Sensors, Patches, Pores, and Channels:
Progress on Universally Programmable Intelligent Matter

UPIM Report 5
Technical Report UT-CS-03-513

Bruce J. MacLennan*

Department of Computer Science
University of Tennessee, Knoxville
www.cs.utk.edu/ "mclennan

December 29, 2003

Abstract

This report presents several systematic techniques for constructing complex
nanostructures. First, we define a general “patch format,” which allows mem-
branes to be hierarchically and iteratively assembled from smaller elements.
The usefulness of the technique is extended by demonstrating how such patches
may be joined and transformed in various ways. Several membrane architec-
tures, previously developed, are re-derived in patch format, demonstrating its
utility. Similar approaches are applied to the assembly of nanotubes. Patch
techniques are applied to the construction of channels in membranes, first to the
synthesis of a simple (always open) pore, second to the use of sensor molecules,
and third to their combination in a simple, open-once channel. Finally, the ideas
of patch assembly are applied to the synthesis of non-unit mesh membranes.

1 Patches

Large membranes will not always be homogeneous in structure; often they will con-
tain pores and active channels of various sorts embedded in a matrix. One way of

*This research is supported by Nanoscale Exploratory Research grant CCR-0210094 from the
National Science Foundation. It has been facilitated by a grant from the University of Tennessee,
Knoxville, Center for Information Technology Research. This report may be used for any non-profit
purpose provided that the source is credited.

Figure 1: Heterogeneous membrane constructed from patches. Colors and patterns
represent rectangular patches of differing architectures, including pores, which are
patches with open interiors. This figure shows how complex, heterogeneous mem-
branes may be synthesized hierarchically and iteratively from simpler, homogeneous
rectangular patches.

assembling such a structure is by combining rectangular patches, much as in a patch-
work quilt (Fig. 1). To facilitate this we have defined a uniform interface for such
patches.

1.1 Definition

A combinatory program P constructs an m x n patch if it has the following patch
synthesizer “signature” (m,n > 1):

PEY, Y, X1 Xy = FVy--- V.U, -+~ U, (1)

F is any combinatory operator (especially another patch synthesizer). Xi,..., X,,
will be horizontal connections from the patch to the right (or to terminal groups if
this is the right-most patch); similarly Y7, ..., Y, are vertical connections to the patch
below or to terminal groups. Whatever rectangular structure is created by P (e.g., a
cross-linked or hexagonal grid), V1, - --V,, represents the horizontal connections from
the patch on its left side, and Uy, ..., U,, the vertical connections from the patch
above it. The Vj, and U; connections are passed to F', which is typically another
patch synthesizer. See Fig. 2.

If this patch is the top-left-most of the membrane, so that additional additional
structure will not be attached to the Vi and Uj, then F' can be any inert group N.
This will leave a permanent border around the left and top margins. Similarly, if this
is the bottom- and/or right-most patch, then Y; and/or X} will be terminal groups.
The replicating and sharing varieties of W can be used to link to identical or shared
terminal groups X and Y, as described in an earlier report (Sec. 1.2 [Mac02a]). For

example, to share a single Y on the lower margin and a single X' on the right margin,
use WY (W~ L(PF)Y)X, since

WL WY (PR)Y)X = W i(PR)YX(m). X O
— PFY® ..y O xm-1) . x(0)

To have multiple copies, simply use W instead of W.

1.2 Joining Patches

Any such patch synthesizer may be joined either horizontally or vertically with an-
other patch synthesizer of compatible dimensions, to yield a patch synthesizer com-
bining the two (Fig. 3). For example, if P is an m x n patch synthesizer and @ is an
m X n/ patch synthesizer, then B"™'QP is an m x (n + n’) patch synthesizer with Q
to the right of P. To see this, suppose

PFEY; Y, X1 X,, = FVi---V,Up---U,, (2)
QFY/---YV,X{--- X = FV|---V'U---U.,. (3)

n

Yl Y2 Yn

Figure 2: Patch synthesizer format. The Y represent connections to the next patch
below, or to terminal groups if this patch is bottom-most in a membrane. Similarly,
the X}, represent connections to the next patch to the right, or to terminal groups if
this patch is right-most in a membrane. The U; and Vj, represent connection into the
top and left borders, respectively, from other patches. The U; and Vj, are parameters
passed to F', which may use them in the synthesis of other patches to the left of this
patch or above it.

Figure 3: Horizontal join of two patches. In this figure P and) denote the patches
constructed by two patch synthesizers (which also may be called P and Q). After
patch @ is synthesized, patch P is constructed on the connections into the left-hand
border of). F' is passed connections into the left and top borders of the (P, Q)
composite patch so that it can construct additional patches on either of these edges.
Thus the result of the horizontal join, joinh, QP, is a composite patch synthesizer,
fitting the patch synthesizer format (Fig. 2), which can enter into larger composite
patches.

To have the resulting patches connected horizontally, with P to the left of @), we set
Vi=2Xy, k=1,...,m. Now let R = B"™ QP and observe:
RFY,---Y, Y/ Y, X|--- X = B"MQPFY,---Y,)Y/---Y,X|--- X!
— Q(PFY;---Y,)Y]---Y.X|... X'
— PFY;---Y,V/...V'U ... U,
= PFY,---Y, X, ---X,,U---U,
— FVi---V,Uy---U,UL--- UL
Therefore we have the following simple definition of joinh so that joinh, Q)P is a syn-
thesizer that joins @ to the right of P (n wide):
Definition 1 (joinh)
joinh,, = Bt
Similarly, if P is m x n and @ is m’ x n, then P o B™(Q) is the (m + m') x n patch
synthesizer with P below @) (Fig. 4). To see this, let
PFY, - Y, Xy Xon = FVi---V,Up---U,, (4)
QFY/---Y!X|--- X!, = FV/---V,U---U. (5)
To attach) above P we set Y = Uy, k = 1,...,n. Suppose R = P o B™(Q and
observe:

RFYy Y, Xy X, X]-- X, = (PoB"Q)FY; - Y, Xy - X, X|--- X,
PB"QF)Y; - Y, Xy X, X! - X!,
B"QFV;---VyUy--- U X! - X!,

QFVy -V Uy --- U, X! -+ X!,
QUFVE - Vo)Y{ - VX[- X
FVy--- Vi vi,ul-- U

Pl bl

Therefore we have the following definition of joinv, which has the effect that joinv,, PQ)
is a synthesizer that joins P (m in height) below Q:

Definition 2 (joinv)
joinv,, = B(CBB™)B.

To see the correctness of this definition, observe:

joinv,, PQ B(CBB™)BPQ
CBB™(BP)Q
B(BP)B™Q
BP(B"Q)
PoB™Q.

FELLE

Figure 4: Vertical join of two patches. The upper patch @ is constructed on the
connections into the upper border of the lower patch P. The result, joinv,, PQ, is
in patch synthesizer format (Fig. 2) so that it can be used in the synthesis of larger
composite patches.

Rectangular patch synthesizers can be iteratively assembled, both horizontally and
vertically, to hierarchically construct large, heterogeneous membranes. For example,
if P is a k x [patch synthesizer, and @ is a k x I’ patch synthesizer, then (joinh, P)"Q
appends n copies of P on the right of (). Similarly, if P is k x [and @ is k¥’ x [, then
(joinv, P)™@Q places m copies of P below Q.

To illustrate, suppose P and () both synthesize k x k patches of different ar-
chitectures (e.g., one could be a membrane, the other a pore). Since joinh,QP ap-
pends @ to the right of P, clearly, then, joinv,(joinh, PQ)(joinh,QP) is a synthe-
sizer for a 2 x 2 checkerboard, which we may denote Sy = g g . Continu-
ing, R, = (joinhy.S5)" 1S, is a row, n in length, of such 2 x 2 squares. Finally,
(joinvy, R,)" 'R, stacks n of these double rows, producing a checkerboard, 2n on a
side, of alternating P and @ (each k x k).

Based on the foregoing examples, we may define two convenient operators for the
iterative assembly of membranes. As we have seen, if S is a k& x [membrane, then
(joinh,;S)"~1S will make a horizontal row of n copies of S. The size of this program
is O(n|S|), but it can be reduced to O(n + |S|) as follows:

(joinh,S)" 1S <= Z,_i(joinh,S)S
<= BZ,_1joinh;SS
<= WBZ,_ joinh,S.

Therefore we define iterh so that iterh;,,S, which makes a horizontal row of n copies

of the [-wide membrane S:
Definition 3 (iterh)

iterh; ,, = W(9)BZ,,_1joinh,.
Similarly, we may define iterv so that itervy ,,,S, which makes a vertical stack of m

copies of the k-high membrane S
Definition 4 (iterv)

itervy, ,, = W(2)BZ,,_1joinvy.

With these operators, our checkerboard example may be expressed: itervay ,, (iterhgg ,.S2).

In this way we can build upon a basic library of elementary membrane patches,
pores, and other nanostructural units in order to construct large, heterogeneous mem-
branes. Some of these elementary patches will be discussed in Sec. 1.4 and the fol-
lowing sections.

Figure 5: Flip-reversal of a patch synthesizer. An m x n patch is reversed and flipped
to yield an n X m patch by flipr,, ,. The assembled structure will be correspondingly
flip-reversed.

1.3 Patch Manipulation

Patches may be manipulated in various ways by using combinators to rearrange their
input and output connections. For example, Fig. 5 illustrates a “flip-reversal” of a
patch synthesizer, accomplished by flipr. If m x n patch P has the signature

PEY, - Y, X, X, = FV;---V,,Uy - - U, (6)
then we want flipr,, , P to be an n x m patch with the effect
flipr,, ,PX1 - XpY1--- Y, = FU--- U, Vi- - Vi,

with the U; and X defined as in the original patch (Eq. 6). We work backward as
follows, making use of the fact (Sec. 2 [Mac02b]) that (Cpyyn_1])" performs a right
rotation of m + n arguments by k positions:

flipr,, ,PFX; - X,,Y1--Y, = FU;---U,Vy---V,, (desired)
= ChupnyIVi- VUi U,
— P(Cl g F)Yi- Yo Xy X
= G y(P(Clupn g F)X1 - XYy - Yo,

Thus we have determined flipr,, , PF' = Cf} (P(Ch 1F)). To factor P and F

[m+4n—1] [m+n—1
out of the definition we continue working backward.

ﬂiprm,nPF = C%Jrn—l](P(C?[}nJrn—l]F))

— BCh) P(Chopn—y)

< BBC1n1P)C gy F
— CBCﬁnJrn—l](Bq;nJrn—l]P)F
= (CBClypy 0BTl 1) PF.

Hence we have
flipr,, , = CBCp, 1) © BCn1)-

Since [Cp, .., 1| € O[n(m + n)] we may prefer to use Z,Cpyyn—1), Which is O(m +n),
as in the following

Definition 5 (flipr)
fIiprm,n = CB(ZnC[m_m_u) o) B(ch[m+n_1]).

Another useful patch manipulation is to reverse the order of some or all of the
connections to the patch. Before considering such patch manipulations we address
the general problem of reversing a function’s arguments. Therefore we will define rev
so that rev, F' X, X, _1--- XoX; = FX1 X5+ X,,_1X,,. We present the definition and
then show its correctness.

Definition 6 (rev)

cll =,

revp,i1 = CMorev,, n>1.

revy

That is, rev, = C"~U o Cl"=2 o ... o CIO Unfortunately |rev,| € O(n?).
Theorem 1 Forn > 1,
I’eVnFXan,1 s X2X1 = FX1X2 cee anan.

Proof: The proof is by induction, and the n = 1 case is obvious. Therefore, for
n>1,

revy 1 F X1 X, - X3 (C o revy,) F X1 X - Xy
C(rev,, F) X1 X - - - X3
I’EVnFXn s Xan+1

FXy- X, X1

Ly

|
We could have equally well defined rev,, = Cjgj o Cjyj0---0 Cpyy.

Now if patch synthesizer P has the usual signature (PFY;-- Y, X; - - X,, =
Fvy---V,Uy---U,), then rev, o P reverses the order of the connections along the
lower border:

(rev, 0o P)FY, - Y1 X X, = rev,(PF)Y, ---Y1X;---X,,

= PFY;---Y, X, X,,

= FVi---V,,Uy---U,.
Since, typically, each Y; is connected to the corresponding U; in a patch, such a
reversal may lead to many links crossing in the membrane, constricting the structure,
so reversal of the Y is perhaps more useful if combined with a reversal of the Uj
connections. The latter is accomplished by P o B™rev,; to see this, observe:

(PoB™rev,)FY;--- Y, Xy - X,, = P(B™rev,F)Y;--- Y, X;---X,,

_— ereVnF‘/leUlUn

= FVi---V,,U,---U.
The latter is because B G = G|, defers the application of a regular combinator G by
m argument positions; hence, B"rev,, skips the V- - - V,,, before reversing. Therefore,
to reverse both the Y; and U; connections, we may use rev,, o P o B"rev,;:

(rev, 0 PoB™rev,) FY, ---Y1 Xy - X, = P(B"rev,F)Y;--- Y, X;--- X,

— ereVnF‘/l"'VmUl"'Un
= FVi---V,,U,---U.

Thus we may define a “horizontal flip” operation:
Definition 7 (fliph)

fliph,, ,, = Brev,, o CB(B"'rev,,).
To see the correctness of this definition, observe:

(Brev,, o CB(B™rev,,))P = Brev,(CB(B™rev,)P)
= rev,, o (CB(B™rev,)P)
= rev, o (BP(B™rev,))
= rev, o (P oB™rev,).

[In general, F' o P o G can be written (BF o CBG)P or (CBG o BF)P]
By analogous reasoning, we can see that B"rev,, o P reverses the X connections:

(B"rev,, o PYEY, - Y, X Xy = FVy -+ - V,,Up - - - U,,.
The V}, connections are reversed by P o rev,,:
(Porevy)Vi Y, Xy Xy = FVp - Villy -+ U,

Obviously, B"rev,, o Porev,, reverses both the X, and V), connections. Hence we have

11

Definition 8 (flipv)
flipv,, , = B(B"rev,,) o CBrev,,.

To reverse all the connections, use flipv,, ,, o fliph which commute):

m,n (

(flipv,, 0 fliphy) F Yy - Y1 X - Xy = FVipy - ViU, -~ Uy

Note that this operation is different from rev,,,,, o P o rev,,,, which flips the patch
across its main diagonal (making it n x m):

(reVipino Porevy) F X, - X1V, YT = P(revy o)Y Y, Xq - X
= reVpn FV1-- -V, U -+ U,
— FU,---UV,--- V1.

This is also useful, and so we give it a name:
Definition 9 (flipd)
flipd,,,, = Brevy,1n 0 CBrev,, .

The flipr operation is equivalent to reversing the horizontal and vertical connections
and flipping the patch diagonally. That is,

flipr,, , = fliph,, ,, o flipv,, ., o flipd

m,n’
although this would be an exceptionally inefficient way to compute it! Obviously, all

of these reversals and flips commute in simple ways.

1.4 Particular Membranes in Patch Format
1.4.1 Cross-linked Membrane

It is especially easy to construct a cross-linked membrane in patch format; the patch
synthesizer for an m x n membrane is simply Sl To show this, we will use the
notation of Sec. 1 [Mac02a], and prove

Theorem 2
SMIEY, Y, Xy Xy = FX™ o X0y, x Y x ey Ly, x O x 0,
Proof: The proof is by induction on m. For m = 0,

SOEY;--.Y, = IFY;---Y, = FY;---Y,.

12

For m > 0,

S FY1 Yo Xy X (g[m])pyl...y)(l...me

S () Y Xy Xo - Xm+1
BS,"F <YX) (X)X X
n (1)(1 X 1)"'(YnXl(O))XQ"'Xm+1
FXMX o x (x D x D x ey

m+1
0 0 0
(XX XS,

HHHH

|
The size of the cross-linked patch synthesizer is (Sec. 16 [Mac02c]):

S| = 18mn — 17, for m,n > 0.
This program is @(mn), but, much as we did in Sec. 1.3 [Mac02a], we can write
Sit =@l = Z,, @i, (7)
which has size in @(m+n). Therefore we can define the cross-linked membrane patch

synthesizer:

Definition 10 (xpatch)

xpatchmjn = Zm(iDnHI.

1.4.2 Hexagonal Membrane

A patch synthesizer for hexagonal membranes could be designed along the same lines
as the original hexagonal membrane (Sec. 3 [Mac02a]). However, there is a simpler
approach, for we can define a single “double row” in patch synthesizer format, and
iterate it to construct large hexagonal membranes; this illustrates the usefulness of
patches. We will define phrow,, to synthesize a hexagonal double row of width n in
patch format, as shown in Fig. 6. In terms of the notation of this figure, we want

phrow, FY;--- Y, X = FVU;---U,.

To derive the definition, we use a convenient means of creating combinatory functions,
which depends on a property of regular combinators [Mac02c, p. 6]. If Fy, ..., Fy are
regular, then the composition Fj o Fy o --- Fiy will sequentially manipulate the argu-
ment list according to the operators Fy, Fy, ..., Fy, in that order (Sec. 2 [Mac02c]).
Therefore, we can start with the given input arguments, F'Y; - -- Y, X, and then choose
combinatory operators to transform it into the required output FVU; ---U,.

Here is the derivation. We begin with the inputs to the patch synthesizer:

FY Y, - Y, 1Y, X.

13

Figure 6: Double row of hexagonal membrane in patch synthesizer format.

triangles are A (application) nodes (short leg = operator, long leg = operand), and

green cup-shapes are V (sharing) nodes.

Referring to Fig. 6 to see where we are going, we apply W[n] to share the Y:
FY/Y1YJYs-- Y Y, 1YY, X.
The alternating pairs after F'Y] are grouped into applications by BBM:

PY{(ViY) -+ (Y 1Y) (Y X).

For convenience, we rewrite this structure using the Z; defined in the figure (Z, = Y7,

Zn =YX, Z; =YY, j=1,...,n—1)
FiyZy - Zy 1 Z,.
Again we use W[n] to share the first n arguments:
FZ\Zy 212, - Z) Zy 1 2.
Since V = Z; we may rewrite this:
FVZyZ1Zy -+ 2!\ Zp 1 2.
Alternating pairs after F'V are again combined into applications by BB[M:

FV(ZoZ\)(Z1Zy) - (Zn—2Zy, 1)(Zn-1Zn).

14

-

AN
Z =

Figure 7: Joining tubes in patch format. If 7" and U are patch synthesizers for
nanotubes of the same circumference, then U o T is a patch synthesizer for the con-
catenation shown in the figure. This operation may be iterated to combine repeating
units into nanotubes of arbitrary length.

Now, since U; = (Z;17;), j = 1,...,n, we see that we have the desired result:
FvVUUy---U,_1U,.

Putting all these steps together, we conclude that the required transformation is
achieved by Wy, o BB o Wi, o BB[". This leads us to

Definition 11 (phrow)
phrow,, = (W, o BB")2,

It is then simple to iterate this row to create a patch synthesizer for an m xn hexagonal
membrane:

Definition 12 (hpatch)
hpatch,, , = itervy ,,,phrow,,.

It would have been possible to construct the cross-linked membrane patch synthe-
sizer xpatch by a similar iteration of a single cross-linked row, but Def. 10 is already
sufficiently simple (Z,,®,,41!).

2 Nanotube Patches

Nanotubes can also be synthesized in patch format to allow end-to-end connection
(Fig. 7). To accomplish this we first define ptubep,, ,, to synthesize a patchable cross-
linked tube of circumference m and length n. That is, we require

where y, = (y,go)Xl(n_k) . -ij:_k)).

15

This may be accomplished in much the same way as in the original cross-linked
nanotube (Sec. 2 [Mac02a]) by using the same auxiliary function G defined there:

G = B™Y(Cy). (8)

Working backward,

- ——
ptubep,, ,F X, - X,, — SIMFG...dXx,... X,
— WSIMRPGEX, ... X,

Therefore,

ptubep,,,F' = W (SIMp)G
— (W loSMhpG
— C(WrloSI"hGF.

Thus, substituting the definition of G (Eq. 8), we have the following
Definition 13 (ptubep)

ptubep,,, , = C(W"~" o SI™)(B™Y (Cppyl)).

Unfortunately, |SI™"| € @(mn), and so |ptubep,, ,,| € O(mn), but we can apply Eq. 7
to get an @(m + n) program:

Definition 14 (ptube)
ptube,,, ,, = C(W" ™ 0 Z,, &, 1) (B™Y (Cppy)).-

If T is a patchable tube synthesizer of length n and U is one of length n’, both of
the same circumference m, then U o T' is a patch synthesizer that appends U to the
right of T". To see this, suppose T' = ptube,, , and U = ptube,, ,,,. Observe:

(UoTFXy---X,, = UTF)X;--- X,
— TFXM .o x iy W)
where y, = (y,iO)Xl(nfk) co X =)y
— XL X () D () .yS,)
where z, = (20 X" L X (b ok)y
Hence U o T appends U to the right of 7.
This operation is easily iterated, for T* is k replicates of T' connected end-to-end

(and thus of length kn). This operation can also be expressed Z,T. If, as in the case
of ptube, the size of the synthesizer T"is O(m+n), then the size of Z,T is O(k+m+n).

16

Figure 8: One rib (ring) of a cross-linked nanotube in patchable format. The figure
has been linearized for the sake of clarity. The green arrows represent the rib (ring)
itself. The X} are the links to the staves (linear chains) of the nanotube to the right
of this rib. The V}, are the connections to be passed to F' so that additional ribs may
be synthesized on the left; the arguments to F' are shown by the blue arrows. U links
the rib to the “backbone” of the nanotube. As usual, red triangles are A (application)
nodes (short leg = operator, long leg = operand), and green shapes are V (sharing)
nodes. The structure of the cross-linked nanotube is described in an earlier report
[Mac02al.

17

The iteration of patchable tubes suggests that nanotubes may be synthesized
by iteration of a single rib (ring), as the hexagonal membrane was synthesized by
iterating double rows (Sec. 1.4.2 above). As usual, we use G (Eq. 8) to construct the
rib:

GXfO) X0 — D where y = (y(O)Xfo) o X0,

We will define prib,, as a patch synthesizer for a single rib of circumference m. Re-
ferring to Fig. 8, we can see that it should accomplish:

prib,, F X;--- X,, = FV;---V,,U, (9)
where V, = X ,gl) and U = yM. Working backwards,

FXO . x0y0 — pxM. xO(Gx© ... x©)

In the last line, we have made use of properties of S (Sec. 15 [Mac02¢]). Thus we have
determined that prib,, F' = S/ FG. (This is related to the use of Skfi] to construct an
m x n cross-linked membrane: Sec. 1.4.1 above.) Since CSI"/GF = SIMFG, we have,

after substitution for G,

Definition 15 (prib)

prib,,, = CSI™ (B™Y (Cpn)).

" or, since

To construct a patchable nanotube of length n we can now write (prib,),)
this is @(mn), we can use Z,prib,,, which is only O(m + n).

Due to the directedness of the links used in combinatory molecular synthesis,
nanotubes will have a chirality (a left- or right-handedness). (This can be seen clearly
in Fig. 8 [Mac02a].) Therefore, it can be useful to be able to reverse the chirality
of a nanotube patch. Since the staves (linear chains of V nodes) of the nanotube
correspond to the horizonal chains (“woof”) of a membrane patch, the chiral reversal
of nanotube 7' (m in circumference) is accomplished by flipv,, ;7. We illustrate this
for the case of prib (Eq. 9):

flipv,, oprib,, F' Xy, - - - X3 (rev,, o prib,, o rev,,) F X, - -+ X3
rev,, (prib,, (rev,, F')) X, - - - Xy
prib,, (rev,, F) X7 - - X,
rev,, F'Vi---V,,U

FV,,--- ViU

FEril

18

Figure 9: Simple pore in patch synthesizer format. This m X n pore is synthesized by
spore,, ,. The dark circles may be any desired terminal groups. Fig. 10 depicts such
a pore synthesized in a cross-linked membrane.

3 Pores

A rectangular pore is simply a patch in which the interior is an open space. These
pores can be combined with other patches to create membranes with pores of a given
size and distribution (all in terms of the fundamental units, of course; see Sec. 6
below). Pores can be included in the surfaces of nanotubes as well.

Consider the simple pore shown in patch synthesizer format in Fig. 9. Its simple
and repetitive structure makes it somewhat difficult to express accurately, so we will
introduce some specialized notation for the purpose. Consider first the right-hand
margin of the pore; it has the structure:

(X1 (XX (KXo X1 X)) -+ 2)))-

It may be described more precisely by the following ad hoc notation:

= = X,
Er = (XeZh), for 1 <k <m.

Now consider the bottom margin of the pore; it has the structure:
(F(Y1(Ya(Ys - (Yoo (Your(YRED))))

This may be described more precisely by use of the following ad hoc notation (m,n >

1):

n . =m
Tn+1 - 1>

Ty = (Y;05,), for1<j<n.

The complete pore is, then,
(FYTNN---N).
——
m4n—1

Here N is any inert group used as terminators on the left-hand and upper margins of
the pore. Any groups might be so used, and in addition it is a simple modification to
use different groups for the left-hand and upper margins.

By means of our notation, we can express the intended operation of the pore
synthesizer:

spore,, . F'Yy - Y, Xy Xy = FYTNN---N.

m-+n—1

We can proceed as we did before (p. 13) by the stepwise application of regular oper-
ators to transform the argument structure. Given the input structure,

FY;- Y, Xy X,

20

we use the left-reduction By, ,,—1) (Sec. 2 [Mac02b]) to group the Y; and X}, (of which
there are m + n) to the right:

FY(Ya - (Yo(Xa(Xa - (X Xin) --0))) - -2)) = FIYT.

Next we must append the desired terminal group (N here), which we will do with a
simple operator Ay, to be defined shortly:

FY'N,

We want m +n — 2 additional copies of the terminal group, which is accomplished by
BW™ =2 (that is, W™~2 deferred by one term), where W = W if we want separate
copies of the terminal group (as shown in Fig. 9), which is the usual case, or W =W
if we want one copy to be shared, which is less useful, since it will pinch up the pore.
In either case we obtain:
FYT'NN---N,
——
m—+n—1
which is the desired result of spore,, .. Thus, the synthesis of the pore is accomplished

by Bpm4n-170 An o B\/AV’”J“"_Q7 where it remains to define Ay. We work backward from
its intended effect (i.e., Ay appends X after the two following arguments):

AxFY =— FYX
«— |FYX
«— CHXFY.

Therefore Ay = CIX. We can now state
Definition 16 (spore)

spore,, , = Bmin-170 CPIN o BVAVer”*Q, for m,n > 1.

Again, in this definition, N may be replaced by any desired terminal group. Figure 10
depicts a simple pore (generated by sporeg o) embedded in a cross-linked membrane.
As in our previous report [Mac02a], the red color of the warp (vertical) lines indicates
that they are chains of A (application) nodes, while the green color of the woof (hor-
izontal) lines indicates that they are made of V (sharing) nodes. The only exception
is the green line forming the bottom and right margins of the pore, which comprises
A nodes around these two borders.

4 Sensors

Channels open or close under control of sensor molecules, which can respond to
conditions, such as electromagnetic radiation or the presence of chemical species of

21

-/-/-/-[/-/-/‘9\/-/-/-/

v v vVvVVVVVV VYV
VvV Vv v Vvyvrvvyvrvrvrry

VvV
7
/
/
/
%

Figure 10: A simple pore embedded in a cross-linked membrane. This is a 6 x 9 pore
generated by sporeg o.

22

interest. A triggered (as opposed to sampled or polled) sensor is one in which the
occurrence of a condition triggers computation. Formally, the triggering condition
is considered a required reactant for the substitution. Each sensor molecule will be
unique, but a simple interface standard is desirable.

This is most simply accomplished by synthesizing an (otherwise inert) molecular
group, which we denote K_,, that responds to condition A by reconfiguring into a K
combinator (or a group recognized by the K reaction). Formally, this is described by
the reaction equation:

K_» + A — K + other reaction products.

We call this a K-active sensor; obviously an S-active sensor could be defined analo-
gously.

K-active sensors can be used for a kind of triggered conditional execution. For
example, an expression of the form K_,FXY will be irreducible so long as it is
not exposed to condition \. When A is present, however, the following reduction is
enabled:

KOFXY +)= KFXY = FY,

which enables F'Y'| the application of function F' to argument Y, to proceed. More
explicitly, the reaction is!

UASK_L\FXY + X+ 2DQ — UAFY + DAQX + DAKQ + other reaction products.

As we will see (Sec. 5.2 below), the deletion of structure X, resulting from DAQX, can
also have useful effects. It should also be observed that in the “conditional” expression
K_AF XY, computation (substitution reactions) may be taking place in any or all of
the substructures F', X, and Y, either before or after the triggering of the sensor;
this is a consequence of the order-independence of combinatory computing. What
the untriggered sensor blocks is the application of function F' to its argument Y.
Due to the order-independence of combinatory computing, triggered sensors must
be handled carefully. For example, structures containing K_, can be replicated, but
the replication operation will require an adequate supply of K_, molecules. The
supply can be diminished by the presence of A\, which will degrade the K_, molecules
into Ks. Similarly, if a structure S(K_,), which contains sensors, is exposed to A before
it is replicated, then it is the altered (already triggered) structure S(K) that will be
replicated, rather than the untriggered. The practical effect of these problems is that
all self-assembly of structures containing triggered sensors must be allowed to proceed
to completion under conditions in which the triggering situations are impossible. Once
the structure is complete (including all required replication of the sensors), it can be
placed in its operational environment, in which the triggering condition may occur.

I This equation makes use of the revised K reaction, UA;KXY +2DQ — UX + DAQY + DAKQ,
which corrects that originally described [Mac02c, Mac02d].

23

Figure 11: Active region of simple open-once channel in quiescent state. The larger
circle represents the sensor K_,, which has the effect of a K combinator when triggered
by environmental condition A. The smaller circle is an N (inert) group. Red triangles
are A (application) nodes, and green triangles are V (sharing) nodes. The colored
border represents the surrounding membrane (e.g., a hexagonal membrane).

Sampled or polled sensors respond to a condition only when they are asked to do
so. We have not yet investigated this kind of sensor, since it is generally incompatible
the order-independent computing of combinatory logic. However, they may be useful
in some applications, including the construction of channels that open and close
repeatedly.

5 Channels

5.1 Introduction

Given a sensor, “one-shot” channels — which open and stay open, or close and stay
closed — are easy to implement. In the former case, the sensor triggers the dissolution
of the interior of its patch (perhaps using the deletion operator D to disassemble it).
In the latter case, the sensor triggers a synthesis process to fill in a pore. Reusable
channels (which open and close repeatedly) are more complicated, since, in order to
reset themselves, they need a supply of sensor molecules that are protected from being
triggered before they are used.

24

Figure 12: Active region of open-once channel in triggered state. The sensor group
K_, has reconfigured into a K combinator, resulting in the structure KNU, where U
denotes the horizontal chain of red (A) nodes.

5.2 Open-once Channel

To illustrate the assembly and operation of channels, we will describe a simple open-
once channel, that is, a channel that, when subjected to a triggering environmental
stimulus, opens a space or pore in a membrane. The active region of such a channel,
that is, the part that responds to the environmental situation, is shown in its quiescent
state in Fig. 11. This active region is along the upper border of the channel; that is,
when the channel opens, a portion of the membrane below the active region will be
removed. (If this is confusing, refer to Fig. 16.)

It can be seen in Fig. 11 that the membrane above the channel, whose lower border
is formed by the green V (sharing) nodes, is disconnected from the active region of
the channel, comprising the red A (application) nodes and the others (N, K_,). Thus,
even in its quiescent state, there is a gap in the membrane. Depending on the size
of the channel, the stiffness of the membrane, and other factors, this may allow some
leakage through the membrane. It is in fact possible to construct a channel with these
two margins “knitted” together, but it is more complicated than the simple open-once
channel described here.

When environmental condition A\ occurs, the sensor group K_ reconfigures so that
it is recognized as a K combinator; this situation is depicted in Fig. 12. Letting U
denote the horizontal chain of red (A) nodes, we now have the combinatory expression
KNU, which reduces to N; this is depicted in Fig. 13. As a consequence, U is a reaction

25

Figure 13: Disconnection of upper border. The combinator substitution reaction
KNU = N results in U, the horizontal chain of red (A) nodes, being designated as
a reaction waste product. The small black circle is a D (delete) operator.

waste product, and so it is marked by a D (delete) operator (represented by the small
black circle in Fig. 13). (The detailed mechanisms for disassembly and deletion of
reaction waste products are discussed in a prior report [Mac02d].)

The disassembly and deletion process, triggered by the D operator, will disconnect
all the A nodes in U chain (the horizontal red chain in Fig. 13), which will in turn
trigger disassembly and deletion of part of the membrane below it; this is depicted in
Fig. 14. The shape and extent of the region deleted depends on the structure of the
membrane (for the particular case of a hexagonal membrane, see Fig. 16).

To synthesize such a channel, the upper border is constructed in patch synthesizer
format, as shown in Fig. 15. The required effect of the synthesizer is:

sopen, , FY; -V, X = F(KLN(Y (Yoo (Yoo Ye)) X070 X O,

Again, we apply regular operators to sequentially modify the argument structure. We
begin with
FY1Ys-- Y, 1Y, X.

The F' and its n arguments Y; are grouped to the right by Bp,_y):
FOM(Yar (Ya1Ya))X,
Since CBGFU = BFGU = F(GU), we apply CB(K_,N) to produce:
FKON (Y- - (Yo Yn) - 0)) X

26

Figure 14: Deletion of upper border triggers opening of channel. Recursive deletion
of the A nodes of the upper border (red chain in Fig. 13) triggers deletion of the part
of the membrane that depended on it.

The connection to the right, X, is shared n times by BW"™! to yield:
F(K_N(Y Yy (Y, 1Y) -)XY X O

Hence we have derived
Definition 17 (sopen)

sopen, ,, = Bj,_1j 0 CB(K_,N) o BW" .

As indicated, the simple channel, when triggered, disconnects the vertical connec-
tions Y1, ..., Y,. Depending on the patch below the channel, deletion of the Y7,...,Y,
will cause the deletion of nodes below them, opening a space in the membrane. For
example, Fig. 16 shows how the triggered channel opens a triangular region in a
hexagonal membrane. It is apparent that sopen,, will open an equilateral trian-
gle, n on a side. Therefore a complete hexagonal channel, comprising the trigger
region and hexagonal membrane sufficient for the opened space, can be synthesized
by joinv, hpatch,, , sopen, ,,. Therefore we define a synthesizer for a hexagonal channel
opened by A:

Definition 18 (hsopen)
hsopen, ,, = joinv, hpatch,, sopen, ,.

Of course, such a channel can be combined with membrane patches of any type, not
just with other hexagonal patches.

27

x® X X

l X(n—l) ! X(n—2)
\ -
v V
/7
7
7
¢ \
\/ N

Figure 15: Simple, open-once channel in patch synthesizer format. Such a channel is
constructed by sopen, . The small, dark circle represents an N (inert) group. Note
the orientation of the red A (application) nodes: the shorter leg is the operator link,
the longer is the operand link.

28

L

Figure 16: Links and nodes deleted from hexagonal grid when simple channel opens.
This figure depicts a simple channel embedded in a hexagonal membrane, with the
channel in the same state as in Fig. 14, when the upper border of the channel border
is ready to be deleted. The large blue circle represent the D (deletion) operator,
and the blue links and blue outlined nodes are those that will be deleted. Thus the
channel opens an equilateral triangle in the hexagonal membrane. Since the channel
is sopen, g, the triangular space is 6 on a side.

29

<
N

Figure 17: Incremental lengths of combinatory nanostructures. The lengths of the
linking groups (blue) and the diameters of the A (application) nodes (red) and of
the V (sharing) nodes (green) together define the minimal incremental length 6 of
possible combinatory nanostructures. The figure shows the smallest or unit mesh for
the hexagonal and cross-linked membranes.

6 Non-unit Meshes

The membranes and nanotubes previously described are said to have a unit mesh,
that is, the dimensions of the basic (square or hexagonal) cells are determined by the
size of the primitive groups (A, V) and the links between them (Fig. 17). Thus, the
sizes of these groups define the minimal incremental lengths of possible combinatory
nanostructures, the incremental length being the average distance between the units
of a repeating structure. Therefore, we cannot define structures with a mesh smaller
than the minimal incremental length, but we can define structures with larger meshes.
There are several ways to accomplish this.

First, it is relatively straight-forward to modify the preceding definitions to have
larger mesh-dimensions (multiples of the cells). In addition, various pendant groups
can be incorporated into the structure. This approach will not be addressed in this
report.

Second, it can be seen that a k X k pore is similar to a cell in a mesh-k membrane,
and, with care, they can be used for this purpose. The problem is that pores don’t
really have connected borders on their left or top sides (see Fig. 9 and remember that
the patch backbone is deleted when the pore is embedded in a membrane). Therefore,
when two pores are joined, the border between them is missing or incomplete (e.g., a
dangling chain of N nodes). However, borders can be attached by adding kx 1 or 1 x k

30

membrane patches to the edges. The resulting cells can then be iterated horizontally
and vertically to construct a membrane, which may be adequate for its purpose, but
is not purely a mesh-k membrane, since the cells have k connections (rather than 1)
on each side.

Third, this use of pores suggests a way of constructing a large-mesh cell, called a
spanning patch, that is more general. We will develop a patch structured as shown in
Fig. 18. In terms of its connections, it has the general structure of a 2 x 2 cross-linked
membrane. However, it incorporates four functions (i.e., combinatory structures that
compute during patch assembly), which control the structure of the four borders; H;
and H, control the spacing along the lower and upper cell boundaries; P, and Ps
control the spacing on the left and right boundaries. By use of these four functions
quite general structures may be created. To keep the roles of the four functions clear,
we use the following notation for the spanning patch synthesizer:

Hy
xspan | P, Py
H,y

The definition of the spanning patch is derived by the sequential composition of
regular operators. We begin with the patch parameters:

FY1Y, X1 X5.

Applying CP! rotates the parameters left:

FY; X1 X5Y7.
Next CIP; places P after F:
FRY; X1 X5Y.
B groups it with its argument:
F(PY3) X1 XoY].

Next S@ shares the X} and makes one copy of each an argument of PY5:
FX1 X,(PY2 X1 X5)Y). (10)
Note (Fig. 18) that Uy = P,Y>X| X}, so we have:
FX1X5UsY].
Next we use Cjyl H, H; to place the Hj, after I, ready to be applied to the correspond-

ing Xy:
FHiHy X, X5UsY.

31

U,
>
X
>
X

Y1 Y2

Figure 18: Cross-linked spanning patch. The horizontal spanning functions Hj are
combinatory trees defining functions that can create chains of arbitrary length be-
tween the corresponding V) and X}, thus making the patch as wide as desired. Simi-
larly, the perpendicular spanning functions P; are functions that can operate to create
a chain between the corresponding U; and Y;. The horizontal V-chains (the woof) are
shown in green; the vertical A chains (warp) are in red; blue indicates the backbone
of the patch synthesizer. Such a spanning patch is created by

32

U applies the Hj, to the corresponding Xj:
F(H1X1)(Hy X5)UsY,.
Note that Vi, = Hp X}, so this is equivalent to:
FViVaUsYi.
Now we need to work on Y7, so we use Cf3) to rotate it left circular to F"
FY 1 ViVaUs.

As before, we must place P; after F' and group it with Y7, which is the double step
CIPl O B:
F(PY1)ViVaUs.

Now S duplicates the Vj and applies P1Y; to one set of them:
FViVa(PYAV{ V) Us. (11)
But the parenthesized expression is just U;, so we have
FViVaUh U,

which is the required result. Combining the individual steps in sequential composi-
tion, we have the (surprisingly complex)

Definition 19 (xspan)

Hy
xspan | Py P, | =CPloClPy0 S o CylH HyoWoCyoClP o SPL
H,

When more convenient, we also write xspan{ P, P»; H1, H} for this synthesizer.
Most commonly the horizontal and perpendicular spanning functions (the Hj, and
P;) will be used to generate chains of some terminal group 7', such as shown in Fig.
19; therefore we derive combinatory expressions to generate such chains.
We begin with the horizontal spanning functions, for which V, = H X}, (Fig. 18).
We want to define spanh,,T" so that Vi, = spanh, T X}, is a horizontal chain of the form
shown in Fig. 19(a), which can be written (dropping k subscripts):

V:T@U:WNTX»“»

m T’S

This is accomplished by

33

(a)

RRRRRE

<~

(b)

Figure 19: Typical horizontal (a) and perpendicular (b) spanning functions for use
with the cross-linked spanning patch. These examples show chains of three links
assembled by the functions spanh;7" and spanvs;7. In the vertical chain, the W, are
Vi if 7 =1 and X}, if j = 2 (cf. Fig. 18).

34

Definition 20 (spanh)
spanh,, = W™ "By, _y.
To see this, observe

spanh, TX = W™ 'B,_yTX

/L
— B[m—l] Tr---TX
= T(I(T---(T(TX))).

For the vertical spanning functions we want (Egs. 10, 11) U; = P Y;V/V, and
Uy, = PY5 X1 X); in general we may write U = P;Y;W;W,. The chain to be created
by spanv, is illustrated in Fig. 19(b), which can be written:

spanv, TY, W Wy = Y,(W, (T(T --- (T(T W3)) ---))).
nT’s
This is accomplished by
Definition 21 (spanv)

Spanvn = Wn_l(C[Qn_,’_l] B[TH”H)
Observe:

spanv, TY;W W, = W' H(C? 1B TY; W1 W,

9 ——
— C[n+1]B[n+1} TT e T}/JW1W2
— B[n+1]Y7W1TT . TW2
= V(W (T(T-- - (TW3) -).

With these definitions we can synthesize a single cell of size k x [, with terminal
groups 1" on the vertical borders and U on the horizontal borders, by:

spanh,U
xspan | spanv, 1’ spanv,T

spanh,U

This cell can be iterated vertically and horizontally (by using iterv and iterh) to
assemble a membrane of any desired size.

35

References

[Mac02a)]

[Mac02b]

[Mac02c¢]

[Mac02d]

Bruce J. MacLennan. Membranes and nanotubes: Progress on uni-
versally programmable intelligent matter — UPIM report 4. Tech-
nical Report CS-02-495, Dept. of Computer Science, University of
Tennessee, Knoxville, 2002. Available at http://www.cs.utk.edu/
~“library/TechReports/ 2002 /ut-cs-02-495.ps.

Bruce J. MacLennan. Molecular combinator reference manual. Tech-
nical report, Dept. of Computer Science, University of Tennessee,
Knoxville, 2002. Latest edition available at http://www.cs.utk.edu/
“mclennan/UPIM/CombRef.ps.

Bruce J. MacLennan. Molecular combinator reference manual — UPIM
report 2. Technical Report CS-02-489, Dept. of Computer Science, Univer-
sity of Tennessee, Knoxville, 2002. Available at http://www.cs.utk.edu/
~library /TechReports/ 2002 /ut-cs-02-489.ps.

Bruce J. MacLennan. Replication, sharing, deletion, lists, and numer-
als: Progress on universally programmable intelligent matter — UPIM
report 3. Technical Report CS-02-493, Dept. of Computer Science, Univer-
sity of Tennessee, Knoxville, 2002. Available at http://www.cs.utk.edu/
~“library/TechReports/ 2002 /ut-cs-02-493.ps.

36

