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Abstract

Field computation deals with information processing in terms of
�elds� continuous distributions of data� Many neural phenomena are
conveniently described as �elds� including neuron activity from large
�brain area� to small �dendritic� scales� Further� it is often useful to
describe motor control and sensorimotor coordination in terms of ex�
ternal �elds such as force �elds and sensory images� We survey the
basic concepts of �eld computation� including both feed�forward �eld
operations and �eld dynamics resulting from recurrent connections�
Adaptive and learning mechanisms are discussed brie�y� The appli�
cation of �eld computation to motor control is illustrated by several
examples� external force �elds associated with spinal neurons �Bizzi
� Mussa�Ivaldi 	

��� population coding of direction in motor cor�
tex �Georgopoulos 	

��� continuous transformation of direction �elds
�Droulez � Berthoz 	

	a�� and linear gain �elds and coordinate trans�
formations in posterior parietal cortex �Andersen 	

��� Next we
survey some �eld�based representations of motion� including direct�
Fourier� Gabor and wavelet or multiresolution representations� Fi�
nally we consider brie�y the application of these representations to
constraint satisfaction� which has many applications in motor control�

�This paper will appear in Self�Organization� Computational Maps and Motor Control�
ed� by Pietro G� Morasso and Vittorio Sanguineti� Elsevier�North Holland� in press�



� Motivation

My purpose in this chapter is to introduce the general concepts of �eld com�
putation and to describe some possible applications of it to motor control�
Field computation deals with continuous distributions of activity such as
are found in the topographic maps and other functional areas of the brain
�Knudsen et al� �����	 but also with external distributions of quantity	 such
as force �elds� In �eld computation we are generally concerned with the
topology of the space over which a quantity is distributed
 this contrasts
with the common approach in neural network modeling	 which treats neural
activity as a vector	 that is	 as quantity distributed over a space with no sig�
ni�cant topology �since the axes are independent and	 in e�ect	 all equally
distant from each other��
After de�ning �elds and surveying their occurrence in the brain	 I will

give a brief introduction to the mathematics of �eld computation and then
consider several problems in motor control from the perspective of �eld
computation�

� Fields

��� De�nition

For the purposes of �eld computation	 a �eld is de�ned to be a spatially con�
tinuous distribution of quantity� Field computation is then a computational
process that operates on an entire �eld in parallel� Often we treat the �eld
as varying continuously in time	 although this is not necessary�
It is sometimes objected that distributions of quantity in the brain are

not in fact continuous	 since neurons and even synapses are discrete� How�
ever	 this objection is irrelevant� For the purposes of �eld computation	 it
is necessary only that the number of units be su�ciently large that it may
be treated as a continuum	 speci�cally	 that continuous mathematics can be
applied� There is	 of course	 no speci�c number at which the ensemble be�
comes big enough� to be treated as a continuum
 this is an issue that must
be resolved by the modeler in the context of the use to which the model will
be put� However	 since there are ��� ��� neurons per mm� throughout most
of the cortex �Changeux ����	 p� ���	 it is reasonable to say that activity in
a region of cortex more than a square millimeter in size can be safely treated
as a �eld�
Mathematically	 a �eld is treated as a continuous	 usually real�valued	

function � over some continuum �	 its domain or extent� For example	 if � is
a circular disk representing the retina	 then for any point p � �	 ��p� might
be the light intensity at p� The �eld�s domain has some topology �relations
of connectivity and nearness�
 for example	 the topology of the retina is a
two�dimensional continuum�
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��� Realization in the Brain

There are several levels of neural activity that can be viewed as �eld com�
putation�
The most obvious �elds	 which are measured by multiple electrode record�

ing or by noninvasive imaging	 such as NMR	 are those comprising the spik�
ing activity of neurons� Since	 as we have seen	 there are ��� thousand
neurons per square millimeter of cortex	 regions of cortex of this size are
more than big enough to be treated as continua �reasonably	 a tenth of a
square millimeter is more than large enough�� Indeed	 Knudsen et al� ������
observe that computational maps in the brain may be as small as a square
millimeter	 and perhaps smaller�
In cortical regions where the information is represented by impulse rate	

the �eld is real�valued
 thus ��p� t� or �p�t� represents the instantaneous im�
pulse rate at location p and time t� Recently Hop�eld ������ has argued that
information may be represented by a combination of impulse frequency and
phase �relative to a global clock� �eld or to other neurons�
 in some cases
at least	 the phase represents an analog value and the amplitude represents
its importance� In such cases it�s natural to treat the �eld as complex�
valued	 with the complex number�s phase angle representing the impulse
phase and its magnitude representing the impulse amplitude� Thus we write
�p�t� � ap�t�e

i�p�t�	 where ap�t� is the time�varying amplitude and �p�t� the
time�varying phase� Synapto�dendritic transmission of such a �eld	 which
a�ects both its amplitude and phase	 can be represented as multiplication
by a constant complex number� For example	 suppose a �eld � � z� re�
sults from transmitting �eld � through synapses zp � wpe

i�p that introduce
amplitude change wp and phase shift �p� Then	

�p�t� � �wpe
i�p � ap�t�e

i�p�t� � �wpap�t��e
i��p�t���p��

More compactly	 � � �wei���aei�� � �wa�ei������ This encoding allows the
soma potential to combine both the analog values and the importance of
signals arriving at the synapses�
At the next level down we can consider the synaptic �elds associated

with one neuron or a group of neurons� For example	 �p�t� represents the
time�varying activity �measured	 for example	 by presynaptic potential or
by neurotransmitter �ux across the synapse� of synapse p� Certainly a pyra�
midal cell with ��� thousand synapses on its dendritic tree can be said to
have a synaptic �eld	 and even neurons with smaller numbers of inputs can
treated as processing �elds� The topology underlying the �eld is determined
by the dendritic tree	 so in many cases the synaptic �eld cannot be treated
separately from the dendritic �eld �discussed next��
When we view the neuron at the level of the dendritic �elds	 we are

concerned with the time�varying electrical potential �eld over the dendritic
membrane� This varies continuously from point to point on the membrane
and is determined by the detailed morphology of the dendritic tree� To a
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�rst approximation	 �eld computation in the dendritic tree can be treated
as a linear system �MacLennan ������
Finally	 there are �elds at larger scales� For example	 the phase delays

discussed by Hop�eld ������ may be relative to the phase of an oscillating
�eld potential� in an area �Ferster � Spruston ������ Further	 there are
global brain rhythms ��	 � etc���
All the preceding �elds are dynamic	 changing on times scales of mil�

liseconds or faster� It is often worthwhile to consider �elds that are static or
that change on slower time scales �for example	 through learning or adap�
tation�� Such �elds are represented in the connectivity patterns between
neurons and in patterns of synaptic e�cacy� For example	 suppose that a
topographic map A projects to a topographic map B in such a way that the
activity �u�t� of a neuron at location u in B depend on the activities �v�t�
of neurons at locations v in A	 and that the strength of the dependence is
given by Kuv� In the simplest case we have a linear dependence	

�u�t� �

Z
�
Kuv�v�t�dv�

which we may write as a �eld equation	 ��t� � K��t�� The kernel� K of
this operator de�nes a connectivity �eld between A and B�

��� Reduction of Dimension

The cortex can directly represent two�and�one�half dimensional� axonal
�elds� By two�and�one�half dimensional� we mean a discrete stack of two�
dimensional continua
 for example	 we might have six continua correspond�
ing to six layers in the cortex� �Although synaptic and dendritic �elds are
embedded in three�dimensional space	 the complex structure of the den�
dritic tree gives them a more complex non�Euclidean topology	 therefore the
notion of dimension is not directly applicable to them�� Some �elds are nat�
urally two dimensional	 for example	 a light intensity �eld over the retina or
a pressure �eld over the skin�
There are many cases where the cortex must represent �elds de�ned

over more than two dimensions� For example	 since cells in VI are selective
for orientation � as well as retinal position �r� ��	 the activity �elds are
naturally three�dimensional	 ��r� �� ��� Furthermore	 there is substantial
evidence �surveyed	 for example	 in MacLennan ����� that they are sensitive
to spatial frequency f as well	 so we actually have four�dimensional �elds
��r� �� �� f��
In these cases	 representation in the cortex requires that the �eld be

reduced to two dimensions in a way that does as little violence to the prox�
imity relations as possible� The simplest way to do this is to slice� the
�eld	 as we might slice a pepperoni	 and arrange the pieces in a plane� More
generally	 the �eld must be cut into nearly two�dimensional� parts that
can then be arranged systematically in a plane� This is one reason for the
striate and columnar structure found in many brain areas�
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Non�Euclidean �elds are found in neuropil �the dense nets comprising the
tangled dendritic trees of many neurons� and other places where the pattern
of connections alters the e�ective distance between points of activity� Such
�elds may be de�ned over spaces with unusual �e�g� nonmetric� topologies
since	 for example	 the distance a signal must travel in going from A to B
may be di�erent from the distance from B to A�

��� External Fields Relevant to Motor Activity

Not all the �elds of interest are in the brain� When investigating motor
activity we also have to consider the musculo�skeletal system as well as
�elds external to the animal� Further	 for sensory�motor coordination we
have to include various sensory �elds �e�g�	 visual	 proprioceptive	 auditory	
vestibular�� Here I�ll look brie�y at three examples �discussed in more detail
in section ���
First	 premotor circuits in the frog spinal column have associated con�

vergent force �elds in the vicinity of the frog�s leg
 the activation of multiple
circuits creates a linear superposition �sum� of these �elds	 and the result�
ing convergent force �eld guides the leg to a �xed destination independently
of its current position �Bizzi � Mussa�Ivaldi ������ This is a kind of �eld
computation	 except that the purpose is not the computation of abstract
quantities	 but the generation of concrete physical forces� Nevertheless	 the
mathematics of �eld computation can be used to describe and analyze the
motor system�
One way to understand �nondiscursive� action planning is in terms of

environmental potential �elds	 an approach which has been useful in both
robotics �e�g�	 Khatib ����	 Rimon � Koditschek ����� and neuroscience
�e�g�	 Hogan ������ In moving from one place to another we naturally select
a path that minimizes some notion of work� We avoid obstacles	 of course	
and generally try to have a minimum path length	 but this strategy may be
modi�ed by judgments of the ease of passage	 etc� For example	 we may go
around a hedge even though the shortest path is through it
 the path around
minimizes work �broadly de�ned�� Our knowledge of a region of space can
be represented by a potential �eld in which the height of the potential at
a location re�ects the di�culty in going through that location� As will be
described later	 �eld operations can be used to �nd �in parallel� an inexpen�
sive path through the potential �eld	 and to revise the path dynamically if
the potential �eld is discovered to be inaccurate �e�g� we �nd a large mud
puddle in our path��
The potential �eld is not limited to encoding environmental di�culty
 it

can also represent internal constraints	 such as the range or facility of motion
of joints and limbs� Further	 the potential �eld can be de�ned over nonspa�
tial continua	 to allow planning paths through more abstract spaces��
Finally	 Sanger �submitted� has explained how neural population codes

can be interpreted in terms of conditional probability density �elds �CPDFs�
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de�ned over possible stimuli� Each neuron has a CPDF that corresponds to
its receptive �eld
 the CPDF of a population over s short time interval is
given by the product of the CPDFs of the neurons �ring in that interval�

� Field Operations

��� De�nition

The primary de�ning feature of �eld computation is that it operates on an
entire �eld in parallel� For example	 operations that process a retinal image
in parallel	 or which generate a spatial or motor map in parallel	 are clear
examples of �eld computation� On the other hand	 a process that generates
one or a few scalar signals sequentially in time is not considered �eld com�
putation �except in a degenerate or trivial sense�� The point is not to have
a clear and absolutely precise demarcation between �eld computation and
non��eld computation � it is fundamentally a matter of degree � but to
distinguish �eld computation as a style of computation from computation
that is scalar or low�dimensional� The operational criterion is the ability to
apply continuous mathematics to the spatial distribution of quantity�
In this section we consider �eld operations	 which are commonly imple�

mented by nonrecurrent or feed�forward connections between brain areas�
That is	 a pattern of activity ��t� over an area A at time t causes a pattern
of activity ��t�� � F ���t�� over an area B at a slightly later time t�� More
generally	 activity pattern ��t� over region B depends on earlier activity
patterns ��� � � � � �n over regions A�� � � � � An�

��t� � F ����t� ���� � � � � �n�t� �n���

where ��� � � � � �n are �xed delays� Field operations may be classi�ed as linear
�including multilinear� or nonlinear�

��� Linear Operations

A process is linear when its response to a superposition of inputs is the super�
position of its response to the inputs taken separately	 L�������� � ���n� �
L�� �L��� � � ��L�n� We must remark that there can be no purely linear
processes in the nervous system	 for if there were	 it would mean that a
response to twice the input is always twice the response to the single input	
and likewise for any ampli�cation of the input	 L�c�� � cL�� This cannot
happen	 for neurotransmitters become depleted	 the �ring rates of neurons
are limited by their refractory period	 etc� Therefore	 processes in the ner�
vous system are at best saturating linear	 that is	 approximately linear until
nonlinear saturation e�ects begin to dominate� In neuroscience	 linearity is
always an approximation	 adopted for its mathematical convenience�
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����� Domain Coordinate Transformation One of the simplest lin�
ear transformations is a domain coordinate transformation	 which are usually
implemented by the anatomical pattern of projections from one area to an�
other� These operations transform the coordinates of the �eld�s domain	 thus
distorting the shape of the �eld	 perhaps for some information processing
end or for a more e�cient allocation of neural real estate�� �An exam�
ple	 the logmap transformation� in the primary visual cortex	 is discussed
below��
In general	 if h � A �� B is a mapping from coordinates in region A to

coordinates in region B	 then the activity �eld � de�ned over B	 which is
induced by activity �eld � over A	 is given by � � h � �	 that is	 for any
coordinates p � A	 ��h�p�� � ��p�� Thus	 if we ignore scaling of amplitudes	
the activity induced by the projection at h�p� in B is equal to the source
activity at p in A� Most such coordinate transformations are one�to�one
and onto	� in which cases we can de�ne the induced activity �eld directly�
� � � � h��	 or

��q� � ��h���q��

for all q � B� That is	 the activity at q in B is given by the activity at
h���q� in A� �Note that the �eld transformation from � to � is linear even
if the coordinate transformation h is not��
For example	 a coordinate transformation	 the logmap transformation

�Baron ����	 pp� ��������	 takes place between the retina and its �rst
projection in the primary visual cortex �VI�� If retinal coordinates are rep�
resented by a complex number z in polar coordinates �giving an angle and
distance from the center of the retina�	 then the �eld � in VI is related to
the retinal �eld � by

��z� � ��ez��

where ez is the complex exponential function� The e�ect of this is ��log r� �� �
��r� ��	 that is	 radial distance is transformed logarithmically�
In addition to devoting more neural real estate� to the center of the

retina	 this transformation has the e�ect of converting rotations and scale
changes of centered images into simple translations �Schwartz ����	 Baron
����	 ch� ��� To see this	 note that if ���z� � ��sz� is a scaled version of �	
then the corresponding VI �eld is

���log z� � ���z� � ��sz� � ��log sz� � ���log s� � �log z���

which is ��log z�	 the image of �	 translated by log s� Similarly	 if ���z� �
��ei�z� is a rotation of � through angle �	 then the corresponding �eld is

���log z� � ���z� � ��ei�z� � ��log�ei�z�� � ��i� � log z��

which is ��log z�	 the image of �	 translated by � �in a perpendicular direc�
tion to the other translation��
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����� Representation in an Orthogonal Basis Most of the linear
operators of interest to neuroscience can be computed e�ciently by neu�
ral networks�� This is because such operators have an orthonormal set of

eigenfunctions ��� ��� � � � with associated eigenvalues 	�� 	�� � � �� Therefore
the operator can be written as a summation�

L� �
X
k

	k��k � ���k�

a procedure we call factoring a linear operator through a discrete space�
This is an in�nite sum	 but there are only a �nite number of eigenvalues
greater than any �xed bound	 so that the operator can be approximated
by �nite sums� The computation � � L� is accomplished in two steps� In
the �rst	 inner products are formed between the input �eld and each of the
eigenfunctions �k yielding a �nite�dimensional vector c	 given by ck � �k ���
Each of these inner products could	 in principal	 be computed by a single
neuron� This step e�ectively represents the input in a �nite�dimensional
vector space	 that is	 in a space with no signi�cant topology �i�e�	 the axes
are independent	 none are nearer to each other than to the others�� In
the second step	 the computed coe�cients are used to amplitude�modulate
the generation of �xed �elds �speci�cally	 the eigenfunctions�	 which are
superposed to yield the output �eld� � �

P
k ck	k�k� This computation	

likewise	 can be computed by a single layer of neurons�
Even if the eigenfunctions of the operator are not known	 in practical

cases the operator can still be factored through a discrete space	 since it
can be computed via a �nite�dimensional representation in terms of any or�
thonormal basis for the input space� First compute the coe�cients by inner
products with the basis functions	 ck � 
k �� �accomplished by neurons with
receptive �elds 
k�� A �nite�dimensional matrix product	 d � Mc is com�
puted by a single�layer neural network with �xed interconnection weights�

Mjk � 
j � L
k�
Again	 topological relations between the vector and matrix elements are not
signi�cant	 so there are few constraints on their neural arrangement� The
output is a superposition of basis functions weighted by the computed dj 	
� �

P
j dj
j �accomplished by neurons with output weight patterns 
j��

Computing the linear operator by means of the low�dimensional space
spanned by the basis functions avoids the biologically unrealistic dense �all�
to�all� connections implicit in the direct computation of the operator� �x �R
� Lxy�ydy� �The preceding results are easily extended to the case where
the input and output spaces have di�erent basis �elds��

��� Multilinear Operations

Multilinear operations are functions of two or more arguments that are lin�
ear in each of their arguments separately� The most common multilinear

�Speci�cally� they are Hilbert�Schmidt operators� to which the following remarks apply�
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operations are bilinear	 that is	 linear in each of two arguments� Again	
no biological process can be purely multilinear	 since its linearity must be
limited by saturation and other consequences of the biology�

����� Convolution and correlation Two closely�related bilinear oper�
ations that are especially important for information processing are convolu�
tion and correlation� In the simplest case	 correlation can be described as a
comparison of two �elds at all possible relative positions� More speci�cally	
if � is the correlation of two one�dimensional �elds � and �	 � � � � �	
then ��r� re�ects how well � and � match �in an inner�product sense� when
relatively displaced by r�� Mathematically	

��r� �

Z
�
��s� r���s�ds� ���

Higher dimensional correlations are the same	 except that r is a relative
displacement vector rather than a scalar�

Convolution	 � � � � �	 is essentially the same as correlation	 except
that the �eld � is re�ected before the comparison takes place�

��r� �

Z
�
��r � s���s�ds� ���

Convolution is useful because� ��� its algebraic properties are more like mul�
tiplication	 and thus more familiar	 than correlation
 and ��� many physical
processes �e�g� linear systems	 such as dendritic nets� perform convolutions�

����� Pattern Manipulation One reason correlation and convolution
are of interest is that they can be used for pattern recognition and genera�
tion� For example	 the correlation ��� will have peaks wherever the pattern
� occurs in �eld � �or vice versa�
 occurrences of patterns less similar to �
�in an inner�product sense� will cause lesser peaks� Thus correlation � � �
returns an activity pattern representing the spatial distribution in � of �elds
resembling ��
This operation is approximately reversible� Suppose that  is a radial

�eld	 such as a Gaussian	 with a single narrow	 sharp maximum� Convolving
 with a pattern � has the e�ect of blurring � by  �i�e� smoothing � by a
window of shape ��

� � ���s� �

Z
�
�s� u���u�du�

Further	 if  is �rst displaced by r	 then the e�ect of the convolution is to
blur � and displace it by r�

�Tr�� � � Tr� � ���

�Correlation can be de�ned relative to other kinds of transformation besides displace�
ment� and to other measures of similarity besides the inner product� see MacLennan �����	
for details�
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�The Tr operation translates �displaces� a �eld by r� Tr��s� � ��s � r���
Finally	 since convolution is bilinear	 if � is a �eld containing a number of
sharp peaks at various displacements rk	 then � � � will produce a �eld
containing blurred copies of � at corresponding displacements�

�� � �

�X
k

Trk

�
� � �

X
k

�Trk�� � �
X
k

Trk� � ���

�The convolution of a superposition is a superposition of the convolutions��
Such an operation could be used for constructing a representation of the
environment for motion planning� For example	 if � is the shape of an
obstacle retrieved from memory	 and � is a map of the location of obstacles
of this kind in the environment	 then � � � represents the approximate
boundaries of such obstacles in the environment�

����� Convolution Connections Since convolution and correlation are
bilinear operators	 that is	 linear in each of their arguments	 if one of the
arguments is relatively �xed �as it would be	 for example	 when a sensory
signal is correlated with a learned pattern�	 the operator is linear in its other
argument� � � � � L� for �xed �� Patterns of neural connectivity are often
equivalent to a convolution or correlation with a �xed �eld� For example	
the dependence of the activity at Bu on the activity at Av might fall o� as
some simple function �e�g� Gaussian� of the distance between u and v	 or as
some more complex �e�g� nonsymmetrical� function of the relation between
u and v� In the former case we have a radial connectivity �eld ��kv � uk�	
in the latter a connectivity kernel ��v � u�� In either case	 the contribution
of region A to the activity at Bu can be written

R
� �v�u�v�t�dv� Therefore	

the �eld ��t� contributed to B by A is de�ned

�u�t� �

Z
�
�v�u�v�t�dv�

which is � � ��t�	 the convolution of the �unvarying� connectivity kernel �
with the activity �eld ��t��
Viewing such connectivity patterns as convolutions may illuminate their

function� For example	 by the convolution theorem� of Fourier analysis	 the
convolution � � �� ��t� is equivalent to the multiplication  �t� � K!�t�	
where  �t� and !�t� are the Fourier transforms �over the space domain� of
the activity �elds and K is the Fourier transform of the connectivity kernel�
Thus !�t� represents the spatial frequency spectrum	 at time t	 of activity in
region A	 and K represents a �comparatively unvarying� spatial frequency
window� applied to this activity by its connectivity to B� For example	 if
� is a Gaussian	 then K is also Gaussian	 and the e�ect of the connections
is spatial low�pass �ltering of the activity in A�
Many linear operators on �elds can be approximated by convolutions

implemented by neural connectivity� We will illustrate this with one useful
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operator	 the derivative� Suppose we have a one dimensional �eld � and
we want to compute its derivative � � ��� It happens that the derivative
can be written as a convolution with the derivative of the Dirac delta func�
tion� �MacLennan ������ �� � �� � �� Like the Dirac delta	 its derivative
is not physically realizable	 but we can compute an approximation that is
adequate for neural computation� To see this	 suppose that we low�pass �l�
ter � before computing its derivative
 this is reasonable	 since the frequency
content of � is limited by neural resolution� In particular	 suppose we �lter
� by convolving it with a Gaussian 
 thus we will compute the approximate
derivative "� � �� � � � ��� But convolution is associative	 so this is equiv�
alent to "� � ��� � �� �� The parenthesized expression is the derivative of
the Gaussian function	 so we see that an approximate derivative of a �eld
can be computed by convolving it with the derivative of a Gaussian �which
is easily implemented through neural connectivity��

�� � � � ��

The derivative is approximate because of the �lter applied to �	 the transfer
function of which is the Fourier transform of 	 which is itself Gaussian�
It should be noted that such an analysis can be applied when regions A

and B are coextensive	 and so no real projection� is involved� For example	
A and B might represent two populations of neurons in the same region	 so
that the connectivity �eld � or L re�ects how cells of type B depend on
neighboring cells of type A� Indeed	 A and B might be the same cells	 if we
are describing how their recurrent activity depends on their own preceding
activity and that of their neighbors� Thus we might have a linear di�erential
�eld equation of the form #��t� � � � ��t� or	 more generally	 #��t� � L��t��
�See Section � for examples��

����� Convolution over Transformed Coordinates In the de�ni�
tions of correlation and convolution	 Eqs� � and �	 the expressions s� r and
r � s show us that these operations are sensitive to distance and direction
in the domains of the �elds	 that is	 they depend on the coordinates over
which the �elds are de�ned� For example	 if � results from � by a coor�
dinate transformation	 � � � � h��	 then the results of convolving � with
a Gaussian  will not be the same as the results of convolving � with �
The convolution �� averages over regions that are circular in ��s domain	
whereas  � � averages over circular regions in ��s domain� For example	
because of the logmap transformation between the retina and VI	 a Gaus�
sian convolution in VI will not have the e�ect of a Gaussian convolution in
retinal coordinates or vice versa� This sensitivity of convolutions and corre�
lations to the coordinate system can be a problem that needs to be solved
or a computational resource that can be exploited�

�The Dirac delta is a 
generalized function� that has the value zero everywhere except
at the origin� where it has the value in�nity�
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Suppose we have two domains � and �� such that �elds over �� are trans�
formations of �elds over �
 let h � � �� �� be the coordinate transformation
�an isomorphism�� For example	 � and �� might be two brain regions �such
as the retina and VI�	 or one or the other might be an external region �such
as physical space around the body�� Let � and � be two �elds over � and
suppose we want to compute the convolution � � � � �
 for example we
might want to do a Gaussian convolution in retinal space� However	 suppose
that the convolution is to be computed by means of �elds de�ned over the
transformed domain ��� We are given the transformed ! � � � h�� and
want to compute  so that  �h � � � ���� We can get this by changing
the integration variable of the convolution �assumed to be scalar to keep the
example simple��

 �u� � ��� ���h���u���

�

Z
�
��h���u�� x���x�dx�

�

Z
��

��h���u�� h���v����h���v��
dv

h��h���v��
�

�

Z
��

��h���u�� h���v��

h��h���v��
!�v�dv�

If we de�ne the connectivity �eld

Auv �
��h���u�� h���v��

h��h���v��
�

then the convolution integral becomes

 u �

Z
��

Auv!vdv�

which is the integral operator	  � A!� This is a linear operator	 but not a
convolution	 which means that it is still implemented by a simple pattern of
connectivity	 but that it is not a single pattern duplicated throughout the
region� �If	 as is often the case	 the transformation h is a homeomorphism	
then it will preserve the topology of �	 which means that a local convolution
� in � will translate into local connections A in ����
We remark without proof that if the domains are of more than one

dimension	 then the connectivity kernel is de�ned

Auv � ��h���u�� h���v�� J �h���v���

where J �h���v�� is the Jacobian of h�� evaluated at v�
Now	 conversely	 suppose we do a convolution  � $ � ! in the trans�

formed coordinates
 what is its e�ect in the original coordinates% By a
similar derivation we �nd that � � C� where the kernel is de�ned

Cxy � $�h�x�� h�y�� J �h�y���
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In e�ect	 the convolution kernel $ is projected backward through the trans�
formation h� For example	 if	 like the logmap transformation	 h expands
the space in the center of the visual �eld and compresses it at the periph�
ery	 then the back�transformation of $ will result in a C that de�nes small
receptive �elds near the center of the visual �eld	 and large ones near its
periphery�

� Field Dynamics

The �eld operations considered above are examples of nonrecurrent oper�
ations	 typically implemented by feed�forward connections between neural
areas� In this section we will consider recurrent operations	 which are typ�
ically implemented by feed�back or reciprocal connections� Thus there are
dynamical relations between several areas that govern the variation in time
of one or more �elds
 these processes are especially important in motor con�
trol	 since time�varying motor �elds in the central and peripheral nervous
systems must be generated to control physical movement�
Field dynamics are most conveniently expressed by di�erential �eld equa�

tions	 in which the time�derivative #��t� of a state �eld � is given as a function
of the current state �eld ��t� and some	 possibly time�varying	 input �eld
��t��

#��t� � F ���t�� ��t���

More generally	 we may have a system of state �elds �k	 k � �� � � � �m	 each
evolving under the in�uence of each other and one or more input �elds �k	
k � �� � � � � n� Thus	

#�k�t� � Fk����t�� � � � � �m�t�
���t�� � � � � �n�t���

�For purposes of mathematical modeling	 equations involving second� and
higher�order time derivatives can be placed in this form by adding state
�elds to explicitly represent derivatives	 in which case we must carefully dis�
tinguish �elds represented in neural tissue from those introduced for math�
ematical convenience�� As before	 we may distinguish between the cases in
which the dependence is �approximately� linear or not�

��� Linear Dynamics

In the �approximately� linear case F can be separated into two linear op�
erators L and M operating on the state and input	 respectively
 the time
derivative of the state is a superposition of the results of these operations�

#� � L� �M��

Next we�ll consider several important examples of linear �eld processes�
A di�usion process is de�ned by a linear di�erential �eld equation�

#� � k�r���
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where the Laplacian is de�ned�

r�� �
X
k

���

�x�k
�

and the summation is over all the dimensions xk of the extent of ��
Many useful computations can be performed by di�usion processes
 for

example chemical di�usion processes have been used for �nding minimum�
length paths through a maze �Steinbeck et al� ������ Also	 di�usion equa�
tions have been used to implement Boltzmann machines and simulated
annealing algorithms	 which have been used to model optimization and
constraint�satisfaction problems	 such as segmentation and smoothing in
early vision	 and correspondence problems in stereo vision and motion esti�
mation �Miller et al� ����	 Ting � Iltis ������
In the brain	 di�usion processes	 implemented by the spreading activa�

tion of neurons	 could be used for planning paths through the environment�
For example	 a di�usion process is approximated by a network in which each
neuron receives activation from its neighbors	 without which its activity de�
cays� Thus the change in activity of neuron x is given by

#�x � k�
�
��x � �

n

X
i

�xi

�
�

where �xi are the activities of its n neighbors xi� More clearly	 writing h�xii
for the average activity of its neighbors	

#�x � k��h�xii � �x��

The averaging process can be accomplished by convolution with a radial
function	 such as a Gaussian�

#� � k�� � � � ���

Constraints on the path �impassable regions� are represented by neurons
whose activity is inhibited
 relatively impassable regions can be represented
by neurons that are only partly inhibited�

��� Nonlinear Dynamics

In the nonlinear case	 the variation in the state �eld � is a nonlinear function
F of the state and the input �eld ��

#��t� � F ���t�� ��t���

Many computational processes	 especially optimization processes	 can be
described by gradient descent
 this is most commonly seen in low�dimensional
vector spaces	 but applies as well to �eld computation	 as will now be ex�
plained� Often the suitability of a �eld � for some purpose can be measured
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by a scalar function U��� �for reasons that will become apparent	 we will
take lower numbers to represent greater suitability�� For example	 � might
represent an interpretation of sensory data and U��� might represent the
internal incoherence of that interpretation �so that the lowest U��� gives the
most coherent ��� More relevantly	 � might represent a motor plan of some
kind	 and U��� the di�culty	 in some sense	 of that plan� Then minimizing
U��� gives an optimal plan� By analogy with physical processes	 U��� is
called a potential function�
One way to �nd a state � that minimizes U is by a gradient�descent

process	 that is	 a process that causes � to follow the gradient rU��� of the
potential� The gradient is de�ned�

�rU�x � �U

��x

�where	 for notational convenience	 we treat the �eld � as a high�dimensional
vector�� The gradient rU��� is a �eld �over the same domain as �� giving
the direction� of change that most rapidly increases U 	 that is	 the rela�
tive changes to areas of � that will most rapidly increase U � Conversely	
the negative gradient �rU gives the direction of change that most rapidly
decreases U � �This is because r is linear and so r��U� � �rU ��
In a gradient�descent process the change of state is proportional to the

negative gradient of the state�s potential�

#� � �rrU����

�The constant r determines the rate at which the process takes place�� The
resulting velocity� �eld #� is called a potential �ow�
It is easy to show that a gradient�descent process cannot increase the

potential	 and indeed it must decrease it unless it is at a �possibly local�
minimum �or other saddle point�� In this way gradient�descent can be used
for optimization �although	 in general	 we cannot guarantee that a global
minimum will be found��
A common	 special case occurs when the potential is a quadratic func�

tion�
U��� � �Q� � � � � � ��

where by �Q� we mean the quadratic form�

�Q� �

Z
�

Z
�
�xQxy�ydydx�

The coupling �eld Q	 which is of higher type than � �i�e�	 Q is a �eld over
����	 is required to be symmetric �Qxy � Qyx�� In this case the gradient
has a very simple ��rst degree� form�

rU��� � �Q� � ��
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where	 as usual	 Q� is the integral operator �Q��x �
R
�Qxy�ydy� In many

cases � � � and gradient descent is a linear process�

#� � �rQ��

Notice that �Qxy represents the coupling between regions x and y of
the state �eld and therefore how the potential varies with coherence between
activity in these parts of the �eld� If Qxy � � then the potential will be lower
to the extent �x and �y covary �are positive at the same time or negative
at the same time� since then ��xQxy�y � �
 if Qxy � �	 the potential will
be lower to the extent they contravary� Thus ��Q��x gives the change to
�x that maximally decreases the potential according to the covariances and
contravariances requested by Q�

� Learning

Representations of motion patterns can be quickly learned and adapted
by a variety of �eld computational methods
 many involve the extraction
of frequency�domain information from example motions �by application of
inner�product or �ltering techniques�� Invariances in sensorimotor coordi�
nation can emerge similarly from simple correlational adaptive algorithms�
Since an adequate treatment of �eld�computational approaches to learning
is beyond the scope of this paper	 I will give just two examples of the �eld�
computational approach�	

��� Correlational Learning

Many familiar neural network learning algorithms	 including correlational
�Hebbian� and back�propagation learning	 are easily transferred to the �eld
computation framework� For example	 Hebbian learning rules can be de�
scribed in terms of an outer product of �elds	 � � ��

�� � ��xy � �x�y�

�Notice that if � is a �eld over � and � is a �eld over ��	 then � � � is
a �eld over ������ For example	 simple correlational strengthening of an
interconnection kernelK resulting from pre� and post�synaptic activity �elds
� and � is given by #K � r �� �	 where r is the rate� Such a process might
occur through long�term potentiation �LTP��
Recent studies �surveyed in Singer ����� indicate that moderately weak

positive correlations cause synaptic e�cacy to be weakened through long�
term depression �LTD�	 while very weak connections have no e�ect on e��
cacy� For �biologically realistic� non�negative activity �elds	 the change in

�See Section � for a discussion of some representations and MacLennan �����	 for
example adaptive algorithms�
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the interconnection matrix is given by #K � r��� � ��	 where the upsilon
function is de�ned�

��x� � tanh ��x� ��� tanh 
�x� �� � �

�
�

When x � �	 ��x� � � and LTP results	 but as x drops below �	 ��x�
becomes negative	 achieving its minimum at x � �
 further decreases of x
cause ��x� to approach �� �The slopes in the LTP and LTD regions are
determined by � and 
��

��� Gradient Descent

In general	 if F �p�� � � � � pn
��� � � � � �n� � Fp���� � � � � �n� is some �eld compu�
tational process governed by parameters p�� � � � � pn �such as synaptic weights�	
and if M ���� � � � � �n
Fp���� � � � � �n�� is some performance measure for F on
the input �elds ��� � � � � �n	 then for �xed ��� � � � � �n we may de�ne a po�
tential �eld �p � M ���� � � � � �n
Fp���� � � � � �n�� over the parameter space�
If smaller values of M represent better performance	 and if M is bounded
below �i�e�	 there is a best performance�	 then we can do gradient descent
on the parameter space	 #p � �rr��
The same analysis can be applied when F is parameterized by one or

more �elds �typically	 interconnection �elds�� In this case	 gradient descent
occurs by gradual modi�cation of the parameter �elds� For example	 in
the case of one parameter �eld	 �� � M ���� � � � � �n
F����� � � � � �n��	 the
descent is given by #� � �rr�� Of course	 more sophisticated hill�descending
algorithms can also be implemented by �eld computation�

� Examples of Motor Field Computation

��� External Force Fields and Motor Basis Fields

Bizzi � Mussa�Ivaldi ������ survey experiments showing that regions in the
spinal chord of the frog de�ne associated force �elds in the vicinity of the
leg
 that it	 microstimulation of that spinal region causes the leg to exert a
consistent force	 which depends on the position of the leg	 thus de�ning a
force �eld over its range of motion� They further show that microstimulation
of multiple spinal regions create a force �eld that is the linear superposition
�sum� of the individual force �elds	 and that this superposition determines
the location to which the leg moves� Speci�cally	 a time�varying force �eld
F�t� results from a linear superposition of time�varying basis �elds �k�t�	
each generated by a premotor circuit in the frog�s spinal chord�

F�t� �
X
k

ck�k�t��

As few as four convergent force �elds �k are su�cient to generate a wide
variety of resultant �elds�
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��� Population Coding of Direction

Georgopoulos ������ surveys research on population coding in motor cortex
of the direction of armmotion� The population codes are naturally treated as
�elds	 and the transformations of directions are simple �eld computations�
We consider a region � in motor cortex in which activity is observed in
anticipation of reaching motions� Each cell u � � has a preferred direction
Du in three�dimensional space� Cell activity �u falls o� with the cosine of
the angle �u between the reaching direction r and the preferred direction
Du� Since �for normalized vectors� the cosine is equal to the inner product
of the vectors	 r �Du � cos �u	 we can express the activity�

�u � a� br �Du� ���

for some constants a and b�
 Thus the motor cortex represents a vector
�eld D of the preferred directions	 and the population coding of an intended
motion r is a scalar activity �eld r � D given by the inner product of the
motion with the preferred�direction �eld�
There is another way of looking at the population coding � of a motion r	

which is sometimes more illuminating� Since all the neurons have the same
receptive �eld pro�le	 we may rewrite Eq� � in terms of a radial function �
of the di�erence between the preferred and intended direction vectors�

�u � ��Du � r��

where
��v� � a� b� bkvk����

This is because the Euclidean distance is related to the inner product in a
simple way�

a� b� bkDu � rk��� � a� b� b�kDuk� � krk� � �Du � r���
� a� bDu � r
� a� b cos �u

�provided krk � � � kDuk��
Now let � be the direction �eld	 de�ned over three�dimensional space	

that corresponds to �� That is	 the value of � at neural location u equals the
value of � at spatial location Du	 or �u � �Du 	 which we may abbreviate
� � � �D� For simplicity we suppose D is one�to�one	 so we can de�ne �
by � � � �D��� Notice that D e�ects a change of coordinates from neural
coordinates to three�dimensional space� The direction �eld � can also be
expressed as the result of convolving the receptive �eld � with an idealized
direction �eld �r	 a Dirac delta	 which has an in�nite spike at r but is zero
elsewhere�

� � �� �r�

�For a typical case shown in Georgopoulos ����� Fig� ����	 and normalized vectors� it
appears a � �� impulses�sec� and b � �� impulses�sec�
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This is because convolving � with �r e�ectively translates the center of � to
r
 equivalently	 the convolution blurs the idealized direction �eld �r by the
receptive �eld pro�le ��

��� Continuous Transformation of Direction Fields

There is considerable evidence that humans and monkeys are able to con�
tinuously transform images for various purposes� Aside from introspection	
such evidence comes from the behavioral experiments pioneered by Shep�
ard �e�g� Shepard � Cooper ����� and	 more recently	 from direct neuronal
measurement of motor cortex �surveyed in Georgopoulos ������
Droulez � Berthoz �����b� give an algorithm for the continuous trans�

formation of direction �elds	 speci�cally	 for the updating	 when the eye
moves	 of the remembered location	 relative to the retina	 of an ocular sac�
cade�� Suppose the �eld � is a population code in retinal coordinates for
the destination of the saccade� If in time &t the eye moves by a vector &r
in retinal coordinates	 then the �eld encoding the destination of the saccade
must be updated according to the equation

��r�&r� t�&t� � ��r� t��

Eye motion is assumed to be encoded by a two�dimensional rate�encoded
velocity vector v	 which gives the eye velocity in retinal coordinates� It is
easy to show that

��t�&t� � ��t� �&t v � r��t�� ���

�The gradient r� points in the direction of the peak	 provided there is only
one peak
 if there are multiple targets	 it points to the nearest target�� This
equation	 which gives a discrete update after a time &t	 can be converted
into a equation for the continuous updating of � by taking the limit as
&t �� ��

#� � v � r��
This can be understood as follows� Since v represents the motion of the eye
relative to the retinal �eld	 �v represents the direction in which the �eld
peak should move� In front the peak �that is	 in its direction of required
movement�	 the gradient	 which points toward the peak	 points in the op�
posite direction to �v� Therefore �v � r� at that point will be negative	
which means that #� � v � r� � �	 and the �eld intensity in the front of
the peak increases� Conversely	 behind the peak the gradient points in the
same direction as the required movement	 so �v � r� � �	 which means
#� � v � r� � �	 and the �eld intensity on the back of the peak decreases�
Therefore	 the peak moves in the required direction�

�This process may take place in the superior colliculus� frontal eye �eld or posterior
parietal cortex �Droulez � Berthoz ����b	�
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Equation � must be recast for neural computation	 since the vector �eld
r� has to be represented by two neural populations �for the two dimensions
of retinal coordinates�� Thus we write

v � r� � vx
��

�x
� vy

��

�y
�

Since the neural population is discrete and the neurons have receptive
�elds with some diameter	 the neural representation imposes a low�pass
�lter on the direction �eld� Writing xy for a two�dimensional Gaussian	 the
�ltered �eld can be written xy � � and substituted into Eq� ��

��t�&t� � xy � ��&t v � r�xy � ��

� xy � ��&t

�
vx
��xy � ��

�x
�
��xy � ��

�y

�

As we�ve seen	 the derivatives of the �ltered �eld can be written as convo�
lutions with derivatives of Gaussians	 so ��xy � ����x � �x � �	 where �x
is a derivative of a Gaussian along the x�axis and constant along the y�axis�
Thus	

��t�&t� � xy � ��&t�vx
�

x � �� vy
�

y � ���

Signi�cantly	 when Droulez � Berthoz �����b� started with a one�dimensional
network of the form

�� ��&t v
 � �

and trained it	 by a modi�ed Hebbian rule	 to compute the updated popu�
lation code	 they found that after training � was approximately Gaussian	
and 
 was an approximate derivative of a Gaussian�
Droulez � Berthoz �����a� suggest biologically plausible neural circuits

that can update the direction �eld �	 which can be expressed in �eld com�
putational terms as follows� A �eld of interneurons S �sum� forms the sum
of the activities of nearby neurons	 S � xy � �	 while interneuron �elds
Gx and Gy estimate the partial derivatives by a means of excitatory and
inhibitory synapses	 Gx � �x��	 Gy � �y��� Next	 a �eld of interneurons
P �product� computes the inner product of the velocity vector and the �eld
gradient by means of conjunctive synapses� P � vxGx � vyGy� The neu�
rons in the direction �eld compute the sum of the S and P interneurons	
which then becomes the new value of the direction �eld	 � � S � P � Thus
Droulez � Berthoz�s �����a� proposed neuronal architecture corresponds to
the following �eld equations	 all implemented through local connections�

S � xy � ��

Gx � �x � ��

Gy � �y � ��

P � vxGx � vyGy�

� � S � P
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��� Fields Associated with Posterior Parietal Cortex

Andersen ������ surveys research indicating that the transformation from
retina�centered coordinates to head� or body�centered coordinates can be
understood in terms of �elds associated with neurons in area �a of the pos�
terior parietal cortex� When the eye position is �xed	 these neurons exhibit
an ordinary receptive �eld �de�ned over retinal coordinates� in their response
to a stimulus� On the other hand	 when the position of the stimulus on the
retina is �xed	 then these neurons exhibit a response that varies linearly
with eye position
 this is described by a linear gain �eld	 de�ned over eye
position	 and has a characteristic direction� Speci�cally	 a linear gain �eld
	 is described by a direction vector d	 which is its gradient	 d � r	
 thus	
	p � d � p at all positions p� Under normal conditions the response of the
neuron is a product of the receptive �eld and the linear gain �eld	 and so
its response is de�ned over the four dimensions of retinal and eye position�
The result is a neuron tuned to particular locations in head�centered space	
but only for certain ranges of eye position� Therefore	 single neurons cannot
encode locations in head�centered space	 but a �eld of neurons can combine
their responses into a population code for head�centered locations� The re�
sulting �eld has a well�de�ned minimum in head�centered space	 which can
represent the destination of a motion �such as a saccade� and	 by means of
its gradient	 a path to that destination�
Andersen ������ also surveys studies of ocular motion planning in the

lateral intraparietal area of the posterior parietal cortex �see also Goodman
� Andersen ������ Microstimulation of neurons create eye movements that
can be described as vector �elds �giving the direction and amount of motion�
over head�centered coordinates� Three kinds of �elds V are typically found�
��� constant vector �elds �Vp � v for all locations p�	 ��� vector �elds of
constant direction but decreasing amplitude �Vp � �vTpv��	 that is	 the
positive part of vTpv�	 and ��� weakly convergent vector �elds	 which rarely
reverse direction� On the other hand	 in simulation studies	 microstimulation
of two or more neurons created strongly convergent motion �elds by vector
summation of the individual �elds of the neurons� The gradient of such s
�eld de�nes the paths	 in head�centered space	 to the location de�ned by
the minimum�

��� Probability Density Functions

Sanger �submitted� argues for the interpretation of neural activity in terms
of external �sensory or motor� conditional probability density functions
�CPDFs� corresponding to their generalized receptive �elds� Thus	 a neuron
i has an associated CPDF �i de�ned over some bounded range � of exter�
nal phenomena� In particular	 the �ring of neuron i represents phenomenon
x � � with conditional probability �i�x�� Clearly	 such a CPDF is a �eld	
and so we can say that each neuron has an associated conditional proba�

bility �eld� The conditional probability �eld associated with a population
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of neurons can then be de�ned in terms of �eld operations on the �elds of
the constituent neurons� For example	 Sanger shows that over small time
intervals �such that spiking is relatively unlikely�	 the �eld of the population
is a product of the �elds of the neurons that spike in that interval�

�pop �
Y

i�spike

�i�

where
Q
represents a pointwise product of the �elds	 �pop�x� �

Q
i�spike �i�x��

Further	 Sanger shows that for any smooth mapping y � f�x�	 there is a
corresponding piecewise linear mapping on the probability �elds Py and Px	
which is given by an integral operator	 Py � KPx�

� Representation of Motion

��� Introduction

There are several ways that motion can be represented in �elds and gener�
ated through �eld computation� Each has advantages and disadvantages in
terms of e�ciency of representation	 �exibility and other factors�

��� Direct 	Spatial
 Representation

One of the simplest ways to represent a trajectory ��t� is by direct spatial
encoding of the time dimension
 then the trajectory can be read sequentially
from the �xed �eld� �This process is like playing an audio tape�� More
precisely	 suppose �u�t� is a time�varying �eld de�ned over an extent �
�that is	 u � ��	 and we want to generate it over the relative time interval
t � ��� T �� Let h � ��� T � �� �� be a mapping from the time interval to
another domain of spatial extension
 then the trajectory �s�t� is encoded by
a �xed �eld �uv over ���

� de�ned by�

��u� h�t�� � �u�t��

The �eld �uv is read out� by sweeping v from h��� to h�T ��
Since the area of the �eld � is proportional to the duration of the signal

�	 such a representation is feasible only for signals that are comparatively
smooth with respect to their duration� �Speci�cally	 by the Nyquist theorem	
there must be as least two representational units v per unit time for the
highest frequency component of ���

��� Frequency�domain Representation

Frequency encoding generates a signal � from its �discrete or continuous�
Fourier transform  	 which is represented spatially� Suppose we have a
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signal �u�t� of duration T �or periodic with period T �
 write it as a discrete
Fourier series�

�u�t� �
nX

k�

�ku cos

�
��kt

T
� �ku

�
� ���

�The number of coe�cients n is determined by the Nyquist frequency� twice
the highest frequency in ���
The signal then is determined by the amplitude �elds ��� � � � � �n and the

phase �elds ��� � � � � �n �together they constitute the discrete Fourier trans�
form  �� The signal is generated by using them to control the amplitude
and phase of a bank� of sinusoidal signal generators	 in accord with Eq� ��
�Of course	 it�s not essential that the signal generators be sinusoidal	 since
the Fourier expansion can be done in terms of any orthonormal basis��
The approach is easily extended to the continuous Fourier transform


write

�u�t� �
�

��

Z �max

��max

 u�e
�i�td��

Now de�ne a one�dimensional �eld of signal generators	 ���t� � e�i�t���	
implemented	 perhaps	 by pairs of neurons in quadrature phase
 then the
signal is constructed by

�u�t� �

Z �max

��max

 u����t�d� �  u��t��

which we may abbreviate � �  ��
The Fourier representation is especially appropriate when frequency�

domain transformations need to be applied to the signal	 or when the signal
is periodic �since only one cycle needs to be encoded�� If the Fourier rep�
resentation is translated by &� along the frequency axis	 then the overall
duration of one cycle changes T �� T��� � &���� �so an increase of fre�
quency leads to a decrease of duration and vice versa�� Conversely	 the
duration of the signal cannot be changed without changing its frequency
content �since the fundamental frequency is the reciprocal of the duration��

��� Gabor Representation

We have seen that a �eld can represent a trajectory in either the time domain
or the frequency domain� Since each has its advantages and disadvantages	
often a combined representation is more suitable� In such a representation
we have a time�varying spectrum�
The foundation for such a representation was laid �fty years ago by Den�

nis Gabor	 who also received the Nobel Prize for his invention of holography�
Gabor ������ observed that we perceive sound in terms of amplitude and
pitch simultaneously	 that is	 auditory perception is not entirely in the time
domain or the frequency domain� He showed that any signal of �nite dura�
tion and bandwidth could be decomposed into a �nite number of elementary

��



information units	 which he called logons� Each such unit controls the am�
plitude and phase of a Gabor elementary function	 which is an elementary
signal localized in time and frequency� The relevance of this to motor control
is that any motor control signal has a calculable Gabor�information content	�

which determines a �nite number of coe�cients necessary and su�cient to
generate that signal� Pribram et al� ������ and Pribram �����	 ��������
provide evidence for Gabor elementary functions in motor control�
More precisely	 at time t the measurement of a frequency component f

in a signal will require that the signal be sampled for some �nite duration
&t� Further	 the uncertainty &f in the measured frequency will be less
the longer the signal is sampled� Indeed	 Gabor proves &t&f 	 ���� �the
so�called Gabor Uncertainty Principle��� �An intuitive presentation of the
proof can be found in MacLennan ������ Therefore &t&f � ���� de�nes
the maximum possible de�nition of a ��nite duration	 �nite bandwidth�
signal� A signal of duration T and bandwidth F can be divided into a �nite
number of elementary information cells� of duration &t and bandwidth &f 	
each localized at a di�erent time and frequency� Each cell has an associated
complex coe�cient	 which gives the phase and amplitude of the signal in
the corresponding cell� Let M � T�&t and N � F�&f 
 then there are
MN elementary information cells
 in Gabor�s terms	 the signal represents
MN logons of information	 namely	 theMN coe�cients associated with the
cells�� This is the most information that can be represented by the signal	
and these MN complex coe�cients are su�cient to regenerate the signal
�which is its relevance for motor control��
Let the cells be labeled �j� k� for j � �� � � � �M � � and k � � � � � � N �

�� Then cell �j� k� is centered at time j &t and frequency k &f � Each
cell corresponds to a Gabor elementary function localized to that time and
frequency	 one form of which is a Gaussian�modulated sinusoid�

Gjk�t� �� � exp

�
���t � j&t��


�

�
cos���k&f�t � j&t � ����

where 
 � �
p
� &t � &f � �

p
� �the standard deviation of the Gaussian

is &t�� A signal ��t� is then a superposition of these elementary functions
with amplitudes �jk and phase delays �jk�

��t� �
M��X
j�

N��X
k�

�jkGjk�t� �jk��

The coe�cients �jk and �jk are determined uniquely by the signal ��

�Gabor�s notion of information is not the same as Shannon�s� they are complemen�
tary rather than mutually exclusive� See MacLennan �����	 and citations therein for a
discussion�

�The precise constant� ���� in this case� depends on the quanti�cation of the uncer�
tainty of measurement �MacLennan ����	�

�For technical reasons �see MacLennan ����	� theseMN complex coe�cients comprise
only �MN �M � as opposed to �MN � independent real coe�cients�

��



The Gabor representation shows us how a signal can be generated from
the control coe�cients �jk and �jk� during the jth time interval of length
&t we use the coe�cients to control a bank of Gaussian�modulated sinusoid
generators �at frequencies k &f�
 �jk controls the amplitude of generator k
and �jk controls its phase�

�

Although the clocking out at discrete time intervals of the coe�cients
is not impossible	 it may seem a little unnatural� This can be avoided by
replacing the discrete matrices ��jk� and ��jk� by continuous �elds� In this
approach the Gabor elementary function generators operate on a continuum
of frequencies in the signal�s bandwidth�

G���t� �� � exp

�
���t� ���


�

�
cos�����t� � � ����

The output signal is then generated by an integration�

��t� �

Z T



Z F


���G���t� ��� �d�d��

In fact	 the output can be generated by a temporal convolution of the control
�elds and a bank of Gabor signal generators	 but the details will not be
presented here� It might be objected that the control �elds � and � would
occupy more neural space than either a direct or Fourier representation	 but
the control �elds are relatively low resolution and may be represented more
compactly� The inequality &t &f 	 ���� gives the tradeo� in required
resolution between the time and frequency axes of the control �elds�
Unlike the Fourier representation	 the Gabor representation allows fre�

quency content and rate to be controlled independently� Thus the amplitude
and phase �elds ��� �� can be clocked out� at a di�erent rate from that
at which they were stored	 or even at a varying rate	 without a�ecting the
moment to moment frequency content of the signal� Conversely	 shifting
the representing �elds ��� �� along the frequency axis shifts the frequency
content of the signal	 but does not a�ect its duration or the time�evolution
of its spectrum� That is	 the rate or time�evolution of the signal can be
controlled independently of the frequency band in which it is expressed�

��� Wavelet � Multiresolution Representations

The Gabor representation uses the same temporal resolution &t in each
frequency band fk� However	 a &t that is a good resolution at a low fre�
quency may not be a good resolution at a high frequency� Therefore	 in a
multiresolution representation higher frequency bands may have a smaller
��ner� &t than lower frequency bands� Of course	 the Gabor relationship

�	There is an additional complication in that the Gaussian envelopes extend outside
the nominal �t �� standard deviation	 widths of the elementary function� This could be
solved by two or three banks of generators activated in rotation� however a better solution
lies in the Gabor transform� discussed below�

��



&t &f 	 ���� still holds	 so the frequency resolution &f must increase
�i�e� become coarser� at higher frequencies� This is often acceptable	 how�
ever	 since the ratio of &f to the frequency remains constant �so this is also
called a constant Q� representation	 since Q � &f � f��
In the most common arrangement	 the central frequencies of the fre�

quency bands increase by powers of �	 fk � �
kf� Therefore	 the widths of

the frequency bands also increase by powers of �	 &fk � �
k&f	 but the time

resolutions decrease �become �ner� by powers of �	 &tk � �
�k&t� In this

case the elementary functions are generated by contracting and translating
a single mother wavelet�

Wjk�t� �W��
k�t� j &t���

for j � �� � � � � �kT�&t and k � �� � � � � N � The Gabor elementary function	
or a slight variant of it called the Morlet wavelet	 can be used as a mother
wavelet� The signal then is represented by a linear superposition of wavelets�

��t� �
NX
k�

�kT � �t	X
j�

cjkWjk�t��

The generation of the signal is controlled by the triangular array of coe��
cients cjk� Like the continuous Gabor transform	 there is also a continuous
wavelet transform that represents the coe�cients in a continuous �eld� Also
like the Gabor transform	 the wavelet transform allows independent control
of frequency content and time�evolution� However	 because of the essen�
tially exponential measurement of frequency ��k in the wavelet vs� k in the
Gabor�	 translation along the frequency axis causes dilation or compression
of the signal�s spectrum� A shift of &f changes the instantaneous spectrum
from  �f� to  �f���f �� Much more could be said about the information
processing a�ordances of these representations	 but it is beyond the scope
of this paper�

��� Constraint satisfaction

����� Representation as potential �eld Many problems in motor
control involve the satisfaction of constraints
 in some cases the satisfaction
is inherent in the mechanics of the motor system �and satisfaction takes
place through execution of the motion�	 but in others	 such as path plan�
ning	 the optimum is determined before motion begins and may need to be
revised as exigencies arise during its execution�
As already discussed �Sections ��� and ����	 constraints on motion are

represented conveniently by a potential �eld over a spatial map� The po�
tential �eld representation is quite general� For example	 in addition to the
representation of hard constraints	 increased potential can represent the rel�
ative di�culty of motion through a region of space� In this way	 a path
can be chosen that minimizes work� �as de�ned by the potential function��

��



Further	 the potential can be de�ned over abstract spaces
 for example	 plan�
ning a path through a lexical space� could be a part of sentence generation�
We will consider several ways in which an optimal path can be found by �eld
computation�

����� Least Action Principles There are many physical least action
principles	� in which local behavior �of a particle in a �eld	 for example�
causes the minimization of some global measure of action� �e�g�	 time	
distance	 energy dissipation	 entropy generation���� These processes are
often governed by �elds	 and therefore some optimization and constraint�
satisfaction processes in the brain may be implemented through correspond�
ing �eld computations��� One example will be discussed brie�y�
In the same way that electromagnetic radiation �such as light� sni�s

out� in parallel a minimum�time path through space �Fermat�s Principle�	
so also neural impulse trains can �nd a minimum�time path through a neural
network� If transmission delays encode the di�culty of passage through a
region of some �concrete or abstract� space	 then the pulse train will follow
the path of least di�culty	 and it will automatically shift in parallel to a
new optimum if regions change in di�culty
 it is not necessary to reinitiate
the path planning process from the beginning�
This works because	 near an optimum path	 the cost does not vary	 to a

�rst approximation	 with small perturbations of the path	 thus the impulses
passing near to the optimal path tend to stay in phase� On the other hand	
farther away from the optimum the cost does vary	 to a �rst approximation	
with small perturbations	 so impulses on nearby paths tend to di�er in phase�
As a result the signals along nonoptimal paths tend to cancel each other out	
so only the signals along near�optimal paths have signi�cant amplitude���

When di�culties change	 the signals near the new optimum tend to reinforce
each other	 while those that are no longer near an optimum begin to cancel
each other out�
Suppose the constant c represents the encoding of di�culty in terms of

time delay �in units of di�culty per millisecond	 for example�	 so a time
di�erence of &t represents a di�culty di�erence of c&t� If the impulses
have period T 	 then we can see that for &t
 T 	 signals will tend to cancel	
whereas for &t � T they will tend to reinforce� Thus	 impulses of period
T will be sensitive to di�erences in di�culty much greater than cT and
insensitive to those much less than cT 
 they will �nd paths within cT of the
optimum� The sensitivity of search process can be adjusted by varying the

��For a clear� insightful introduction to least action principles� it is di�cult to do better
than Feynman et al� ������� ch� II���	�

��For example� least action principles are fundamental to Pribram�s �����	 holonomic

brain theory �see especially Apps� A� B	�
��For this cancelation to occur� the impulses must be shaped so that their average

amplitude is zero� Also� the neurons must sample su�ciently many paths coming into
their region to ensure that cancelation is possible� in e�ect� the neural net must represent
the search space at su�ciently high resolution�
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impulse frequency �higher frequency for a tighter optimum�� Speci�cally	
if the paths converging on a neuron represent a range of di�culties of at
least cT 	 then the neuron will be inactive	 showing that it�s not near the
optimal path� The neuron becomes more active	 re�ecting its nearness to
the optimum	 as the range of input di�culties decreases below cT �
Further	 the amplitude of the impulses can be used to encode the con��

dence in the di�culty estimate� regions of the space for which this con�dence
is low will transmit signals more weakly than high�con�dence regions� In
this way	 di�culty estimates are weighted by their con�dence� Speci�cally	
the e�ect on the signal of passing through a region of space is represented by
multiplying by a complex number keid�c	 where d is the di�culty estimate
and k is the con�dence of that estimate� Such a complex multiplication
could be accomplished by synaptodendritic transmission	 which introduces
both an amplitude shift k �re�ecting con�dence� and a time delay d�c �repre�
senting di�culty�� Such amplitude'phase modulations would be relatively
�xed	 subject to slow adaptive mechanisms� However	 the same can be
accomplished more dynamically �allowing	 for instance	 an environmental
potential �eld to be loaded into a brain region� by using an external bias
to control the phase shift dynamically �Hop�eld ����� and a signal to a
conjunctive synapse to control the amplitude dynamically�

����� Multiresolution satisfaction of constraints Constraints can
also be satis�ed by gradient descent on a potential surface representing
their lack of satisfaction �Sects� ��� and ����� However	 a problem with
relaxation techniques is that they may get trapped in local minima� One
way to avoid this is to do the relaxation on a multiresolution representation
of the potential function� At low resolution	 local minima will tend to be
averaged away	 so relaxation on a low�resolution representation will tend to
move toward the global minimum� By gradually increasing the resolution	
the system can be allowed to settle into a more accurate representation of
the global minimum� This can be accomplished	 for example	 by gradually
activating the higher frequency bands of a Gabor or wavelet representation
of the potential surface�

� Concluding Remarks

We have seen that �eld computation deals with information processing in
terms of �elds	 which may be described as continuous distributions of data�
Many neural phenomena are conveniently described as �elds	 including neu�
ron activity from large �brain area� to small �dendritic� scales	 and it is often
useful to describe motor control and sensorimotor coordination in terms of
external �elds such as force �elds and sensory images� We have surveyed
the basic concepts of �eld computation	 including both feed�forward �eld
operations and �eld dynamics resulting from recurrent connections� Adap�
tive and learning mechanisms were discussed brie�y� The application of
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�eld computation to motor control was illustrated by several examples� ex�
ternal force �elds associated with spinal neurons	 population coding of di�
rection in motor cortex	 continuous transformation of direction �elds	 and
linear gain �elds and coordinate transformations in posterior parietal cortex�
Next we surveyed some �eld�based representations of motion	 including di�
rect	 Fourier	 Gabor and wavelet or multiresolution representations� Finally
we considered brie�y the application of these representations to constraint
satisfaction	 which has many applications in motor control�
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