9 LIST PROCESSING: LISP

HISTORY AND MOTIVATION

The Fifth Generation Comprises Three Paradigms

We come now to the fifth generation of programming languages, which comprises three over-
lapping programming paradigms: Junctional programming, object-oriented programming,
and logic programming. We will consider each in turn, beginning with functional program-
ming, which can be illustrated by LISP,

The Desire for an Algebraic List-Processing Language
LISP developed in the late 1950s out of the needs of artificial intelligence programming.! In

that the pointer and, in particular, linked list structures are natura] data—structuring methods.
In the 1950s Newell, Shaw, and Simon (at Carnegie Institute of Technology and the Rand
Corporation) developed many of the ideas of list processing in the IPL family of program-
ming languages. These ideas included the linked representation of list structures and the use
of a stack (specifically, a push-down list) to implement recursion,

In the summer of 1956, the first major workshop on artificial intelligence was held at
Dartmouth. At this workshop John McCarthy, then at MIT, heard a description of the IPL 2
programming language, which had a low-level pseudo-code, or assembly-language-like syn-
tax. McCarthy realized that an algebraic list-processing language, on the style of the recently
announced FORTRAN [ System, would be very useful.

-_ O

! The historical information in this section is from McCarthy (1978).
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FLPL Was Based on FORTRAN

That summer Gerlernter and Gerberich of IBM were working, with the advice of McCarthy,
on a geometry program. As a tool they developed FLPL, the FORTRAN List-Processing
Language, by writing a set of list-processing subprograms for use with FORTRAN programs.
One result of this work was the development of the basic list-processing primitives that were
later incorporated into LISP.

McCarthy Developed the Central Ideas of LISP

Use of FLPL resulted in an important contribution to control structures—the conditional ex-
pression. Recall that FORTRAN I had only one conditional construct—the arithmetic IF-
statement. This construct was very inconvenient for list processing, which led McCarthy, in
1957, to write an IF function with three arguments. Here is an example invocation:

X = IF (N .EQ. 0, ICAR(Y), ICDR(Y))

The value of this function was either the second or third argument, depending on whether
the first argument was true or false. In the above case, if N were zero, then X would be as-
signed the value of ICAR (Y), otherwise it would be assigned the value of ICDR(Y). An
important consequence of this invention was that it made it feasible to compose IF func-
tions and list-processing functions to achieve more complicated actions. We have seen the
same combinatorial power in Algol’s conditional expression, for example,

X := 0.5 X sgrt (if val < 0 then -val else val)

Algol’s conditional expression was suggested by McCarthy when he was a member of the
Algol committee.

In 1958 McCarthy began using recursion in conjunction with conditional expressions in
his definition of list-processing functions. This is a very important idea in LISP, as we will
see in Chapter 10, Section 10.1. During the summer of 1958, McCarthy became convinced
of the power of the combination of these two constructs. Since FORTRAN does not permit
recursive definitions, it became apparent that a new language was needed.

The LISP List-Handling Routines Were Developed First

In the fall of 1958, implementation of a LISP system began. One important component of
this was a set of primitive list-handling subroutines for the LISP run-time environment. These
were the first parts of the system that were implemented. The original intention was to de-
velop a compiler like FORTRAN. Therefore, to gain experience in code generation, a num-
ber of LISP programs were hand compiled into assembly language.

A LISP Universal Function Resulted in an Interpreter

McCarthy became convinced that recursive list-processing functions with conditional ex-
pressions formed an easier-to-understand basis for the theory of computation than did other
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formalisms such as Turing machines. In his 1960 paper, “Recursive Functions of Symbolic
Expressions and Their Computation by Machine,” he presented his ideas.

In the theory of computation, it is often important to investigate universal functions. For
example, a universal Turing machine is a Turing machine that can simulate any other Tur-
ing machine when given a description of the latter machine. Given a universal Turing ma-
chine, it becomes possible to prove that certain properties hold of all Turing machines by
proving that they hold of the universal Turing machine.

McCarthy did just that with LISP. He defined a universal LISP function that could in-
terpret any other LISP function. That is, he wrote a LISP interpreter in LISP. We will see
this interpreter in Chapter 11.

Since LISP manipulates only lists, writing a universal function required developing a
way of representing LISP programs as list structures. For example, the function call

f [x+y; u*z]

would be represented by a list whose first element is ‘£’ and whose second and third ele-
ments are the lists representing ‘x+y’ and ‘u*z’. In LISP this list is written

(f (plus x y) (times u z))

The Algol-like notation (e.g., flx+y; wu*z]) is called M-expressions (M for meta-
language), and the list notation is called S-expressions (S for symbolic language).

Once the list representation was designed and the universal function was written, one of
the project members realized that the group had, in effect, an interpreter. Therefore, he trans-
lated the universal function into assembly language and linked it with the list-handling sub-
routines. The result was the first working LISP system.

This system required programs to be written in the S-expression notation, but this was
seen as a temporary inconvenience. The Algol-like LISP 2 system then being designed would
permit the use of the M-expression notation. This system, however, was never completed,
and LISP programmers still write their programs in S-expressions. Although this was unin-
tentional, we will see later that it is now recognized as one of the main advantages of LISP.

LISP Became Widely Used in Artificial Intelligence

The first implementation of LISP was on the IBM 704 (the same machine that hosted the
first implementation of FORTRAN). A prototype interactive LISP system was demonstrated
in 1960 and was one of the earliest examples of interactive computing. LISP systems rapidly
spread to other computers, and they now exist on virtually all machines, including micro-
computers. LISP has become the most widely used programming language for artificial in-
telligence and other symbolic applications. McCarthy claims that LISP is second only to
FORTRAN in being the oldest programming language still in widespread use.

LISP Was Standardized after a Period of Divergent Evolution

As LISP use spread throughout the artificial intelligence community, its flexibility encour-
aged many groups to extend the interpreter to include new features. The result was a plethora
of LISP dialects belonging to two loose families, often called “East Coast LISP,” of which
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MacLisp (developed at MIT) was the best known member, and “West Coast LISP,” of which
Interlisp (developed by BBN and Xerox in California) was the best known. In 1981 ARPA
sponsored a “LISP Community Meeting” to define the future direction of LISP, and out of
it came the plan to develop a “Common LISP” dialect to reconcile the differences between
the major dialects. The language design was completed in 1982 and 1983, and has since be-
come the most widely available LISP dialect. Standardization efforts began in 1985 and re-
sulted in 1992 in a draft ANSI standard over 1000 pages long. Needless to say, although we
will devote three chapters to Common LISP, we will consider only its most important fea-
tures, especially those that illustrate recursive list processing and functional programming.

9.2 DESIGN: STRUCTURAL ORGANIZATION

An Example LISP Program

Figure 9.1 shows an example LISP program in the S-expression notation. The purpose of
this program is to generate a “frequency table” that records the number of times a particu-
lar word appears in a given list of words. Three functions are defined: make-table and
its auxiliary function update-entry construct the frequency table; 1ookup uses the re-
sulting frequency table to determine the number of occurrences of a given word. The ses-
sion shown also defines text to be a particular list of words (viz., ‘to be or not to
be’) and Freq to be the frequency table computed from this list.

(defun make-table (text table)
(if (null text)
table
(make-table (cdr text)
(update-entry table (car text)) )) )

(defun update-entry (table word)
(cond ((null table) (list (list word 1)) )
((eq word (caar table))
(cons (list word (addl (cadar table))) ‘
(cdr table)))
(t (cons (car table)
(update-entry (cdr table) word))) ))

(defun lookup (table word)
(cond ((null table) 0)
((eg word (caar table)) (cadar table))
(t (lookup (cdr table) word)) ))

(set ‘text ’(to be or not to be))
(set ’'Freqg (make-table text nil))

Figure 9.1 Example of LISP Program

e ¢
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(Do not expect to be able to read this program unless you have had previous LISP

experience. It is included here so that you can see the general appearance of LISP pro-
grams.)

Function Application Is the Central Idea

Programming languages are often divided into two classes. Imperative languages, which in-
clude all of the languages we have discussed so far, depend heavily on an assignment state-
ment and a changeable memory for accomplishing a programming task. In previous chap-
ters we have pointed out that most programming languages are basically collections of
mechanisms for routing control from one assignment statement to another.

In an applicative language, the central idea is function application, that is, applying a
function to its arguments. Previous chapters have shown some of the power of function ap-
plication. For example, with it we can eliminate the need for control structures, as we did
when we defined the Sum procedure using Jensen’s device (Chapter 3, Section 3.5). Also,
in Chapter 8 we saw how even the built-in operators can be considered function applications.
LISP takes this approach to the extreme; almost everything is a function application.

To see this, it is necessary to know that a function application in LISP is written as
follows:

(faya;z ... a,)

where f'is the function and a, a,,..., ay are the arguments. This notation is called Cambridge
Polish because it is a particular variety of Polish notation developed at MIT (in Cambridge,
MA). Polish notation is named after the Polish logician Jan Y.ukasiewicz.

The distinctive characteristic of Polish notation is that it writes an operator before its
operands. This is also sometimes called prefix notation because the operation is written be-
fore the operands (pre = before). For example, to compute 2 + 3 we would type?

(plus 2 3)
to an interactive LISP system, and it would respond

5

LISP’s notation is a little more flexible than the usual infix notation since one plus can
sum more than two numbers. We can write

(plus 10 8 5 64)

for the sum 10 + 8 + 5 + 64. Also, since LISP is fully parenthesized, there is no need for
the complicated precedence rules found in most programming languages.

Notice that the example in Figure 9.1 consists of all function applications (which is why
there are so many parentheses). For example,

(set ’'Freq (make-table text nil))

2 Some LISP dialects, including Common LISP, permit typing (+ 2 3).
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is a nested function application: set is applied to two arguments: (1) Freq and (2) the re-
sult of applying make-table to the arguments text and nil. (The function of the quote
before Freq is discussed on p. 315.) In an Algol-like language this would be written

set (Freq, make-table (text, nil))

Many constructs that have a special syntax in conventional languages are just function
applications in LISP. For example, the conditional expression is written as an application of
the cond function. That is,

(cond
((null x) 0)
((eq x y) (f x))
(t (g ¥v)) )

evaluates (null x);ifitis true, then O is returned. Otherwise we test (eq x y); if this
is true, then the value of (f x) is returned. If neither of the above is true, then the value
of (g y) is the result. This would be written in an Algol-like language as follows:

if null (x) then 0
elsif x = y then f(x)
else g(y) endif

We can see that even function definition is accomplished by calling a function, defun, with
three arguments: the name of the function, its formal parameter list, and its body.

Why is everything a function application in LISP? There are a number of reasons that
will be discussed later, but we will mention one, the Simplicity Principle, here. If there is
only one basic mechanism in a language, the language is (other things being equal) easier to
HENSETead sadicenieseest

The List Is the Primary Data Structure Constructor

We have said that one of LISP’s goals was to allow computation with symbolic data. This
is accomplished by allowing the programmer to manipulate lists of data. An example of this
is the application f

(set "text ’'(to be or not to be))
The second argument to set is the list
(to be or not to be)

(Ignore the quote mark for the time being; it will be explained on p. 315.) LISP manipulates
lists just like other languages manipulate numbers; they can be compared, passed to func-
tions, put together, and taken apart. In Section 9.3 (Data Structures), we will discuss in de-
tail the ways that lists can be manipulated.

The list above is composed of four distinct atoms:

to be or not

.
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arranged in the list in the order
(to be or not to be).
LISP provides operations for putting atoms together to make a list and for extracting atoms

out of a list.
LISP also allows lists to be constructed from other lists. For example, the list

((to be or not to be) (that is the question))

has two sublists; the firstis (to be or not to be) and the second is (that is

the question).
The list is the only data structure constructor originally provided by LISP, another ex-

ample of the Simplicity Principle. If there is only one data structure in our language, then
there is only one about which to learn and only one to choose when programming our ap-
plication. Although the list is not always the best data structure for an application, it is re-
markably versatile. More recent dialects of LISP, including Common LISP, provide a vari-
ety of data structures, including arrays and structures (records).

Programs Are Represented as Lists

Function applications and lists look the same. That is, the S-expression

(make-table text nil)

could either be a three-element list whose elements are the atoms make-table, text, and
nil; or it could be an application of the function make-table to the arguments named
text and nil. Which is it?

The answer is that it is both because a LISP program is itself a list. Under most cir-
cumstances an S-expression is interpreted as a function application, which means that the ar-
guments are evaluated and the function is invoked. However, if the list is quoted, then it is
treated as data; that is, it is unevaluated. The function of the prefixed quote mark in

(set "text ’‘(to be or not to be))

is to indicate that the list (to be or not to be) is treated as data, not as a function
application. If it had been omitted, as in

(set ’'text (to be or not to be))

then the LISP interpreter would have attempted to call a function named ‘to’ with the ar-

guments named ‘be’, ‘or’, ‘not’, ‘to’, and ‘be’. This would, of course, be an error if, as

in this case, these names were undefined. In any case, it is not what we intended; the list is
supposed to represent data not program.

The fact that LISP represents both programs and data in the same way is of the utmost
importance (and almost unique among programming languages). As we will see, it makes it
very easy to write a LISP interpreter in LISP. More important, it makes it convenient to have
one LISP program generate and call for the execution of another LISP program. It also sim-
plifies writing LISP programs that transform and manipulate other LISP programs. These ca-
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pabilities are important in artificial intelligence and other advanced program-development
environments. Nevertheless, these amplifications come with a reduction of readability (cf.
Section 1.4).

LISP Is Often Interpreted

Most LISP systems provide interactive interpreters; in fact, they were some of the earliest
interactive systems. We interact with the LISP interpreter by typing in function applications.
The LISP system then interprets them and prints out the result. For example, if we type

(plus 2 3)

the system will respond

5

because 2 + 3 = 5. Similarly, if we type

(eg (plus 2 3) (difference 9 4))
the system will respond

t

(meaning true) because 2 + 3 =9 — 4.

Functions like eq and plus are called pure functions (or simply functions) because they
have no effect other than the computation of a value. Pure functions obey the Manifest In-
terface Principle because their interfaces (i.e., their inputs and outputs) are apparent (mani-

fest).

The Manifest Interface Principle

All interfaces should be apparent (manifest) in the syntax.

Some functions in LISP are pseudo-functions (or procedures). These are functions that
have a side effect on the state of the computer in addition to computing a result. A simple
example is set, which binds a name to a value. The application (set ‘n x) binds the
name (atom) n to the value of x and, almost incidently, returns this value. Thus, if we type

(set ’'text ' (to be or not to be))

the LISP system will print the result:

(to be or not to be)

More important, the name text is bound to this list, which we can see by typing
text

LISP will then respond

(to be or not to be)
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The atom text can now be used as a name for this list in any expression, for instance
(set 'Freq (make-table text nil))

Another important pseudo-function is de fun, which defines a function. The application
(defun f (n; ny - ny) b)

defines a function (or pseudo-function) with the name f; formal parameters ny, ny, ... , fim;
and body b. It is thus analogous to the Algol declaration

procedure f (n;, nz, ... , np); b;

= (although in LISP the binding process is dynamic, that is, it takes place at run-time).

This is a good place to mention that LISP dialects differ from each other in many small
ways. In particular, the function application used to define functions is different in many di-
alects, although you should have no trouble relating them to the form used here. (In this book
we use the Common LISP dialect; see Steele, 1984.)

Most LISP programs (such as our example in Figure 9.1) take the form of a collection
of function definitions and sets. Users can then apply the defined functions from their ter-
minals. For example, the application

(lookup Freqg ’be)
results in the value

2

the number of occurrences of be in the list.

9.3 DESIGN: DATA STRUCTURES

The Primitives Include Numeric Atoms

As we have done on all the languages we have investigated, we classify LISP’s data struc-
tures into primitives and constructors. The principal constructor is the list; it permits more
complicated structures to be built from simpler structures. The primitive data structures are
the starting points for this building process. Thus, the primitive data structures are those data
structures that are not built from any others; they have no parts. It is for this reason that they
are called atoms (‘atom’ in Greek = indivisible thing).

There are at least two types of atoms in all LISP systems. We have already seen exam-
ples of numeric atoms, which are atoms having the syntax of numbers (i.e., all digits with
possibly one decimal point). Various arithmetic operations can be applied to numeric atoms.
For example,

(plus 2 3)

applies the function plus to the atoms 2 and 3 and yields the atom 5.
LISP provides a very large set of primitive functions for manipulating numeric atoms.
These include the arithmetic operations (plus, difference, etc.), predecessor and suc-
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cessor functions (subl, addl), maximum and minimum functions, relational tests (equal,
lessp, greaterp), and predicates (i.e., tests, such as zerop, onep, minusp). All
of these functions take both integer and floating-point (and, in some systems, multiple-
precision) arguments and return results of the appropriate type.

LISP’s use of Cambridge Polish limits its numerical applications. For example, the ex-
pression

—b + Vb* - 4ac

2a

- must be written

(quotient (plus (minus b)
(sgrt (difference (expt b 2)
(times 4 a c))))
(times 2 a))

Common LISP (and many other dialects) permits symbolic operations, but it is not much of
an improvement:

(/ (+ (- b) (sart (- (expt b 2) (* 4 a c¢))))
(* 2 a))
On the other hand, it is fairly easy to write a LISP function to translate conventional infix

notation into LISP’s prefix notation. If we defined such a function and called it infix, we
could write

(infix "((- b + sgqrt (b 1T 2 - 4 * a * c)) / (2 * a)))

B Exercise 9-1*: LISP basically provides one numeric type and converts between inte-
ger and floating-point (and possibly multiple-precision) representations, as necessary, at
run-time. This is very different from the other languages we’ve discussed, wherein nu-
meric representations are fixed at compile-time. Discuss the advantages and disadvan-
tages of LISP’s approach to numbers.

i Exercise 9-2: Translate the following expressions into LISP:

L Va2

abc

2. 4\/s(s —a)(s — b)(s — ¢)

. m )',use (fac n) for n!
rl(n — r)!

2
4. 7R°E
180

Nonnumeric Atoms Are Also Provided

The other kind of primitive data structure in LISP is the nonnumeric atom. These atoms are
strings of characters that were originally intended to represent words or symbols. We saw
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nonnumeric atoms in the list (to be or not to be). With few exceptions, the only
operations that can be performed on nonnumeric atoms are comparisons for equality and in-
equality. This is done with the function eq:

(eq x ¥)

returns t (an atom meaning true) if x and y are the same atom, and nil (an atom meaning,
among other things, false) if they are not the same.

The atom nil has many uses in LISP; we will see more of them later. One very com-
mon operation in LISP is testing something to see if it is nil; this operation is often used
as a base for recursive definitions. Although this test can be written

(eg x nil)
it is so frequent that a special predicate has been provided:
(null x)

Notice that nil is the noun and null is the corresponding adjective.

Some LISP systems provide additional types of atoms, such as strings. In these
cases special operations for manipulating these values are also provided. Recall that
an abstract data type is a set of data values together with a set of operations on those
values.

The Principal Constructor Is the List

The characteristic method of data structuring provided by LISP is called the list. Lists are
written in the S-expression notation by surrounding with parentheses the list’s elements,
which are separated by blanks. Lists can have none, one, or more elements, so they satisfy
the Zero-One-Infinity Principle. The elements of lists can themselves be lists, so the Zero-
One-Infinity Principle is also satisfied by the nesting level of lists.

For a historical reason relating to the first LISP implementation, the empty list, (), is
considered equivalent to the atom nil. That is,

(eg ' () nil)

(null " () )

are both true (i.e., return t). For this reason, the empty list is often called the null list. Ex-
cept for the null list, all lists are nonatomic (i.e., not atoms); they are sometimes called com-

posite data values. We can find out whether or not something is an atom by using the atom
predicate; for example.

(atom ‘to)

t

(atom 5)
t

(atom (plus 2 3) )
t

(atom nil)
t
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(atom ‘() )

t

(atom ‘' (to be) )
nil

(atom ‘' (()) )
nil

(We indent the responses of the LISP system so we can differentiate them from what the
user types.)

Notice that the null list is a definite object and must be distinguished from “nothing.’
In particular, neither ( () ) nor (nil) is the null list; rather, each is a one-element list con-
taining the null list. If you are familiar with set theory, you will see that this is analogous to
the difference between (J, the null set, and {J}, a nonnull set containing one element, the
null set.

I

B Exercise 9-3: Explain the result returned by each of the applications of atom shown
above.

Car and Cdr Access the Parts of Lists

We have described the kind of data values that lists are. We have seen in previous chapters,
however, that there’s much more to a data type than just data values. An abstract data type
is a set of data values fogether with a set of operations on those data values. What are the
primitive list-processing operations?

A complete set of operations for a composite data type, such as lists, requires operations
for building the structures and operations for taking them apart. Operations that build a struc-
ture are called constructors, and those that extract their parts.are called selectors. LISP has
one constructor—cons—and two selectors—car and cdr.

The first element of a list is selected by the car function.* For example,

(car ’'(to be or not to be) )

returns the atom to. The first element of a list can be either an atom or a list, and car re-
turns it, whichever it is. For example, since Freq is the list

( (to 2) (be 2) (or 1) (not 1) )
the application
(car Freq)
returns the list

(to 2)

3 This is not a new meaning for the term “constructor.” We have said that constructors are used to build
structures from the primitives or from simpler structures. This applies to structures of all sorts: name struc-
tures, data structures, control structures, and now list structures.

4 This is pronounced “cahr.” The historical reasons for this name are discussed later in this chapter.
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Notice that the argument to car is always a nonnull list (otherwise it cannot have a first el-
ement) and that car may return either an atom or a list, depending on what its argument’s
first element is.

Since there are only two selector functions and since a list can have any number of el-
ements, any of which we might want to select, it is clear that cdr must provide access to
the rest of the elements of the list (after the first).

The cdr’ function returns all of a list except its first element. Therefore,

(cdr ’'(to be or not to be) )
returns the list
(be or not to be)

Similarly, (cdr Freq) returns
( (be 2) (or 1) (not 1) )

Notice that, like car, cdr requires a nonnull list for its argument (otherwise we cannot re-
move its first element). Unlike car, cdr always returns a list. This could be the null list;
for example, (cdr ’ (1)) returns ().

It is important to realize that both car and cdr are pure functions, that is, they do not
modify their argument list. The easiest way to think of the way they work is that they make
a new copy of the list. For example, cdr does not delete the first element of its argument;
rather, it returns a new list exactly like its argument except without the first element. We
will see later when we discuss the implementation of LISP lists that this copying does not
actually have to be done; however, it is a good cognitive model when first learning about
LISP.

Car and cdr can be used in combination to access the components of a list. Suppose
DS is a list representing a personnel record for Don Smith:

(set 'DS ’( (Don Smith) 45 30000 (August 25 1980) ) )

The list DS contains Don Smith’s name, age, salary, and hire date. To extract the first com-
ponent of this list, his name, we can write (car DS), which returns (Don Smith). How
can we access Don Smith’s age? Notice that the cdr operation deletes the first element of
the list, so that the second element of the original list is the first element of the result of cdr.
That is, (cdr DS) returns

(45 30000 (August 25 1980))

so that (car (cdr DS)) is 45, Don Smith’s age. We can now see the general pattern:
To access an element of the list, use cdr to delete all of the preceding elements and then
use car to pick out the desired element. Therefore, (car (cdr (cdr DS))) is Don
Smith’s salary, and

(car (cdr (cdr (cdr DS))))

5 Cdr is pronounced “could-er.”
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is his hire date. We can see this from the following (by ‘cdr —’ we mean “applying cdr
returns”):

( (Don Smith) 45 30000 (August 25 1980) )
cdr — (45 30000 (August 25 1980) )

cdr — (30000 (August 25 1980) )

cdr — ( (August 25 1980) )

car — (August 25 1980)

In general, the nth element of a list can be accessed by n — 1 cdrs followed by a car. Since
(car DS) is this person’s name (Don Smith), his first name is

(car (car DS))
Don

and his last name is

(car (cdr (car DS)))
Smith

We can see that any part of a list structure, no matter how complicated, can be extracted
by appropriate combinations of car and cdr. This is part of the simplicity of LISP; just
these two selector functions are adequate for accessing the components of any list structure.
This can, of course, lead to some large compositions of cars and cdrs, so LISP provides
an abbreviation. For example, an expression such as

(car (cdr (cdr (cdr DS))))
can be abbreviated
(cadddr DS)

The composition of cars and cdrs is represented by the sequence of ‘a’s and ‘d’s between
the initial ‘c’ and the final ‘r’. By reading the sequence of ‘a’s and ‘d’s in reverse order,
we can use them to “walk” through the data structure. For example, caddr accesses the
salary:

((Don Smith) 45 30000 (August 25 1980))

d — (45 30000 (August 25 1980))

d — (30000 (August 25 1980))

a — 30000

Also, cadar accesses the last-name component of the list:

((Don Smith) 45 30000 (August 25 1980))
a — (Don Smith)

d — (Smith)

a — Smith

This can be seen more clearly if the list is written as a linked data structure; then a ‘d’ moves
to the right and an ‘a’ moves down (see Figure 9.2). This shows that (caddadddr DS)
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Don Smith August 25 1980
Figure 9.2 Walking Down a List Structure

accesses the year Don Smith was hired. Clearly, these sequences of ‘a’s and ‘d’s can be-
come quite complicated to read. Writing them is also error-prone. One solution to this is to
write a set of special-purpose functions for accessing the parts of a record. For example, a
function for accessing the hire date could be defined as

(defun hire-date (r) (cadddr r))

Then (hire-date DS) returns Don Smith’s hire date. Similarly, we could define year
to give the year part of a date:

(defun year (d) (caddr 4))
Then Don Smith’s year of hire can be written:
(year (hire-date DS))

which is certainly more readable than (caddadddr DS). It is also more maintainable

since if we later change the format of this list (say. by adding a new piece of information).
it will be necessary to change only the accessing functions. In other words, we should think

of these personnel records as an abstract data type that can only be accessed through the
provided accessing functions.®

B Exercise 9-4: Define the functions name, age, salary, and hire-date for acess-
ing the parts of a personnel record; the functions firstn and lastn for accessing the
parts of a name; and the functions month, day, and year for accessing the parts of a
date. Write expressions for accessing Don Smith’s last name, salary, and the month in
which he was hired.

S In fact, there is no need for the programmer to define records in this manual way. Common LISP pro-
vides a powerful structure facility for defining record types. Our goal here is to illustrate list processing in

LISP.
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Information Can Be Represented by Property Lists

A personnel record would probably not be represented in LISP in the way we have just de-
scribed: Tt is too inflexible. Since each property of Don Smith is assigned a specific location
in the list, it becomes difficult to change the properties associated with a person. A better
arrangement is to precede each piece of information with an indicator identifying the prop-
erty. For example,

(name (Don Smith) age 45 salary 30000 hire-date (August 25 1980))

This method of representing information is called a property list or p-list. Its general form is

(p1 v1 P2 V25 - Pn Vi)

in which each p; is the indicator for a property and each v; is the corresponding property
value.

The advantage of property lists is their flexibility; as long as properties are accessed by
their indicators, programs will be independent of the particular arrangement of the data. For
example, the p-list above represents the same information as this one:

(age 45 salary 30000 name (Don Smith) hire-date (August 25 1980))

This flexibility is important in an experimental software environment in which all of the rel-
evant properties may not be known at design time.

Information is selected from a simple list by various compositions of car and cdr.
How can the properties of a p-list be accessed? We can attack this problem by considering
how a person might solve it. Asked Don Smith’s age, a person would probably begin search-
ing from the left of the list for the indicator age. The following element of the list is Don
Smith’s age. Let’s consider this process in more detail: Exactly how do we search a list from
the left? We begin by looking at the first element of the list; if it is age, then the second el-
ement of the list is Don Smith’s age, so we return it and we are done. If the first element of
the list is not age, then we must skip the first two elements (the first property and its value)
and repeat the process by checking the new first element.

Let’s begin to express this in LISP notation. Suppose p is the property for which we are
looking and x is the object that we are searching. We will write a getprop function such
that (getprop p x) is the value of the p property in property list x. First, we want to see
if the first element of x is p; we can do this by (eq (car x) p). If the first element of x
is p, then the value of (getprop p x) is the second element of x, thatis, (cadr x).If the
first element of x is not p, then we want to skip over the first property of x and its value and
continue looking for p. Notice that (getprop p (cddr x)) will look for p beginning with
the third element of x. We can summarize our algorithm as follows:

(getprop p x) =
if (eqg (car x) p)
then return (cadr x)
else return (getprop p (cddr x))

It remains only to translate this into LISP notation.
The simplest LISP conditional expression is written (if C T F). The condition C is
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evaluated. If it is true (i.e., returns any value except nil), then the value of the expression
is the value of T, otherwise its value is the value of F. Thus LISP’s if is essentially the
same as Algol-60’s conditional expression (p. 127). The getprop function is

(defun getprop (p x)
(if (eq (car x) p)
(cadr x)
(getprop p (cddr x)) ))

This definition, like most LISP definitions, is recursive. To find out properties of DS, we can
now use getprop:

(getprop ’‘name DS)

(Don Smith)
(getprop ’‘age DS)
45

(getprop ‘hire-date DS)
(August 25 1980)

(year (getprop ’'hire-date DS))
1980

Notice that the name of the property is quoted; we want the actual atom age, not some value
to which this atom might be bound.

What will this function do if we ask for a property that is not in the property list? By
tracing the execution of the function we will see that eventually we will have skipped all the
properties and will be asking if the first element of the null list is the indicator we are seek-
ing. Specifically, we will attempt to take the car of nil. Since this is illegal on most LISP

systems, we will get an error:

(getprop ‘weight DS)
Error: Car of nil.

Often we do not know exactly what properties an object has so it would be more con-
venient if getprop were more forgiving. One way to do this is to have getprop return
a distinguished value if the property does not exist. An obvious choice is ni 1, but this would
not be a good choice since it would then be impossible to distinguish an undefined property
from one that is defined but whose value is nil (e.g., meaning false). Nil is too common
a value in LISP for this to be a good choice. A better decision is to pick some atom, such
as undefined-property, which is unlikely to be used for any other purpose. The get -
prop function can be modified to return this atom when it gets to a null list in its search
process:

(getprop ‘weight DS)

undefined-property

B Exercise 9-5: Modify the getprop procedure so that it returns undefined-
property when the requested property is not defined in the property list.

B Exercise 9-6: The getprop procedure provided by some LISP systems is not exactly
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like the one we have described. Rather, it is defined to return all of the property list af-
ter the indicator. For example,

(getprop 'age DS)

(45 salary 30000 hire-date (August 25 1980))
(getprop ’‘salary DS)

(30000 hire-date (August 25 1980))

Thus, the value of the property is the car of the result of this getprop. This approach per-
mits a different solution to the undefined property problem; the getprop procedure retums
nil if the property is not in the list. That is,

(getprop ‘weight DS)
nil

Define this version of the getprop procedure.

Information Can Be Represented in Association Lists

The property list data structure works best when exactly one value is to be associated with
each property. That is, a property list has the form

(P1VviP2V2 e Pn Vi)

This is sometimes inconvenient; for example, some properties are flags that have no associ-
ated value—their presence or absence on the property lists conveys all of the information.
In our personnel record example, this might be the retired flag, whose membership in
the property list indicates that the employee has retired. Since property indicators and val-
ues must alternate in property lists, it is necessary to associate some value with the retired
indicator, even though it has no meaning.

An analogous problem arises if a property has several associated values. For example,
the manages property might be associated with the names of everyone managed by Don
Smith. Because of the required alternation of indicators and values in property lists, it will
be necessary to group these names together into a subsidiary list.

These problems are solved by another common LISP data structure—the association
list, or a-list. Just as we can associate two pieces of information in our minds, an associa-
tion list allows information in list structures to be associated. An a-list is a list of pairs,” with
each pair associating two pieces of information. The a-list representation of the properties
of Don Smith is

( (name (Don Smith))
(age 45)
(salary 30000)
(hire-date (August 25 1980)) )

7 Actually, an a-list is normally defined to be a list of dotted pairs. We will not address this detail until later.
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The general form of an a-list is a list of attribute-value pairs:

(a1 v1) (a2 v) ... (G, V)

As for property lists, the ordering of information in an g-list is immaterial. Information is
accessed associatively; that is, given the indicator hire-date, the associated information
(August 25 1980) can be found. It is also quite easy to go in the other direction: Given
the “answer” (August 25 1980), find the “question,” that is, hire-date. The func-
tion that does the forward association is normally called assoc. For example,

(set ’'DS ' ((name (Don Smith) (age 45) ...))
((name (Don Smith)) (age 45) ...)

(assoc 'hire-date DS)
(August 25 1980)

(assoc ’'salary DS)
30000

B Exercise 9-7: Write the assoc function in LISP. You will have to decide how to han-
dle the case where the requested attribute is not associated by the a-list. Justify your so-
lution.

B Exercise 9-8: Write the function rassoc that performs “reverse association”; that is,
given the attribute’s value it returns the attribute’s indicator. For example,

(rassoc 45 DS)
age

(rassoc '’ (August 25 1980))
hire-date

How will you deal with the fact that several attributes might have the same value? Jus-
tify your solution.

B Exercise 9-9: Write a function 1length such that (length L) is the number of (top-
level) components in the list L. For example,

(length ' (to be or not to be))

6

(length Freq)
4

(length ’ () )
0

Cons Constructs Lists

We have seen that the car and cdr functions can be used to extract the parts of a list. How
are lists constructed? When we design an abstract data type, we should make sure that the
constructors and selectors work together smoothly. This is necessary if the data type is to be
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easy to learn and easy to use. In particular, the data type will be more regular if the con-
structors and selectors are inverses; that is, the selectors undo what the constructors do, and
vice versa. In the case of lists, notice that the car and cdr functions operate at the begin-
nings of lists; car selects the first element of a list and cdr removes the first element of a
list. It is natural then to pick a constructor function that operates at the beginning of a list
and reverses the selectors. LISP’s only constructor, cons,? adds a new element to the be-
ginning of a list. For example,

(cons 'to ’'(be or not to be))

returns the list (to be or not to be). Notice that cons is the inverse of car
and cdr:

(car ' (to be or not to be)) = to
(cdr ' (to be or not to be)) = (be or not to be)
(cons 'to ’(be or not to be)) = (to be or not to be)

Therefore, any list that we can construct we can also take apart, and any list that we can take
apart can be reassembled from its parts.

What is the meaning of (cons ‘(a b) ’(c d))? You might thinkitis (a b c
d) . But if we consider the inverse relation between cons and the selectors, we can see that
the correct answer is ( (a b) ¢ d). Observe:

(car "((a b) ¢ d) ) = (a b)
(cdr "((a b) ¢ d) ) = (c d)

because car returns the first element of ((a b) c d), which is the list (a b). It then
follows that

(cons ‘(a b) ‘(c 4)) = ((a b) c 4d)

These relationships among car, cdr, and cons can be summarized in the equations in Fig-
ure 9.3. Notice that the second argument of cons must be a list, although the first argument
can be either an atom or a list.

Like car and cdr, cons is a pure function. That means that it does not actually add
a new element to the beginning of its second argument. Rather, it acts as though it has
constructed a completely new list, whose first element is the first argument to cons and
the remainder of whose elements are copied from its second argument. We will see later
that the actual implementation of cons is much more efficient than suggested by this de-
scription.

Lists Are Usually Constructed Recursively

We saw that the value of (cons ’(a b) ‘(c d)) wasnot (a b c d). Suppose,
however, that we want to concatenate two lists, and that (a b ¢ d) is the required re-
sult from (a b) and (c d). How can this be accomplished? Investigating the program-

8 Cons is pronounced “konss,” like the first syllable of “construct.”
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(cons (car L) (cdr L)) = L, fornonnull L Figure 9.3 Equations for the List
(car (cons x L)) = x Data Type
(cdr (cons x L)) = L

where L is alistand x is an atom or list.

ming of a function to do this will furnish a good example of the use of recursion to construct
lists. Our goal will be to develop a function append such that

(append ‘(a b) ‘(c d)) = (a b c d)

In general, (append L M) will return the concatenation of the lists L and M.

A good way to start with a problem like this is, first, to identify those cases that are easy
to solve, and then to try to reduce the other cases to the easy-to-solve cases. In other words,
we should ask ourselves which cases can be solved with the functions already available. In
this situation, we can see that if either of the lists to be appended is null, then the result is
the other list. That is,

L
L

(append '’ () L)
(append L ' ())

1]

These are the easily solved cases. In LISP the null case is frequently the easy-to-solve case.

We want to proceed by reducing the unsolved cases to the solved cases. That is, we want
to work the nonnull lists toward null lists. More specifically, if we can reduce the problem
of appending a list of length n to the problem of appending a list of length n — 1, then we
can continue this process until we are appending a list of length 0, which is the null list and
already solved. This process is very much like an inductive proof in mathematics.

Let’s consider the specific case of appending the three-element list (a b c) to the
three-element list (4 e £). Suppose the problem is already solved for two-element lists,
for example,

(append (b ¢c) '(d e £f)) = (b c d e f)

How can we get from this solution to the solution of the three-element case? The result re-
quiredis (a b ¢ d e f£), which is given by

(cons 'a (b c d e £f))
The above can be expressed in terms of the length = 2 solution:
(cons ’a (append ’(b c) ’(d e £)) )

Notice, now, that ‘a’ is the car of the original list (a b c) and that (b c) isthe cdr
of this list. This leads us to the general form of the reduction: If L is a list of length n > 0,
then

(append L M) = (cons (car L) (append (cdr L) M) )

Notice that (cdr L) is of length n — 1, so we have successfully reduced the length = n
problem to the length = n — 1 problem. As we continue to reduce the length of this list, we
are guaranteed to reach the null list eventually, which we know how to solve, so the process
must terminate. It is now easy to see the program. To compute (append L M), if L is null,
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then return M; otherwise return the result of consing (car L) onto the result of (append
cdr L) M). In LISP this is

(defun append (L M)
(if (null L)
M
(cons (car L) (append (cdr L) M)) ))

Notice that if we had decided to reduce M to the null list, it would have been much more diffi-
cult, because the LISP selector functions have been designed to work at the beginnings of Lists.

B Exercise 9-10*: Program the append function so that it reduces its second rather than
its first argument to the null list. Accomplishing this will require you to define one or
more auxiliary functions.

B Exercise 9-11: Write a function delprop that removes a property and its value from
a property list. For example,

DS

(name (Don Smith) age 45 salary 30000

hire-date (August 25 1980))

(delprop DS ’'age)

(name (Don Smith) salary 30000 hire-date (August 25 1980))
(delprop DS ’'name)

(age 45 salary 30000 hire-date (August 25 1980))
(delprop DS ‘hire-date)

(name (Don Smith) age 45 salary 30000)

B Exercise 9-12: Write a function remassoc that removes an association from an as-
sociation list. For example,

DS
((name (Don Smith)) (age 45) (salary 30000)
(hire-date (August 25 1980)))
(remassoc 'salary DS)
((name (Don Smith)) (age 45) (hire-date (August 25 1980)))

B Exercise 9-13: Write a function addprop that adds a property to a property list if it
is not there or alters its value if it is. For example,

(addprop DS ‘male ’'sex)
(name (Don Smith) age 45 salary 30000
hire-date (August 25 1980) sex male)
(addprop DS 34500 ‘’salary)
(name (Don Smith) age 45 salary 34500
hire-date (August 25 1980))

B Fxercise 9-14: Write a function analogous to addprop for a-lists.
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Atoms Have Properties

LISP was originally developed for artificial intelligence applications. These applications of-
ten must deal with the properties of objects and the relationships among objects. Suppose
We were writing a LISP program to manipulate European countries. Each country has a num-
ber of properties and each is related to a number of other countries. For example, each coun-
try has a name, a capital, a population, an area, and various countries on which it borders.
How can these be handled in LISP?

In LISP, objects are represented by atoms, and each atom has an associated p-list that
represents the properties of the atom and the relations in which it participates. We can rep-
Eesent some of the properties of England and France by Figure 9.4. The small circles repre-
sent objects (atoms), and the lines show their properties. Notice that the edges are labeled
with the indicators of the properties and that the values of the properties are often them-
selves objects (i.e., atoms). How are atoms created and how are they given properties?

Atoms are created in LISP by simply mentioning them. For instance, if we type

(England France Spain Germany Portugal)

then the atoms England, France, and so on, will have been created. Each of these ob-
jects comes complete with a property, its print name, which is a character string tagged by
pname”? (see Figure 9.5). Every atom has a print name; it is the means by which we denote
the atom and it is the way the atom is represented when it is displayed.
Suppose that we define Europe to be a list of the European countries:
(set ’'Europe - (England France Spain Germany Portugal ...))
(England France Spain Germany Portugal ...)

Now if we request that some atom be displayed, it is its print name that we will see. For

example,

(car Europe)
England

Similarly, whenever we write a name such as England, it will refer to that unlque atom
whose print name is England, that is, the LISP system will 100K for an atom whosc pname

Figure 9.4 Examples of Objects and
Their Properties

name / caplital area name / caplital area

O
England London 94000  France Paris 213000

® This is the case in the LISP 1.5 system, which is the basis for all later LISP implementations. Other LFSP
systems may differ in implementation details. For example, several, including Common LISP, use “print-
name cells” instead of the pname property.
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Figure 9.5 Examples of Objects and
Their Print Names

pname pname pname pname pname

“England” “France” “Spain” “Germany” “Portugal”

is “England”. We can see this by using the eq function, which tells us if two atoms are
the same:

(egq 'England (car Europe))

t
(eq ’'France (car Europe))
nil

Thus, we can see that the print name of an atom is analogous to a proper name in English;
it uniquely denotes an object.
We have seen that all atoms come with one property—their print name. How are other
properties attached to an atom? Several procedures are provided by LISP for accessing the
} properties of an atom. For example, to define the capital of France as Paris, we can write

(putprop 'France ‘Paris ’capital)
Paris

which alters the properties of the object France as shown in Figure 9.6. We can find out the
value of a property with the get function:

(get ’'France ’capital)
Paris

(get ’'France 'pname)
"France”

Notice that the putprop and get procedures are reminiscent of the addprop and get-
prop procedures we saw on pp. 324-330. This is not coincidental, as we will see when we
discuss the implementation of atoms.

There are several other important properties that many objects have. One of these is the *
apval of an atom.!'® When an atom is used in a set, it is bound to some value. For ex-

ample,
(set ’'Europe ' (England France ...))
binds the atom Europe to the list (England France ...). The property of being

bound to a value is denoted by the apval indicator (which stands for “applied value”). Af-

10 Here again we refer to LISP 1.5. Some other LISP dialects use a “value cell” instead of the apval
property.
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Figure 9.6 Example of Putting a New Property on an Object

pname capital

“France” Paris

ter the above set is executed, the atom Europe will have the properties shown in Figure
9.7. We can see this by typing

(get ’Europe ’‘apval)
(England France Spain ...)

In fact, set is just an abbreviation for a particular application of putprop. Thus (set
"Europe ’ (England France ...)) is exactly equivalent!! to

(putprop ‘Europe ’ (England France .. .) ‘apval)

There are several other built-in properties that we will mention briefly. Consider a func-
tion definition such as

(defun getprop (p x)
(if (eq (car x) p)
(cadr x)
(getprop p (cddr x)) ))

Figure 9.7 Example of the Applied
Value of an Object

pname

“Europe”

pname

“England” “France” “Spain” vee

! Although, as noted before, some LISP implementations make a special case of apval for the sake of ef-
ficiency.




334 LIST PROCESSING: LISP

This is another example of binding a name to a value; in this case, the name getprop is
bound to a function. Binding of atoms to functions is represented by the expr property.?
After the above application of defun the value of the expr property of getprop can be
found by

(get ’'getprop ’‘expr)
(lambda (p x)
(if (eq (car x) p)
(cadr x)
(getprop p (cddr x)) ))

(The atom lambda indicates a function value, which is discussed in Chapter 10.) Thus, the
above defun is equivalent to

(putprop ’‘getprop
' (lambda (p x)
(if (eq (car x) p)
(cadr x)
(getprop p (cddr x)) ))
' expr)

There are a number of other properties used by the LISP system that indicate compiled func-
tions, functions that do not evaluate their arguments, and so forth.

Some LISP systems allow the entire property list of an atom to be accessed.!® For ex-
ample,

(symbol-plist 'France)
(pname "France” capital Paris)
(symbol-plist ‘Europe)
(pname ”Europe” apval (England France Spain ...))
(symbol-plist ’‘getprop)
(pname "getprop” expr (lambda (p x)
(if (eg (car x) p)
(cadr x)
(getprop p (cddr x)) )) )

We can see that the property lists of atoms are just like the property lists we discussed pre-
viously.

Lists Have a Simple Representation

Recall that LISP developed out of a desire for an algebraic language for linked list process-
ing. Therefore, although there are many ways that lists can be represented, it is not surpris-

12 1n LISP 1.5. Other LISP dialects use “function cells” instead of the expr property.
13 The function to accomplish this is known variously as symbol-plist, plist, and getproplist.




9.3 DESIGN: DATA STRUCTURES 335

ing to learn that LISP lists are usually implemented as linked structures. For instance, the
list

(to be or not to be)

is represented as a sequence of six (not necessarily contiguous) cells in memory, each con-
taining a pointer to the next. Each cell also contains a pointer to the element of the list it
represents. This is shown in Figure 9.8. (We have labeled atoms with their print names; their
exact representation is described later.) The last cell points to nil, representing the end of
the list. We will call the two parts of a cell the left part and the right part. The final null
pointer will often be drawn as a slash through the right half of the last cell.

Lists containing other lists are represented in the same way. For example, the list

( (to 2) (be 2) (or 1) (not 1) )

would be represented in storage as shown in Figure 9.9. Since the left part of a cell points
to an element of a list, it can point either to an atom or a list (which is in turn represented
by a cell). Since the right part of a cell normally points to the rest of the list, it will normally
point to another cell or nil. The null list is simply a pointer to the atom nil.

8 Exercise 9-15: Draw the list structures for both the p-list and a-list representations of
the personnel record for Don Smith.

® Exercise 9-16: Since programs are themselves written as lists, programs can be
represented as the same list structures as data. Draw the list structure corresponding
to the definition of make-table in Figure 9.1, which is the first four lines of that
figure.

B Exercise 9-17: Draw the list structure corresponding to the following expression:

(quotient (plus (minus B)
(expt (difference (expt b 2)
(times 4 a c))
0.5))
(times 2 a))

A structure such as you have drawn is often called an expression tree.
B Exercise 9-18*: Discuss LISP’s strategy of dynamic typing and compare it with
statically typed languages discussed in previous chapters. Discuss the advantages and

disadvantages of each, paying particular attention to flexibility, security, and effi-
ciency.

to be or not to be nil

Figure 9.8 Representation of (to be or not to be)
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L+ L]

| |
L~ I—Hil/l | l:Hil/l [il+’|l‘/|

(@) O (@)
to 2 be 2 or 1 not

- O

Figure 9.9 Representation of a List of Lists

The List Primitives Are Simple and Efficient

Let’s consider the implementation of the list-processing functions car, cdr, and cons.
Suppose we have a pointer, L, to the beginning of the list in Figure 9.8 and we want to get
a pointer A to the car of this list. We can see that this pointer is in the left half of the cell
pointed to by L. Therefore, in Pascal notation,

A := L7 .left;

In other words, follow the L pointer to a cell in memory and return its left half. This is an
efficient operation; it works regardless of whether the first element of the list is an atom or
another list. Consider the same operation on the list in Figure 9.9. The pointer A will be

1 I—*IiVl

In other words,

(car ’'((to 2) (be 2) (or 1) (not 1)) ) = (to 2)
The cdr function is exactly analogous: Follow the pointer and extract the right half of
the word:
|
D := LT .right;

In the case of the list in Figure 9.8:

g.lﬁg.n e T e Y I e Y 74
S8 S8

to be or not to be

Notice that D actually points to a sublist of list L; we will discuss the implications of this on
pp- 338-340. Also notice that repeated applications of cdr will “walk” from each element
of the list to the next by following its right pointers.

I €
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! John McCarthy has explained the origin of the cryptic names car and cdr. On the
' IBM 704 computer, each word had two fields large enough to hold a pointer; these were
| called the “address” field and the “decrement” field. Thus, if L were a pointer to a list,
l then (car L) would return the “Contents of the Address part of Register L” (memory
locations were called “registers”). Similarly, (cdr L) meant “Contents of the Decre-
l ment part of Register L.” Over the years many alternative names for these functions have
been proposed, including first/rest, head/tail, first/final, and Hd/T1. How-
% ever, none of these has been able to supplant car and cdr. One reason may be that
! none of these other names is amenable to the construction of compound selectors (such
as caddar).14
Next we will consider the implementation of the cons function. Since cons is the in-
verse of car and cdr, it is already clear what its effect must be; this is shown in Figure
9.10. The result of consing two lists pointed to by A and D must be a pointer L to a cell
whose left half is A and whose right half is D. In other words, all we have to do is put A and
D in the left and right halves of a cell. But which cell? Clearly, it is necessary for L to be a
pointer to a cell that is not in use. Therefore, the cons operation requires a storage alloca-
tion step; a new cell must be allocated from a heap or free storage area. The mechanism re-
quired to do this will be discussed in Chapter 11, Section 11.2; for now we will assume that
a procedure new is available that returns a pointer to a freshly allocated cell. This is the case
in Pascal: new (L) stores into L a pointer to a new memory cell. Therefore, the steps re-
quired to do a cons are

new (L) ;
LT .left := A;
LT .right := D;

With the possible exception of memory allocation, which we have not discussed, we can see
that cons is also quite efficient.

>

5o~

or not to be

Figure 9.10 Implementation of Cons

14 Common LISP does permit first and rest as synonyms for car and cdr.

4
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(set 'L ' (or not to be)) Figure 9.11 lustration of Shared Sublists
(or not to be)

(set 'M ‘' (to be))
(to be)

(car M)
be

(set 'N (cons (cadr M) L))
(be or not to be)

(car M)

- to

(set 'O (cons (car M) N))
(to be or not to be)

(cons (car M) (cons (cadr M) L))
(to be or not to be)

Sublists Can Be Shared

Consider the LISP session in Figure 9.11.
The result of these operations is the following list structure:

|
L1+~ 1] Inlj'hl}ﬁl T
l ol LlM
8*— é;—?‘_\l or not to be
o—{1]4

Trace through each of the lists M, I, N, and O to be sure that you see that all the elements
are there in the right order. We can see that a lot of the substructure of the lists is shared.
This economizes storage. In this case, eight cons-cells are used rather than the 21 that would
be required if each list were independent.

In previous chapters we have discussed the danger of aliasing, that is, of having more
than one path to a memory location. The danger is that a variable can have its value changed ;
without being directly assigned to because it shares its storage with a different variable that 4
has been assigned. This makes programs less predictable and much harder to understand. We :
might be led to expect that the extensive sharing of sublists in LISP programs makes these
exceptionally hard to understand, but this is not the case.

The reason is that aliasing, as well as sharing of data structures, is a problem only when
combined with the ability to update data structures. Note that car, cdr, and cons are all
pure functions, that is, they have no side effects on lists already created. As we have noted
before, cdr does not delete an element from a list; the original list still exists with all of its
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members. Similarly, cons does not add an element to a list; rather, it computes a new list
with the correct elements. The result is that this sharing of sublists is transparent; it increases
the efficiency of the program without changing its meaning. We will see below, however,
that there are some circumstances in which the programmer can alter list structures. In these
cases, it makes a difference as to whether lists are being shared, and there is a loss of trans-
parency.

List Structures Can Be Modified

In the beginning of this chapter, we contrasted an applicative language, which is based on
the application of pure functions to their arguments, with an imperative language, which is
based on assignments to changeable memory locations. Although LISP is predominantly an
applicative language, it does have a few imperative features. We have seen the pseudo-func-
tions (or procedures) set and defun, which are used for binding names to objects. Now
we will discuss two pseudo-functions for altering list structures.

LISP lists are very simple; they are constructed from a number of instances of identical
components, cons-cells, all having exactly two parts, their left and right halves. Thus, if we
want to alter a LISP list, there are really only two things we can do: alter the left half of a
cell or alter the right half of a cell. The two pseudo-functions that LISP provides for this are
called rplaca and rplacd (meaning “replace address part” and “replace decrement part™).

The implementation of these pseudo-functions is simple— (rplaca L A) simply as-
signs the pointer A to the left part of the cell pointed to by L:

LT .left := A;
Similarly, (rplacd L D) assigns the pointer D to the right part. This operation is illus-
trated in Figure 9.12. The dotted lines show the new pointer established by rplacd.

The interaction of sharing and assignment lead to all of the bad effects we have come
to expect from aliasing. Consider this example:

(set 'text ’(to be or not to be))
(to be or not to be)

(set 'x (cdr text))
(be or not to be)

(H—*ﬁ L[+

\

IS el el
‘*IH—»IIM
Lo Liow

Figure 9.12 Execution of (rplacd (cdr text) ’(is all))
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(rplacd x ' (is all))
(be is all)

text
(to be is all)

Notice that the value of text has been changed even though it was not even mentioned in
the rplacd operation! In real programs (which are much larger than this example), a sin-
gle rplaca or rplacd can change the values of seemingly unrelated lists throughout the
program. It can even change the program since the program itself is represented as a list.
Clearly, these operations are a trap for the unwary and must be used with caution!

B Exercise 9-19: The rplaca and rplacd pseudo-functions are usually used to in-
crease the performance of LISP programs. For example, the addprop function we pro-
grammed in a previous exercise changes the value of a property by recopying the entire
list up to and including the value to be changed. This could be quite inefficient if
the value to be changed were near the end of a long list. Write a new addprop pseudo-
function that uses rplaca and rplacd to alter an element of a property list without
copying the rest of the list.

B Exercise 9-20: Write an analogous pseudo-function for a-lists.

Exercise 9-21: Usethe symbol-plist and addprop functions to define putprop.

B Exercise 9-22: Write a pseudo-function remprop that deletes a property’s indicator
and value from an atom’s property list.

B Exercise 9-23: The following commands will cause many LISP systems to go into an
infinite loop printing A’s and B’s:

(set 'x (A B))
(A B)

(rplacd (cdr x) x)
(BABABABABABAIBAHEB

Explain why.

Atoms Are Just Pointers to Their Property Lists

We have seen that the cons-cells from which lists are constructed have two parts, each of
which can point to either an atom or a list. In the case of a list, the cons-cell points to an-
other cons-cell, namely, the one containing the car and cdr of the element list. What does
the cons-cell point to when it points to an atom? In other words, how are atoms represented
in memory?

To answer this question, we can begin by asking what it is that makes one atom differ-
ent from another. In other words, what constitutes the identity of an atom? One obvious an-
swer is the print name; two atoms are different if they have different print names, and they
are the same if they have the same print name. This is not the complete solution, however.
Recall that atoms, like the real-world objects they are often used to model, have many prop-

R
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erties. In the real world, we distinguish different objects by their properties: Two objects are
different if they differ in at least one property, and they are the same (i.e., indistinguishable)
if they agree in all of their properties. Of course, many different objects agree in some of
their properties; for example, they might have the same name or the same shape. Comput-
ers, however, are finite: It is not possible to model the unlimited number of properties that
characterize real-world objects. Rather, a finite subset of these is selected that is relevant to
the situation being modeled. Thus, we might find that two distinct atoms, modeling two dis-
tinct objects, have exactly the same properties. We know that they are distinct atoms because
they participate in different list structures. Since list structures really are just structures of
pointers, we find that two atoms are the same if they are represented by the same pointer,
and they are different if they are represented by different pointers. In implementation terms,
an atom is equivalent to its location in memory; any structure pointing at that location is
pointing at the same atom, and any structure pointing at a different location is pointing at a
different atom. Hence, the small circles representing atoms in Figures 9.8 and 9.9 are really
memory locations.

What is stored in the memory location representing an atom? There need not be any-
thing since we are really just using the address of the location as a tag that uniquely identi-
fies the atom. In fact, it would even be possible to use illegal addresses, which do not rep-
resent a location in memory at all, to stand for atoms. Some LISP systems make use of these
memory locations by using them to hold a pointer to the atom’s property list. For example,
the original LISP system used regular cons-cells to represent atoms. A special value that was
not a legal address (say, —1) was placed in the left field to indicate that the cell represented
an atom rather than a regular list. The right field pointed to the property list of the atom.
Figure 9.13 gives an example of this.

You will see in the following exercises that the operations on atoms are simple and ef-
ficient to implement.

B Exercise 9-24: Write a Pascal-like expression for determining whether a pointer to a
cons-cell is a pointer to a list or a pointer to an atom. This is, in essence, the atom pred-
icate.

B Exercise 9-25: Write a Pascal-like expression to access the property list of the atom
represented by the pointer A. This is, in essence, the symbol-plist function.

B Exercise 9-26: How is the eq predicate implemented?

pname France capital Paris

Figure 9.13 Representation of the Atom France
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Car, Cdr, and cons all work on the first elements of lists. Define the meaning and de-
scribe the implementation of the analogous functions last, butlast, and suffix that
work on the last elements of lists. Define append and getprop using these functions.

Suppose that arrays are to be represented by linked lists. Write a function (elt A n) that
returns the nth element of a list A and an “indexed substitution” function (indsubst x n
A) that returns a list like A except that the nth element has been replaced by x.

Write a LISP function to convert a property list into the corresponding association list. Write
a LISP function to convert an association list into the corresponding property list.

Write a LISP function to reverse a list.

. Write the list primitives (car, cdr, cons, eq, atom, null) in a conventional program-

ming language such as Pascal or Ada. Write a readlist procedure that reads a list in the
S-expression notation and constructs the corresponding list structure. Write a printlist
procedure that takes a list structure and prints it in the S-expression notation. Can you think
of a simple way of indenting the list so that it is readable?

. It has been observed that many lists occupy contiguous memory locations. Therefore, the

right pointers in most of the cells are redundant, since they just point to the following mem-
ory location. One alternative representation for lists is called cdr-encoding, in which there
are two different kinds of cells. One has left and right halves, as described in this chapter;
the other just has a left field, since the right field is assumed to point to the following cell.
This halves the storage required for many lists. Develop the method of cdr-encoding: De-
sign the formats for list cells; describe the algorithms for performing car, cdr, and cons;
describe what you will do about shared sublists; and estimate the differences in space and
time consumed by cdr-encoding and the usual representation.

. Design a completely different representation for LISP lists. For example, represent all lists

in consecutive memory locations in exactly the order in which they are written on paper,
including open and close parentheses. Analyze your new list representation, including space
and time performance estimates and other advantages and disadvantages.

Consider the following LISP commands:

(defun message (x) (cons x ’‘(is dull)) )
(message ’'That)

(rplacd (cdr (message ‘Nothing)) ‘(a surprise))
(message 'This)

The first call of message returns (That is dull); the second call of message
(vice rplacd) returns (Nothing is dull). What does the third call return? What
conclusions can you draw from this example?

Write a LISP function that determines whether a list is circular. To accomplish this you
need to know that (eq x y) compares the pointers to x and to y.




