards and load them into the Data and Pro-
gram arrays. Design this part of the interpreter and write it in a program design language.

B Exercise 1-30*: Translate the entire interpreter into your favorite programming lan-
guage and test it on the example program in Figure 1.5. You do not have to implement
your own floating-point arithmetic; just use the floating-point operations provided in your
chosen programming language.

Interpreters Simplify Debugging

Next, we will investigate some improvements that can be made to this interpreter, which will
highlight some of the ways programming languages simplify programming. In the beginning
of this chapter, we said that one of the motivations for pseudo-codes was the difficulty of

1.3 IMPLEMENTATION 25

programming; you probably know from your own experience that much of this is a result of
the difficulty of debugging. Since debugging can often be expedited by a better understand-
ing of what the program is doing, programmers have often resorted to “playing computer,”
that is, to interpreting their programs by hand to see what they actually do as opposed to
what they expect them to do. Clearly, this is a process that can be profitably automated. What
we would like is the ability to get a trace of the execution of the program, that is, a record
of the instructions it has executed. This can be done by adding code to step 1, Read Next
Instruction, to print out the location and code for the current instruction:

Read Next Instruction:
instruction := Program [IP];
if trace is enabled then

print IP, instruction;
IP := IP + 1.

A trace of the program in Figure 1.5 would begin

000 +8000000004
001 +8000000005
002 +5005000004
004 -6005006001
005 +7001004001
001 +8000000005

B Exercise 1-31: Show the next 10 steps in the trace of the program in Figure 1.5. State
your assumptions about the input numbers.

B Exercise 1-32: The above modification prints out the instruction as a 10-digit number.
It would be preferable to print it out in interpreted form, that is, with its fields separated.
For example, the trace may begin .

LOC OP OPNDl1 OPND2 DEST

000 +8 000 000 004
001 +8 000 000 005
002 +5 005 000 004
004 -6 005 006 001
005 +7 001 004 001

001 +8 000 000 005

(Of course, this assumes the availability of a printer that can print letters.) Alter the inter-
preter to produce an interpreted trace.

B Exercise 1-33*: The trace can be made even more valuable by printing out the opera-
tion name in English, the values of the source operands, and the value to be placed in the
destination operand. Alter the interpreter to do this. Note, however, that not all fields are
used in all of the instructions.

26

THE BEGINNING: PSEUDO-CODE INTERPRETERS

B Exercise 1-34*: For a large program, the trace could be very long, even though the
programmer was interested in only a very small region of the program. Design an inter-
preter operation (—9 perhaps) that will allow the programmer to enable and disable trac-
ing at different points in the program. (Keep in mind that it is not convenient to insert or
delete instructions in these pseudo-code programs because of their absolute instruction
addresses.)

B Exercise 1-35*: Another useful debugging tool is breakpoints. This feature allows the
programmer to specify certain instruction addresses as breakpoint addresses; whenever
execution reaches one of these addresses, interpretation of the program stops until the pro-
grammer restarts it. This allows the programmer to investigate the state of the data mem-
ory at selected points during execution. Design a breakpoint facility for the pseudo-code
interpreter.

B Exercise 1-36*: Design a data trap facility. This is like a breakpoint except that inter-
pretation is interrupted whenever specified locations in the data memory are referenced.

Statement Labels Simplify Coding

We will now consider an aid to the coding of a program. One of the major goals of pro-
gramming languages is the elimination of the tedious, error-prone tasks in programming (the
Automation Principle). One of these tasks results from the use of absolute locations in pseudo-
code instructions. Consider what would happen if we wanted to insert a new instruction (e.g.,
a trace instruction) after the instruction in location 000 in Figure 1.5. This would shift down
all of the remaining instructions and require us to correct the destination addresses in loca-
tions 003 and 007. We can see that maintenance would be almost impossible for a large pro-
gram, since we would have to find all the addresses that could be altered by a change.

One solution adopted by several early pseudo-codes was the provision of symbolic la-
bels for statements. Let’s see how this would work. When we describe an algorithm in Eng-
lish, such as the read-execute cycle described earlier, we often number the steps so that they
can be referred to from other steps, for example, “Continue from step 1.” This is an exam-
ple of the Labeling Principle.

The Labeling Principle

Do not require the user to know the absolute position of an item in a list. Instead, as-
sociate labels with any position that must be referenced elsewhere.

We can modify the pseudo-code to do this by introducing a label definition operator.
The instruction

-7 OLL 000 000

defines the statement number, or label, LL. (We will allow labels only in the range 00-99
so that we can use a 100-element label table.) Notice that this is not an executable statement,
it merely marks the place in the program to be labeled LL. We call such statements decla-
rations and say that they bind a symbolic label to an absolute location. We will also alter

1.3 IMPLEMENTATION 27
the jump instructions to refer to symbolic labels in their destination field rather than absolute
labels. Thus, the format of the equality test is
+4 xxx yyy OLL

In the following illustration, the executable part of our example program has been rewritten
making use of labels.

+8 000 000 o004 read number of elements

-7 020 000 o000 20:

+8 000 000 005 read into temp

+5 005 000 040 if positive, skip to label 40

-1 000 005 005 negate temp

-7 040 000 000 40:

-6 005 006 001 move temp to array sub i

+7 001 004 020 incr. i, test with n, loop to label 20

+0 000 000 001 reinitialize i to =zero

-7 050 000 000 50:

+6 006 001 005 add array sub i

+1 005 002 002 to sum

+7 001 004 050 incr.i, test with n, loop to label 50
etc.

How can we interpret symbolic labels? Again, we can begin by observing how people
do it. If we were interpreting the above program and came to a jump to location 50, we would
very likely find its location by looking through the program until we found a —7 instruction
with a 050 in the destination field. This is, in fact, the way some interpreters work, such as
those found in some programmable hand-held calculators. We can see, though, that if the

i program were very large, we would be spending a lot of time scanning the program to find
! labels. We would probably save ourselves this trouble by making a label table that listed the
labels and their absolute locations, for example,

Label Location
20 001
40 005
50 009

This table could be constructed exactly the way we do it by hand: The first time we search
for a label, we put it in the table so that we will have the absolute location for later uses of
the label. It would be better, however, to build the label table as the program is read into
Program memory. This simplifies the interpretation of jumps since we know all labels are
defined before execution begins. More important, it allows us to increase security by ensur-
ing that all the labels that are referenced are defined once and only once. This is in accord
with the Security Principle (p. 29).

This checking can be done by initializing the label table to some value that we will in-
terpret to mean “undefined,” say —1. During loading, whenever we encounter a —7 in-

B

28 THE BEGINNING: PSEUDO-CODE INTERPRETERS

struction defining a label, before we enter its absolute location into the label table, we will
ensure that it has not already been defined by seeing if its entry is negative. Conversely,
whenever we encounter an instruction referencing a label (e.g., +7), we will check to see if
it has been defined, as indicated by a nonnegative value. If it has been defined, then all is
well; if it hasn’t, then we will store the value —2 indicating a label that has been referenced
but not defined. If the label is later defined, this —2 will be changed to a positive value re-
flecting the absolute location of the label. At the end of loading, a final scan of the label
table for any remaining —2 values will enable us to report the undefined labels. The label
table we have described is a rudimentary form of a symbol table; this data structure is used
in all programming language implementations for keeping track of labels, variables, and other
symbolically named objects. Symbol tables will be discussed periodically throughout this
book. The use of symbols, in which a sign refers to something other than its literal meaning,
is a fundamental idea in computing. For example, in this case the symbol 20 refers to pro-
gram location 001, not to its literal meaning, program location 020.

® Exercise 1-37*: Modify your pseudo-code interpreter to use symbolic statement labels
of the type we have described. Test it on the modified Mean Absolute Value program
(p- 27).

® Exercise 1-38*: We have only allowed statement labels in the range 0-99 so that only
a 100-element label table will be required. Even so, for small programs many of the en-
tries will be unused. Design a scheme for storing the absolute locations (and “undefined”
codes) for labels in the range 0-999.

@ Exercise 1-39*: Label declarations provide new opportunities for debugging aids. For
example, the interpreter can print a message every time the program jumps to a label or
the interpreter can pause for programmer interaction whenever a label is encountered. De-
sign and implement one or more of these debugging facilities for your interpreter.

Variables Can Be Processed Like Labels

Since we have eliminated the error-prone use of absolute statement labels, we will probably
want to know if we can also eliminate absolute data addresses. The answer is “yes”; we can
do this by constructing a symbol table that holds the absolute location of every variable. We
can then use fixed symbolic labels (still in the form of three-digit numbers) in the pseudo-
code instructions. In the initial-data section of the program, pairs of cards could be used to
declare simple variables and arrays. Thus,

+0 sss nnn 000
+d ddd ddd ddd

will declare a storage area with the symbolic name sss, nnn locations long, initialized to all
+d ddd ddd ddd. For instance,

+0 666 150 000
+3 141 592 654

1.3 IMPLEMENTATION 29

could be used to declare a 150-element array to be identified by the label 666 and initial-
ized to all +3141592654. Two simple variables, labeled 111 and 222, could be declared
and initialized to zero by

+0 111 001 000
+0 000 000 000
" +0 222 001 000
+0 000 000 000

We know they are simple variables because the amount of memory allocated to each is one
word.

For each declaration the loader keeps track of the next available memory location and
binds the symbolic variable number to that location. Therefore, we say that the binding time
of this declaration is load time. We will see in later chapters that other binding times are
possible. Also, notice that the loader has taken over another job for the programmer: stor-
age allocation.

B Exercise 1-40: What principle does the loader illustrate?

After the above declarations, we could use 111 to index 666 and store the result in
222 by

+6 666 111 222
This is analogous to the Pascal statement
V222 := V666 [V111l]

where the variable names V222, V666, and V111 correspond to the symbolic storage la-
bels 222, 666, and 111.

Clearly, these symbolic data names can be implemented in exactly the same way we im-
plemented symbolic statement labels. We can also perform the same checking for undefined
names, as well as additional checking, such as for out-of-bounds array references. That is,
the interpreter can record in the symbol table the size of the array and then on each array
reference instruction (*6) ensure that the index is less than this bound. Since this checking
prevents a violation of the program’s intended structure, it is in accord with the Security
Principle first proposed by C. A. R. Hoare:

The Security Principle

No program that violates the definition of the language, or its own intended structure,
should escape detection.

¥ Exercise 1-41: Rewrite the Mean program using the variable declarations we have de-
scribed.

30 THE BEGINNING: PSEUDO-CODE INTERPRETERS

® Exercise 1-42*: Modify the loader to build a symbol table for the variables and to ini-
tialize the Data array. Modify the interpreter to use these symbolic variable numbers.
Include the error-checking facilities described above.

® Exercise 1-43*: Propose a debugging aid based on symbolic variable numbers and de-
scribe its implementation in detail.

The Ideas Presented Above Are Easily Extended
- to a Symbolic Pseudo-Code

The provision of symbolic numbers for variables and statement labels has gone a long way
toward making our pseudo-code easier to use. It is still necessary for users to remember the
relationship between their variables and the numeric tags they invent. This is an error-prone
process since the programmer has to remember whether —2 or -3 is divide, whether 111 is
the index or the temporary, and so on. The programmer will probably keep lists of the cor-
respondence between these codes and the abstractions they represent, such as the list of op-
eration codes in Figure 1.4. Therefore, we can eliminate this source of errors by maintain-
ing this correspondence for the user. This was done in many of the early pseudo-codes when
input-output equipment that could handle alphabetic characters became available.

® Exercise 1-44: What principle is illustrated by making the computer keep track of the
correspondence described above?

How will we go about designing a symbolic pseudo-code? First, let’s consider the syn-
tax of (way to write) the variables. Currently, the interpreter looks up a three-digit sym-
bolic variable number in the symbol table in order to find the absolute location of that vari-
able in the Data array. If we replace this three-digit number with a three-character
alphanumeric name, then we will be able to use the same lookup process while allowing
the programmer to pick more mnemonic variable names. The programmer will be able to
use a name like AVG instead of an absolute location (003) or an arbitrary numeric tag (123).
The same can be done for the operation codes, using mnemonic words like ADD and READ
instead of codes like +1 and +8. The loader will have to look these up in a symbol table
and replace them by their codes. Therefore, a typical statement in this symbolic pseudo-
code would look like

ADD TMP SUM SUM

As has been said, the primary input medium for early computers was punched cards. Since
there was a long tradition (dating from the use of office punched card equipment in the first
half of the twentieth century) of assigning particular fixed columns to the fields of data
records, the same kind of fixed format convention was adopted for the pseudo-codes. If the
operation names are limited to four characters and the variable names and statement labels
to three characters, then we can use a format such as the following:

Columns 1-4: operation 10-12: operand 2
6-8: operand 1 14-16: destination

1.3 IMPLEMENTATION 31

Only uppercase letters will be used since these were all that were available on key punches
at that time. In Figure 1.8 the Mean program is shown translated into this symbolic pseudo-
code. We have not included a list of all the mnemonics since they should be clear from con-
text.

We can see that the general structure of a program is

declarations
END
statements
END

This format, declarations followed by statements, has been preserved in most programming
languages. For instance, in the language Ada it takes the form

declare
declarations
begin
statements
end;

Also, variable declarations have the syntax (form)
VAR variable-name type
initial-value

where ‘type’ means the number of locations the variable occupies. This format is also pre-
served in many modern languages. In Ada we write

variable-name: type := initial-value;

although the idea of a type in Ada (and most modern languages) involves much more than
just the amount of storage to be allocated. There is one more thing to notice about the syn-
tax of this pseudo-code: The operation comes first in the statements:

operation operandl operand2 destination

This is called a prefix format (pre = before), and is still used for statements in most pro-
gramming languages, for example, in FORTRAN

DO 20 I=1, 100
PRINT 30, AVG

There is no reason why we had to pick a prefix form (there are others such as postfix and
infix), although it does agree with English grammar in putting the verb first in an impera-
tive sentence.

6 You may wonder why programs are shown sometimes in all uppercase letters, sometimes in lowercase let-
ters, sometimes in mixed cases, or in boldface, etc. The reason is that each language community has its own
typographical conventions, which they have evolved and are part of the overall character of the language.
Therefore we try to follow those conventions in our examples.

32 THE BEGINNING: PSEUDO-CODE INTERPRETERS

OPER opl o0P2 DST COMMENT'S

VAR ZRO 1 CONSTANT ZERO
+0000000000
VAR I 1 INDEX
+0000000000
VAR suMm 1 SUM OF ARRAY
+0000000000
VAR AVG 1 AVERAGE OF ARRAY
- +0000000000
VAR N 1 NUMBER OF ELEMENTS IN ARRAY
+0000000000
VAR ™P 1 TEMPORARY LOCATION
+0000000000
VAR DTA 990 THE DATA ARRAY
+0000000000
END
READ N READ NUMBER OF ELEMENTS
LABL 20
READ TMP READ INTO TEMP
GE TMP ZRO 40 IF POSITIVE, SKIP TO 40
SUB ZRO TMP TMP NEGATE TEMP
LABL 40
PUTA TP DTA I MOVE TEMP INTO THE I-TH ELEMENT
LOOP I N 20 LOOP FOR ALL ARRAY ELEMENTS
MOVE ZRO I REINITIALIZE INDEX TO ZERO
LABL 50
GETA DTA I TMP ADD I-TH ELEMENT
ADD TMP SUM SUM TO SUM
LOOP I N 50 LOOP FOR ALL ARRAY ELEMENTS
DIV SUM N AVG COMPUTE AVERAGE
PRINT AVG AND PRINT IT
STOP
END
Figure 1.8 Mean Absolute Value in Symbolic Pseudo-Code
To implement the symbolic pseudo-code, all that is required is that as the loader reads
in each instruction, it looks up the operation and the operands in the symbol table and re-
places them with the proper codes. The encoded form of the instruction is then stored in the
Program array. Thus, we can se€ that the loader is performing a translation function since
it is translating the source form of the program (the symbolic pseudo-code) into an interme-
diate form (the numeric pseudo-code) that is more suitable for the interpreter. This two-stage
process, translation followed by interpretation, is very common and will be discussed at length
in the following chapters. In fact, the translator, with its name lookup and storage allocation
functions, is a rudimentary form of a compiler. The function of a compiler is to translate a

1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES 33

program in some source language into a form that is more convenient for execution. This
form is often machine language, which can be directly executed, but it may also be an in-
termediate language suitable for interpretation.

® Exercise 1-45*: Modify your interpreter to implement this symbolic pseudo-code and
test it on the Mean Absolute Value program. Translate your quadratic roots program into
this pseudo-code and execute it with this interpreter.

B Exercise 1-46*: Describe how you would make the pseudo-code free format, that is,
independent of the columns in which the fields appear (of course, they must be in the cor-
rect order). How would you implement this?

1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES

Obviously programming languages, even simple ones such as our pseudo-code, are tools,
and so it will be worthwhile to investigate them from this perspective. Fortunately, the phe-
nomenology of tools has been explored in some detail, and in this section I will be using the
results of the investigations of Don Ihde.”

Tools Are Ampliative and Reductive

To better understand the phenomenology of programming languages, we may begin with a
simpler tool. Ihde contrasts the experience of using your hands to pick fruit with that of us-
ing a stick to knock the fruit down. On the one hand, the stick is ampliative: it extends your
reach to otherwise inaccessible fruit. On the other, it is reductive: your experience of the fruit
is mediated by the stick, for you do not have the direct experience of grasping the fruit and
tugging it off the branch. You cannot feel if the fruit is ripe before you pick it.

“Technological utopians” tend to focus on the ampliative aspect—the increased reach
and power—and to ignore the reductive aspect, whereas “technological dystopians” tend to
focus on the reductive aspect—the loss of direct, sensual experience—and to diminish the
practical advantages of the tool. But, “both are reduced focuses upon different dimensions
of the human technological experience.” Therefore, we should acknowledge the essential am-
bivalence of our experience of the tool: positive in some respects, negative in others. As Ihde
says, “all technology is nonneutral.”

These observations apply directly to programming languages. In the earliest days, com-
puters were programmed directly with patch-cords (an experience that is occasionally praised
in words appropriate to picking your own fruit!). Programming in machine language is nearly
as direct, and some early programmers even criticized decimal numbers for distancing pro-
grammers from the machine too much. Pseudo-codes are even more distancing, amplifying
programmers’ ability to write correct code, but reducing their contact with and control over

7 See his Consequences of Phenomenology (State University of New York Press, 1986), pp. 104—136. In phe-
nomenology one investigates the invariant structure of some phenomenon, that is, of some aspect of concrete
human experience of the world, by systematic variation of that experience. Tools are the phenomena of in-
terest here.

34

&

THE BEGINNING: PSEUDO-CODE INTERPRETERS

the machine. Early debates about the usefulness of pseudo-codes reflected ambivalence about
them as tools.

Fascination and Fear Are Common Reactions to New Tools

"When first introduced, programming languages elicited the two typical responses to a new

technology: fascination and fear. Utopians tend to become fascinated with the ampliative as-
pects of new tools, so they embrace the new technology and are eager to use it and to pro-
mote it (even where its use is inappropriate); they are also inclined to extrapolation: extending
the technology toward further amplification. (It is worth recalling that the root meaning of
“fascinate” is “to enchant or bewitch.”) Dystopians, in contrast, fear the reductive aspects of
the tool (so higher-level languages are feared for their inefficiency), or sometimes the am-
pliative aspects, which may seem dangerous. The new tool may elicit ambivalent feelings of
power or of helplessness. Ideally, greater familiarity with a technology allows us to grow
beyond these reactions, for the benefits and limitations of a technology are seldom revealed
in the fascination—fear stage of its acquaintance.

With Mastery, Objectification Becomes Embodiment

A tool replaces immediate (direct) experience with mediated (indirect) experience. Yet, when
a good tool is mastered, its mediation becomes transparent. Consider again the stick. If it is
a good tool (sufficiently stiff, not too heavy, etc.) and if you know how to use it, then it func-
tions as an extension of your arm, allowing you both to feel the fruit and to act on it. In this
way the tool becomes partially embodied. On the other hand, if the stick is unsuitable or you
are unskilled in its use, then you experience it as an object separate from your body; you re-
late fo it rather than through it. With mastery a good tool becomes transparent: it is not in-
visible, for we still experience its ampliative and reductive aspects, but we are able to look
through it rather than at it.

Programming languages exhibit a similar variation between “familiar embodiment” and
“alienated otherness.” When you first encounter a new programming language, it is experi-
enced as an object: something to be studied and learned about. As you acquire skill with the
language, it becomes transparent so that you can program the machine through the language
and concentrate on the project rather than the tool. With mastery, objectification yields to
(partial) embodiment.

This is part of the reason that a full evaluation of a programming language requires con-
siderable experience in its use. When the language is first encountered, one is apt to fall into
the limited perspectives of fascination and fear. But even with increased familiarity, there is
still a tendency to treat the languages as an object, until mastery is achieved, and the lan-
guage’s benefits and limitations can be viewed in a context of transparent use.

Programming Languages Influence Focus and Action

Tools influence the style of a project. For example, Ihde contrasts three writing technolo-
gies: a dip pen, an electric typewriter, and a word processor. In the case of a dip pen the
speed of writing is so much slower than the speed of thought that a sentence can be crafted

1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES 35

word by word as it is written; this could tend to a style of belle lettres or to calligraphy. With
an electric typewriter the speed of writing is closer to the speed of thought, so this tool in-
clines toward (but does not dictate) a more informal style. However, revisions require re-
typing, so there is a tendency to revise works as wholes. With a word processor, in contrast,
text can be revised and rearranged in small units, so there is a greater tendency to salvage
bits.of text. There is a tendency toward a different style (“Germanic tomes,” Ihde suggests).

In general, a tool influences focus and action. It influences focus by making some as-
pects of the situation salient and by hiding others; it influences actions by making some easy
and others awkward. Like other tools, programming languages influence the focus and ac-
tions of programmers and therefore their programming style.

A programming language inclines programmers toward a style; it creates a tendency,
which the majority of programmers will follow. However, I must emphasize that it does not
dictate a style; individual programmers may choose to work against the language’s inclina-
tion. Thus, for example, we sometimes observe a programmer “writing FORTRAN in LISP,”
that is, writing FORTRAN-style code in the LISP language. Nevertheless, we must consider
carefully the stylistic inclinations of a programming language. Does it encourage the focus
and actions that we want to encourage?

Summary

We summarize what we can conclude about programming languages from the phenomenol-
ogy of tools. Programming languages transform the situations encountered in programming
projects. They are nonneutral and have ampliative and reductive aspects, both of which should
be kept in mind. Further, to assess the benefits and limitations of a programming language
properly, it is necessary to advance beyond the fascination—fear stage. When a well-designed
language is mastered, it becomes a transparent extension of the programmer rather than an
obtrusive object. Finally, by influencing the focus and actions of programmers, a language
inclines its users toward a particular style, but it does not force it on them.

B Exercise 1-47*: Identify the ampliative and reductive aspects of several common tools
and technologies and discuss the conditions for transparency and embodiment. For ex-
ample, consider eye glasses, automobiles, telephones, recorded music, or the Internet.

B Exercise 1-48*: Select an ampliative aspect of some programming language and de-
scribe the result of an extrapolation toward greater amplification. What is the correlative
reduction? Discuss whether this extrapolation would be desirable.

B Exercise 1-49*: Amplificatory extrapolations often reflect our “imaginations and de-
sires” for our projects. What do you think are the typical “imaginations and desires” of
programmers? What sorts of “trajectories of extrapolation” might they lead to?

B Exercise 1-50*: Analyze in detail the effect of our pseudo-code (either the numerical
or symbolic version) on the focus and actions of its users. Compare its effect on a 1950s
programmer and on a contemporary programmer.

8 Exercise 1-51*: Consider your favorite programming language. What focus and actions
does it encourage? What focus and actions does it discourage? Give evidence in both
cases.

36

THE BEGINNING: PSEUDO-CODE INTERPRETERS

B Fxercise 1-51*: Programming languages (and other technologies) are culturally em-
bedded, which means that our reactions to them are influenced by our personal and col-
lective backgrounds. Further, their stylistic inclinations may vary from user to user. Select
a programming language with which you are familiar and discuss how it is experienced
by different groups of programmers (scientific, systems, commercial, amateur, novice, etc.).

1.5 EVALUATION AND EPILOG

e

- Pseudo-Code Interpreters Simplified Programming

We have seen that pseudo-codes simplified programming in many ways. Most important,
they provided a virtual computer that was more regular and higher level than the real com-
puters that were available at first. Also, they decreased the chances of error while taking over
from the programmer many of the tedious and error-prone aspects of coding. Pseudo-codes
increased security by allowing error checking, for example, for undeclared variables and out-
of-bounds array references. Finally, they simplified debugging by providing facilities such
as execution traces. We will see in later chapters that all of these remain important advan-
tages of newer programming languages.

Floating-Point Hardware Made Interpreters Unattractive

Decoding pseudo-code instructions adds a great deal of overhead to program execution. In
the beginning of this chapter, we pointed out that most of this overhead was swamped by
the time necessary to simulate floating-point arithmetic. That is, since programs were doing
mostly floating-point arithmetic, which was slow, they were spending most of their time in
the floating-point subroutines. The little additional time they spent in the interpreter was well
worth the advantages of the pseudo-code. This changed when floating-point hardware was
introduced on the IBM 704 in 1953. Experience with floating-point arithmetic and indexing
facilities in the pseudo-codes led IBM and the other manufacturers to include these in the
newer computers. Since programs were no longer spending most of their time in floating-
point subroutines, the factor of 10 (or more) slower execution of interpreters became intol-
erable. Since at this time computer time was still more expensive than programmer time, in-
terpreters became unpopular because the total cost of running a machine-language program
was less than that of a pseudo-code program.

Pseudo-codes are still used for special purposes such as intermediate languages. For ex-
ample, Pascal is often translated into a pseudo-code called P-code. The P-code program is
then either translated into machine language or interpreted. Programmers no longer write di-
rectly in pseudo-codes, except when programming some hand-held calculators.

Libraries Led to the Idea of “Compiling Routines”

An alternative to the use of interpreters was the “compilation” of programs from libraries of
subroutines. The idea was that a programmer would write pseudo-code instructions that

EXERCISES 37

would, at load time, call for subroutines to be copied from a library and assembled into a
program. Since the translation and decoding were done once, at compilation time, compiled
programs ran more quickly than interpreted programs. This was so because an interpreter,
for example, must decode the instructions in a loop every time through the loop.

However, since the subroutines assembled by a compiler could not be made to fit to-
gether perfectly in all combinations, there was an interface overhead that made compiled
programs less efficient than hand-coded ones. The result was that programmers considered
these “automatic coding” techniques inherently inefficient and only suitable for short pro-
grams that would be run only a few times. Thus, the prevailing attitude in the early to mid-
1950s was that important programming had to be done in assembly language. Although, as
we will see in the next chapter, FORTRAN proved the viability of “automatic coding,” this
attitude was to continue for many years.

1. Compare and contrast the numeric pseudo-code interpreter, the symbolic pseudo-code inter-
preter, and an assembler.

2. Study the manual of an assembly language and critique that language with respect to the lan-
guage design principles you have learned. Pay particular attention to the regularity and or-
thogonality of the language.

w

Pick some programmable calculator and evaluate its instruction set as a pseudo-code.

&

Make the following specification more precise, that is, make reasonable assumptions and jus-
tify them: Free format pseudo-code instructions allow the operator and operands of instruc-
tions to be separated by any number of blanks, and allow any number of instructions to be
put on one line.

o

Alter the symbolic pseudo-code loader to accept the free format instructions specified in the
previous exercise.

6. Suppose we wanted to add the three trigonometric functions (sin, cos, tan) and their inverses
to our pseudo-code interpreter. Design this extension to the language. (Note that this exten-
sion will increase the number of operators to more than 20.)

7. As language evolve, they often must be extended. Discuss how to design a pseudo-code to
accommodate the later addition of new operations. Discuss a policy for limiting extensions
to those that are necessary.

8. In this chapter we designed a pseudo-code for numerical and scientific applications. Design
a pseudo-code for commercial (business data-processing) applications. Discuss your rationale
for including or omitting various features.

9. Implement the pseudo-code designed in the previous exercise.

10. Pick an application area that interests you (e.g., stock portfolio management, expenses,
dates/appointments, checkbook management, grading). Design a pseudo-code appropriate to
a hand-held computer that would be helpful in this application area. You will be graded on
your adherence to the principles you’ve learned and on the wisdom of engineering trade-offs.

11. Implement the pseudo-code designed in the previous exercise.

