
1

A Systematic Approach to Nanotechnology Based
on a Small Set of Molecular Building Blocks

Bruce J. MacLennan,Member, IEEE

Abstract— A small set of molecular building blocks will allow
the implementation of “universally programmable intelligent mat-
ter,” that is, matter whose structure, properties, and behavior can
be programmed, quite literally, at the molecular level. The ap-
proach is based on combinatory logic, a term-rewriting or graph-
substitution system, which can be interpreted as an abstract model
of molecular processes. In such systems there are small sets of sub-
stitution operations (reactions) that are universal in the sense that
they can be used to program any Turing-computable function. Al-
though these operations provide the building blocks for univerally
programmable intelligent matter, there are many issues that arise
in the context of molecular computation, which we address.

Index Terms— adaptive matter, combinatory logic, DNA com-
puting, functional programming, intelligent matter, molecular
computing, nanocomputation, nanotechnology, programmable
matter, term-rewriting systems.

I. I NTRODUCTION

We use the termintelligent matterto refer to any material in
which individual molecules or supra-molecular clusters func-
tion as agents to accomplish some purpose. Intelligent matter
may be solid, liquid, or gaseous, although liquids and mem-
branes are perhaps most typical.Universally programmablein-
telligent matter (UPIM) is made from a small set of molecular
building blocks that are universal in the sense that they can be
rearranged to accomplish any purpose that can be described by
a computer program. In effect, a computer program controls
the behavior of the material at the molecular level. In some
applications the molecules self-assemble a desired nanostruc-
ture by “computing” the structure and then becoming inactive.
In other applications the material remains active so that it can
respond, at the molecular level, to its environment or to other
external conditions. An extreme case is when programmable
supra-molecular clusters act as autonomous agents to achieve
some end.

Although materials may be nano-engineered for specific pur-
poses, we will get much greater technological leverage by de-
signing a “universal material” which, like a general-purpose
computer, can be “programmed” for a wide range of applica-
tions. To accomplish this, we must identify a set of molec-
ular primitives that can be combined for widely varying pur-
poses. The existence of such universal molecular operations
might seem highly unlikely, but there is suggestive evidence
that it may be possible to discover or synthesize them.

II. A PPROACH

Term-rewriting systems[1]-[2] are simple computational sys-

The author is in the Department of Computer Science, University of Ten-
nessee, Knoxville, TN 37996-3450 USA (e-mail: maclennan@cs.utk.edu).

K

y

x

x

Fig. 1. K-substitution. The network on the left may be replaced by that on
the right, wherever and whenever it occurs. The variables� and� represent
arbitrary networks.

tems in which networks are altered according to simple rewrite
rules, which describesubstitutionsthat have much in com-
mon with abstract chemical reactions. (One particular term-
rewriting system, the lambda calculus, has been used already
to model prebiotic chemical evolution [3]-[5].) Term-rewriting
systems have been investigated extensively by mathematicians
and computer scientists for several decades [6]-[7].

One attractive feature of term-rewriting systems is that many
of them have theChurch-Rosser property[2], [8], which means,
roughly, that substitutions can be done in any order without
affecting the computational result [9, ch. 4]. Therefore these
term-rewriting systems have been investigated as a possible ba-
sis for massively-parallel computer architectures [6]-[7]. This
is an important property for a model of molecular computation,
in which molecular processes take place stochastically.

A. �� Programming

One class of term-rewriting systems, thecombinatory logic
systems[9]-[12], is very relevant for programmable intelligent
matter, for it has been known since the early twentieth century
that there are several small sets of substitution operations that
can be used to program any Turing-computable function. One
suchuniversalset is the�� calculus.

The�� calculus is defined by two simple substitution rules.
The�-substitution is expressed by this rewrite rule,

������ � �� ��

which describes the transformation shown in Fig. 1, in which
� and� represent any networks. In effect, since the value of
����, when applied to any� , is � , the� operation, when
applied to� yields the constant function����. This is the



2

Fig. 2. K-substitution as a molecular process. A spontaneous chemical reac-
tion, which replaces the reactants on the left with the molecular clusters on the
right. � ,�, and� represent arbitrary molecular networks;�, �,�, and� are
particular funtional groups on which the reaction depends.

S

z

y

x

x yz z

Fig. 3. S-substitution with copying. The vaiables�, �, and� represent ar-
bitrary networks. TheS-substitution,���������� �� ����������, may be
interpreted as making a duplicate copy of�.

interpretation, but the computational effect is entirely expressed
in the substitution in Fig. 1.

It will be apparent that this substitution rule suggests a
molecular process, but the equivalent depiction in Fig. 2 makes
the similarity more apparent. It can be put in the style of a
chemical reaction, including reaction resources and waste prod-
ucts:

������ ��� �� �� ��������

Here�����, and� are functional groups, and� , � , and�
represent arbitrary molecular networks.� is a disposal operator
and� is a computationally inert place-holding group.

The� operator is only slightly more complicated; it is defined

S

z

y

x

x y

z

Fig. 4. S-substitution with sharing. The vaiables�, �, and� represent ar-
bitrary networks. TheS-substitution,���������� �� ����������, may be
interpreted as sharing a single copy of�.

by the rewrite rule,

������� ��� �� ������� ����

There are two ways of interpreting it as a network substitution,
depending on whether we make a new copy of� (Fig. 3) or
share a single copy (Fig. 4). However, the Church-Rosser prop-
erty [2], [8] shows that the two interpretations lead to the same
computational result, but the interpretations have practical dif-
ferences, which are discussed later

It is important to stress the significance of the�� calculus:
these two simple operations are capable of computing anything
that can be computed on any digital computer. This is certainly
remarkable, and so it is surprising that there are quite a few
other universal sets of combinators. For example, the set of�

with �� and� is universal, where the latter two operators are
defined:

�������� ��� �� �� ������

������ � �� ���� �� ��

A third universal set comprises� and these three combinators:

������� ��� �� ���� ����

������� � �� �� ���

����� �� �����

There are even some general guidelines [9, sec. 5H] for univer-
sality (i.e., the combinators must be able to delete, duplicate,
and permute). The existence of multiple universal sets is very
fortunate, because it implies that when we begin to search for
molecular implementations of these operations, we will have
a greater probability of finding reactions implementing at least
one universal set of substitutions.

The combination of the parallel computation permitted by the
Church-Rosser property and the simplicity of the�� calculus
has led computer scientists to investigate it as a basis for paral-
lel computer architecture [6]-[7]. There are simple algorithms
for translating functional computer programs into�� networks,
and considerable effort has been devoted to optimizing them.
Therefore, if we can identify molecular processes correspond-
ing to a universal set of combinators (��, for example), then
we can at least see the possibility of writing a computer pro-
gram and translating it into a molecular process.

To illustrate the idea, we will present, with little explanation,
a program for computing a nanotube. A single ring of the na-
notube is computed by:

	
������ � � ��

���� ��� � � �����������

������ �
�� �� � ��

����� � �� 	 � ���� � ��� 	� � �����������

The function is given two molecular chains,� � ���� � � � � ���
and� � �	�� � � � � 	��. It creates a ring of the��, each of
which is linked to the next� group in the ring, as well as to
the corresponding	� (see Fig. 5). A nanotube is computed by
creating a series of linked rings:

������
�� �� � � � 	
������ ��

�����
 � ���� � � � 	
�������������� � ���



3

y
y

y y

y y

x

x

x

x x

x

Fig. 5. Example: Single ring of a nanotube computed by a simple functional
computer program, which may be translated into an�� network. The variables
� and� represent two molecular species provided to the construction operation.

If � � �
�� � � � � 
���� is any chain of length� � �, then
��������� � � will compute a nanotube of length�, with �

groups forming the sides of the tube, and	 groups forming its
terminus. Our discussion of this example is of necessity short,
but it will serve to demonstrate how simple programs can gen-
erate useful nanostructures.

B. Replication/Sharing Problem

Intriguing as the�� calculus is as a basis for universally
programmable intelligent matter, it also illustrates some of the
problems that our research is addressing. As previously men-
tioned, term-rewriting systems assume that a network can be
copied for free, as illustrated in Fig. 3. This is certainly a bad
assumption for molecular computation, in which the time to
replicate a structure is at least proportional to the logarithm of
its size. It is also extremely wasteful, since when programs
are compiled to use only the� and� combinators, one often
observes that an� operation replicates a structure, which is al-
most immediately discarded by a�. There are ways to avoid
much of this needless replication (at the expense of introducing
additional primitive combinators), but considerable replication
will remain.

The obvious solution is to use the sharing implementation
(Fig. 4), since this does not require any copying. It is the solu-
tion adopted in many implementations of�� on conventional
computers, in which one may have any number of pointers to a
single data structure. However, this option does not seem to be
possible in molecular computing, in which each link connects
only two groups of atoms.

There are some possible solutions to this problem, but they
will not be discussed at this time. We raise the copying/sharing
issue to show that the constraints of molecular computing are
different from those of electronic computing. Therefore, while
term-rewriting systems, combinatory logic, and the�� calculus
in particular are suggestive of how universally programmable
intelligent matter might be implemented, we must be prepared
to develop new models of computation that are compatible
with the constraints of molecular processes. Developing such
a model is a principal objective of our research.

III. E XTENSIONS

A. Sensors and Effectors

To expand the range of application of universally pro-
grammable intelligent matter and for other practical purposes,
it is advisable to extend the set of primitive operations beyond
those minimally necessary for computational universality (e.g.,
� and�). First, we might want to addsensor operationsthat
respond differently in different environmental conditions. For
example, they might be sensitive to light or to the presence of
some chemical. The results of these tests could be used to con-
trol conditional execution of the program. In addition to such
external input to the program, it is also useful to have means
for external output, which can be accomplished witheffector
operations. These reactions, when they take place, cause some
noncomputational effect, such as the release of a chemical, the
emission of light, or physical motion. They are one of the ways
that intelligent matter can have an effect beyond its own internal
computational reconfiguration.

To some extent the sensors and effectors are ad hoc additions
to the basic computational framework (e.g.,��). However, they
are fundamentally incompatible with it in one sense, for the
time when their reactions take place is usually important. They
are termedimperativeoperations and do not have the Church-
Rosser property. Therefore, programs incorporating them must
have means for controlling the time of their execution. Fortu-
nately, these issues have been addressed long ago in the design
and implementation of functional programming languages (see
references in [13]), and the results of those investigations can
be applied to universally programmable intelligent matter.

B. Production of Molecular Networks

Another issue that must be addressed is the production of a
molecular combinator network (e.g., an�� tree) from a macro-
scopic program, and the subsequent replication of a large num-
ber of copies. Although the best approach is one of the objec-
tives of our research, a possible method can be presented at this
time. Arbitrary combinator trees can be represented uniquely
as parenthesized strings, such as “�������������.” Therefore,
such a string could be encoded by a chain of four molecular
groups (� �� �� �), such as “����������” for the previous
example. Thus we proceed in stages. The program is compiled
into �� trees (or other combinators); the trees are flattened into
parenthesized strings; and the strings are encoded into molec-
ular chain structures (e.g., DNA sequences), which are synthe-
sized and replicated by standard techniques from biotechnol-
ogy. The replicated program chains are converted back into
(now molecular) networks by a simple set of substitution rules,
implemented chemically.

C. Developing an Application

To tie the foregoing ideas together we may present the typ-
ical process of developing an application of universally pro-
grammable intelligent matter:

1) Write a program in an appropriate high-level program-
ming language to create the desired nanostructure or to
exhibit the desired interactive behavior at the nanoscale.



4

Debug and simulate the execution of the program on a
conventional computer.

2) Compile the program into a combinator tree (e.g., a net-
work of �, �, and other combinators).

3) Simulate (on a conventional computer) the substitutions
on the network, but subject to molecular constraints
(e.g., including reactant concentrations, substitution er-
rors, etc.).

4) On a computer, flatten the combinator tree into a string
representing a sequence of DNA bases.

5) Use this string to guide the synthesis of a DNA se-
quence.

6) Replicate the DNA sequence until the required number
of copies of the program are produced.

7) Use the translation or tree-building substitutions to con-
struct a molecular combinator tree from each DNA
string. (An intermediate RNA stage could be used, if
required.)

8) Supply reactants for the computational substitutions
(e.g.,������� groups), and allow the reaction to pro-
ceed to equilibrium.

9) If the application is static, wash out or otherwise elimi-
nate any remaining reaction waste products.

10) If the application is static, substitute permanent re-
placement groups for computational groups by ordinary
chemical processes (if required by the application).

IV. RELATED WORK

It is worthwhile to contrast universally programmable intel-
ligent matter with some other more or less related ideas.

Programmable matter[14]-[17] is an approach to computa-
tion based on lattice-like arrays of simple computational ele-
ments; cellular automata (such as Conway’s “game of life”) are
examples. Although techniques from the “programmable mat-
ter paradigm” certainly will be applicable to universally pro-
grammable intelligent matter, there are differences in objective:
programmable matter seems to be intended primarily for imple-
mentation on electronic digital computers, and computational
universality does not seem to be a goal.

Complex adaptive matter(CAM) has been under investi-
gation at Los Alamos National Laboratory as an approach to
adapting matter or materials to a desired functionality by a
quasi-evolutionary process comprising amplification, noise or
variation, and filtering. Again, the goals are different, but there
are several intersections with our research. First, like ours, their
focus is on molecular processes rather than electronic compu-
tation. Second, CAM techniques might be used for synthesiz-
ing functional groups implementing universal sets of molecu-
lar operators. Third, such a universal set might provide build-
ing blocks for the quasi-evolutionary CAM process. (Indeed,
we have already begun investigating statistical properties of
“soups” of�� complexes, which might be used as the raw ma-
terials of the CAM process [18]-[19].)

Smart Matteris being developed at the Xerox Palo Alto Re-
search Center. Its long-term goals are quite similar to those of
intelligent matter, as defined in this paper. However, the cur-
rent focus seems to be on small (but not molecular) building

blocks that combine sensor, computation, and actuation func-
tions. That is, the goal is MEMS (Micro-Electro-Mechanical
Systems) rather than nanotechnology. Certainly, however, in-
telligent matter, in our sense, will benefit from the more gen-
eral techniques of distributed control and embedded computa-
tion that might come out of the Smart Matter project.

V. A PPLICATIONS

Finally, it will be worthwhile to discuss briefly some of the
possible applications of universally programmable intelligent
matter, which may be static or dynamic (or interactive). By
a staticapplication we mean one in which the intelligent mat-
ter computes into an equilibrium state, and is inactive there-
after. Therefore static applications are most often directed to-
ward generating some specialized material with a computation-
ally defined nanostructure. On the other hand,dynamicor in-
teractiveapplications never terminate, but always remain ready
to respond to their environment in some specified way; they are
the truly “smart” materials.

A. Static Applications

Programs are ideally suited to creating complex data struc-
tures, which can be converted to complex physical structures
by means of universally programmable intelligent matter. Net-
works, chains, tubes, spheres, fibers, and quasi crystalline struc-
tures are all straightforward to compute. The network resulting
from such a computation will be composed of computational
groups (e.g.,�����) as well as inert groups, which are ma-
nipulated by the computation but do not affect it. Typically,
in these applications the computational phase will be followed
by a chemical phase in which the computational groups are re-
placed by substances appropriate to the application (a sort of
“petrification”). In addition to the examples already mentioned,
such an approach could be used to synthesize membranes with
pores or channels of a specified size and arrangement (deter-
mined either deterministically by the program or stochastically
by molecular processes).

A number of applications are suggested by the requirements
of implementing small, autonomous robots. Some of these
will be controlled by very dense analog neural networks, but to
achieve densities comparable to mammalian cortex (15 million
neurons per square cm, with up to several hundreds of thou-
sands of connections each), we will need to be able to grow
intricately branching dendritic trees at the nanoscale. Genera-
tion of such structures is straightforward with universally pro-
grammable intelligent matter (e.g., using�-systems [20]). The
sensor and effector organs of microrobots will also require very
fine structures, which intelligent matter can be programmed to
generate.

Of course, we should not neglect the potential of univer-
sally programmable intelligent matter to do conventional com-
putation, such as solving NP-complete problems by massively
parallel computation. For example, we might replicate many
copies of a program to test a potential solution, then mix them
in a reaction vessel with structures representing possible solu-
tions, and wait for equilibrium to determine actual solutions.
The advantage of our approach to this kind of search problem



5

over others, such as DNA computation, is that our nanoscale
test molecules are programmable.

B. Dynamic Applications

Dynamic intelligent matter is interactive in the sense that it
is continually monitoring its environment and capable of re-
sponding according to its program. That is, it is in a state of
temporary equilibrium, which can be disrupted by changes in
the environment, resulting in further computation and behavior
as the material seeks a new equilibrium.

For example, a membrane with channels, such as mentioned
above, could be made active by having the channels open or
close in response to environmental conditions, including con-
trol commands transmitted optically or chemically. The pro-
gram located in each channel is simple: in response to its sensor
state it executes one or the other of two effectors, blocking the
channel or not. The sensor and the medium would determine
whether the channel is sensitive to global conditions (e.g., over-
all chemical environment or ambient illumination) or to its local
environment (e.g., molecules or light in its immediate vicinity).

Similarly, unanchored or free-floating molecular clusters
(e.g., in colloidal suspension) may react to their environment
and change their configuration, thus affecting physical prop-
erties of the substance, such as viscosity or transparency. Or
they might polymerize or depolymerize on command. Unan-
chored supramolecular networks might also operate as semiau-
tonomous agents to recognize molecules or molecular configu-
rations, and act upon them in some intended way (e.g. binding
toxins or pollutants). However, such applications will require
the agents to operate in a medium that can supply the reactants
needed for computation.

These sorts of active intelligent matter will find many appli-
cations in autonomous microrobots. For example, active mem-
branes can serve as sensory transducers, responding to condi-
tions in the environment and generating electrical, chemical, or
other signals. They can also be programmed to self-organize
into structures capable of preprocessing the input (e.g., artifi-
cial retinas or cochleas). Further, it is a simple modification
of a membrane with channels to make a membrane with cilia
that flex on command. By means of local communication, the
cilia may be made to flex in coordinated patterns. Similarly
we may fabricate artificial muscles, which contract or relax by
the coordinated action of microscopic fibers. Universally pro-
grammable intelligent matter may also provide a systematic ap-
proach to self-repair of autonomous robots and other systems,
since if a robot’s “tissues” were created by computational pro-
cesses, then they can remain potentially active, ready to restore
an equilibrium disrupted by damage. Less ambitiously, mate-
rials can be programmed to signal damage or other abnormal
conditions.

VI. I SSUES

In this section we will summarize some of the issues
that need to be addressed in order to make universally pro-
grammable intelligent matter a reality, and which are therefore
topics of our research.

We need a model of computation that respects the constraints
of molecular processes. For example, as explained above, our
model cannot assume that replication is free, or that a functional
group can be linked to (“pointed at”) by an unlimited number
of other groups. Such a model of molecular computation might
be a modification of the network-substitution model, or it might
be a completely different model. (For example, we are investi-
gating a model based on permutation of link participants.)

Assuming that we stay with something like the combinatory
logic network-substitution model, then we need a solution to
the replication/sharing problem. One promising solution, which
we have been investigating, is to implement a “lazy” replica-
tion operation. With such an operation the two “copies” can
begin to be used even before the replication is complete. (The
Church-Rosser property guarantees the safety of such simulta-
neous use and replication.) Discarding such a partially repli-
cated structure causes the replication process to be prematurely
terminated, thus decreasing wasted resources.

We need one or more universal sets of molecular primitives.
Practical experience with combinator programming has shown
that it is usually more efficient to use more than the theoret-
ically minimum set of combinators. For example, by includ-
ing the identity function or� combinator [���� �� � ], many
of the self-canceling replications and deletions can be elimi-
nated. However, we will have to keep in mind that the effi-
ciency tradeoffs of molecular computing are not the same as
those of conventional computing (e.g., substitutions take place
asynchronously and in parallel, but require physical resources).
Other combinators, which are not necessary from a mathemati-
cal perspective, must be included because of the structures they
create. For example, the� combinator is used to construct
cyclic structures (i.e., self-sharing structures), whereas its defi-
nition in terms of� and� constructs potentially infinite branch-
ing structures, which are mathematically equivalent to cycles,
but not physically equivalent.

As previously discussed, interactive applications of univer-
sally programmable intelligent matter will require sensor and
effector operations. The sensors will assume two or more dif-
ferent configurations, or react in two or more different ways, de-
pending on some external condition (presence of light, a chemi-
cal species, etc.). For example, a sensor could produce either of
two different molecular groups, such as� (representingtrue,
which selects the first alternative) and���� (representingfalse,
which selects the second), or their equivalents. Therefore, we
need to determine a general way of incorporating sensors and
effectors into molecular programs. However, a more serious
problem is controlling the execution time of sensors and effec-
tors in a computational model in which substitutions can take
place at any time and in parallel. There are ways of delaying
substitutions in combinatory networks (for example, by “ab-
stracting” [9], [21] a dummy variable from them), but it is not
clear whether this is the best approach, or whether we should
use a different model that provides more direct control over
time of execution.

Certainly, one of the strengths of the combinatory logic ap-
proach to molecular computation is the Church-Rosser prop-
erty, which means that substitutions can take place in any order
without affecting the result of computation, but there are some



6

issues that must be resolved. For example, if a program has two
alternative branches, selected by a conditional operation, then
we may have substitutions taking place in both branches simul-
taneously. Even though it will not affect the result of computa-
tion, it may be wasteful to process a program structure that will
not be needed. However, there is a worse problem. If programs
are written in the natural recursive way (such as our	
�� and
���� examples above), then it is possible that all the reaction
resources could go to recursive expansion of conditional arms
that will end up being discarded. There are ways to solve this
problem within the combinatory logic framework. (For exam-
ple, we can delay the substitutions within a network by “ab-
stracting” [9], [21] from it an argument, which is provided only
when we want the substitutions to proceed.) However, there
may be more direct solutions to the problem, such as those used
in ordinary programming language implementations, which can
be adapted to the molecular context.

Similar problems arise in the implementation of interactive
intelligent matter, that is, intelligent matter that does not com-
pute to a stable state, but remains active. A rewriting sys-
tem, such as the�� calculus, is by its nature “compute once”
because the program is consumed in the process of computa-
tion. Indeed, this similarity to a chemical reaction is one of its
virtues in the context of molecular computation. However, it is
a problem in the context of interactive intelligent matter, since
it means that a program, once executed, does not exist to exe-
cute a second time. There are at least two potential solutions
to this problem. The standard solution, used in the network-
substitution implementation of programming languages, is to
use a combinator such as� (mentioned above) to replicate
a program structure whenever it is needed. Another solution
would be a molecular process to “interpret” a fixed program
structure, much as in an ordinary digital computer. However,
aside from the fact that this gets quite far away from network
substitution and its advantages, it has serious problems of its
own, which come from having multiple functional groups si-
multaneously “reading” (and thus linking to) the program struc-
ture.

Although there are many similarities between term-rewriting
systems and molecular processes, there are also important dif-
ferences, which must be addressed in a theory of molecular
computing. For example, the relative rates of reactions can be
controlled by the concentrations of the reactants and other con-
ditions, such as temperature. This can be exploited for nonstan-
dard uses of network substitution. For example, we may have
two or more conflicting sets of substitution rules for a set of
molecular operators, and we can determine which are applied,
or their relative probability of being applied, by controlling the
concentrations of the reactants needed for the alternate rule sets.
This permits probabilistic control of the nanostructures gener-
ated. Or we may have different substitutions performed in dif-
ferent stages of a process. Computation can also be controlled
by external fields or other gradients for various purposes, such
as creating oriented structures. Such considerations raise prob-
lems and potentials that are new for models of computation.

One characteristic of molecular computation which distin-
guishes it from electronic computation is the high probability
of error in molecular processes. Therefore, we will need to de-

velop means (both chemical and computational) for decreasing
the probability of such errors, for correcting them when they
occur, or for assuring that results are insensitive to them. Fur-
ther, unpublished preliminary investigations indicate that a cer-
tain fraction of random�� trees will result in nonterminating,
expansive, chain reactions [18]-[19]. (The probability of ter-
mination decreases with increasing random tree size.) This is
a potential problem, since it suggests that a sizable fraction of
substitution errors could result in runaway chain reactions that
could use up all the reaction resources.

Network substitution is based on the mathematical definition
of a graph: dimensionless nodes linked by edges; normally the
geometrical arrangement of the nodes and length of the edges is
irrelevant. However, molecular groups occupy finite volumes,
and there are constraints on the locations of bonds and lengths
of linking groups, which are some of the constraints that need
to be accommodated in a theory of molecular computing (e.g.,
compare Figs. 1 and 2). Folding of program networks could
also interfere with substitution operations, and so we will have
to find chemical means of keeping networks extended.

Interactive applications must be provided with an adequate
supply of reactants to assure that substitutions can take place
when they are supposed to. Certainly, some of the reactants
can come from the recycled products of previous reactions, but
others will require fresh raw materials. The same considera-
tions will apply in static applications that involve long or com-
plex chain reactions. There are several possible solutions to this
problem, but the choice depends on the specifics of the UPIM
application. For example, if the networks are attached to solid
substrates (e.g., membranes, sponges, or particles), then reac-
tants may be made to flow over them (thus also clearing away
waste products). If the networks are in colloidal suspension or
free-floating in a fluid, then reactants are easy to add; waste
products might be removed by osmosis, filtering, precipitation,
etc.

These are just a few of the ways in which universally pro-
grammable intelligent matter differs from conventional compu-
tation and use of term-rewriting systems. Many problems re-
main to be solved, but potential of universally programmable
intelligent matter makes them worth tackling.

ACKNOWLEDGEMENT

This research is supported by a Nanoscale Exploratory Re-
search grant from the National Science Foundation. Preparation
of this article has been facilitated by a grant from the Univer-
sity of Tennessee, Knoxville, Center for Information Technol-
ogy Research. The author’s research in this area was initiated
when he was a Fellow of the Institute for Advanced Studies of
the Collegium Budapest.

REFERENCES

[1] C. Hoffman and M. J. O’Donnell, “Pattern matching in trees,”Journal of
the ACM, vol. 29, no. 1, pp. 68–95, Jan. 1982.

[2] B. K. Rosen, “Tree manipulation systems and Church-Rosser theorems,”
Journal of the ACM, vol. 20, no. 1, pp. 160–187, January 1973.

[3] W. Fontana and L. W. Buss, “ ‘The arrival of the fittest’: Toward a theory
of biological organization,” Bulletin of Mathematical Biology, vol. 56,
no. 1, pp. 1–64, 1994.



7

[4] W. Fontana and L. W. Buss, “What would be conserved if ‘the tape were
played twice’?” Proceedings National Academy of Science USA, vol. 91,
pp. 757–761, 1994.

[5] W. Fontana and L. W. Buss, “The barrier of objects: From dynamical
systems to bounded organizations,” inBoundaries and Barriers, J. Casti
and A. Karlqvist, Eds. Reading: Addison-Wesley, 1996, pp. 56–116.

[6] J. H. Fasel and R. M. Keller (Eds.),Graph Reduction, Proceedings of a
Workshop, Santa Fe, New Mexico, USA, September 29 – October 1, 1986,
Berlin: Springer Verlag, 1987.

[7] D. A. Turner, “A new implementation technique for applicative lan-
guages,”Software — Practice and Experience, vol. 9, pp. 31–49, 1979.

[8] A. Church and J. B. Rosser, “Some properties of conversion,”Trans.
American Math. Soc., vol. 39, pp. 472–482, 1936.

[9] H. B. Curry, R. Feys, and W. Craig,Combinatory Logic, Volume I, Ams-
terdam: North-Holland, 1958.

[10] H. B. Curry, “Grundlagen der kombinatorischen Logik,”American Jour-
nal of Mathematics, vol. 52, pp. 509–536, 789–834, 1930.

[11] J. R. Hindley, B. Lercher, and J. P. Seldin,Introduction to Combinatory
Logic, Cambridge: Cambridge University Press, 1972.

[12] M. Schönfinkel, “Über die Bausteine der mathematischen Logik,”Math.
Annalen, vol. 92, pp. 305–316, 1924.

[13] B. J. MacLennan,Functional Programming: Practice and Theory, Read-
ing: Addison-Wesley, 1990.

[14] B. Mayer, G. Koehler, and S. Rasmussen, “Simulation and dynamics of
entropy driven, molecular self-assembly processes,”Physical Review E,
vol. 55, no. 4, pp. 4489–4499, 1997.

[15] B. Mayer and S. Rasmussen, “The lattice molecular automata (LMA):
A simulation system for constructive molecular dynamics,”International
Journal Modern Physics, vol. 9, no. 1, 1998.

[16] S. Rasmussen and J. Smith, “Lattice polymer automata”Ber. Bunsenges.
Phys. Chem., vol. 98, no. 9, pp. 1185–1193, 1994.

[17] S. Rasmussen, C. Knudsen, and R. Feldberg, “Dynamics of pro-
grammable matter” InArtificial Life II , volume X ofSFI Studies in the
Sciences of Complexity, C. Langton et al., Eds. Redwood City: Addison-
Wesley, 1991, pp. 211–254.

[18] B. J. MacLennan, “Preliminary investigation of random SKI-
combinator trees,” Dept. of Computer Science, University of Ten-
nessee, Knoxville, Technical Report CS-97-370, 1997. Available:
http://www.cs.utk.edu/̃library/TechReports/1997/ut-cs-97-370.ps.Z

[19] A. YarKhan, “An investigation of random combinator soups,” Dept.
of Computer Science, University of Tennessee, Knoxville, unpublished
technical report, 2000.

[20] A. Lindenmeyer and P. Prusinkiewicz, “Developmental models of mul-
ticellular organisms: A computer graphics perspective,”Artificial Life,
volume VI of SFI Studies in the Sciences of Complexity, C. G. Langton,
Ed., Redwood City: Addison-Wesley, 1989, pp. 221–250,

[21] S. K. Abdali, “An abstraction algorithm for combinatory logic,”Journal
of Symbolic Logic, vol. 41, no. 1, pp. 222–224, March 1976.

Bruce J. MacLennan (M’82) was born in Teaneck,
NJ in 1950. He received the BS degree with honors in
mathematics from Florida State University in 1972,
and the MS in 1974 and the PhD in 1975, both in
computer science from Purdue University.

From 1975 to 1979 he was at Intel Corporation (Senior Software Engineer),
where he worked on translator writing systems and on the 8086 and iAPX-432
microprocessors. In 1979 he joined the Computer Science faculty of the Naval
Postgraduate School, where he was Assistant Professor, Associate Professor,
and Acting Chair; his research focused on functional and object-oriented pro-
gramming and on neural networks. Since 1987 he has been an Associate Pro-
fessor in the Department of Computer Science of the University of Tennessee,
Knoxville, where his research has been on neural networks, field computation,
artificial life, and nanocomputation. He has published two books and more than
30 articles.

Dr. MacLennan was a Fellow of the Institute for Advanced Studies of the
Collegium Budapest in 1997.


