
Aspects of Embodied Computing
Toward a Reunification of the Physical and the Formal

Technical Report UT-CS-08-610

Bruce J. MacLennan*

Department of Electrical Engineering & Computer Science
University of Tennessee, Knoxville
www.cs.utk.edu/~mclennan/

March 6, 2008
Revised August 6, 2008

Abstract

Post-Moore’s Law computing will require an assimilation between computational pro-
cesses and their physical realizations, both to achieve greater speeds and densities and
to allow computational processes to assemble and control matter at the nanoscale.
Therefore, we need to investigate “embodied computing,” which addresses the essential
interrelationships of information processing and physical processes in the system and its
environment in ways that are parallel to those in the theory of embodied cognition. We
address both the challenges and opportunities of embodied computation. Analysis is
more difficult because physical effects must be included, but information processing
may be simplified by dispensing with explicit representations and allowing massively
parallel physical processes to process information. Nevertheless, in order to fully ex-
ploit embodied computation, we need robust and powerful theoretical tools, but we ar-
gue that the theory of Church-Turing computation is not suitable for the task.

* This report was the basis for a presentation at The 2008 North American Conference on Com-
puting and Philosophy: The Limits of Computation (The International Association for Computing
and Philosophy, Bloomington, IN, July 10–12, 2008). It may be used for any non-profit purpose
provided that the source is credited.

1

Post-Moore’s Law Computation

Although estimates differ, it is clear that the end of Moore’s Law is in sight; there are
physical limits to the density of binary logic devices and to their speed of operation. This
will require us to approach computation in new ways, which present significant chal-
lenges, but can also broaden and deepen our concept of computation in natural and artifi-
cial systems.

In the past there has been a significant difference in scales between computational pro-
cesses and the physical processes by which they are realized. For example, there are dif-
ferences in spatial scale: the data with which programs operate (integers, floating point
numbers, characters, pointers, etc.) are represented by large numbers of physical devices
comprising even larger numbers of particles. Also, there are differences in time scale: el-
ementary computational operations (arithmetic, instruction sequencing, memory access,
etc.), are the result of large numbers of state changes at the device level (typically involv-
ing a device moving from one saturated state to another). However, increasing the density
and speed of computation will force it to take place on the scale (spatial and temporal)
near that of the underlying physical processes. With fewer hierarchical levels between
computations and their physical realizations, and less time for implementing computa-
tional processes, computation will have to become more like the underlying physical pro-
cesses. That is, post-Moore’s Law computing will depend on a greater assimilation of
computation to physics.

In discussing the role of physical embodiment in the “grand challenge” of non-classical
computing, Stepney (2004, p. 29) writes,

Computation is physical; it is necessarily embodied in a device whose be-
haviour is guided by the laws of physics and cannot be completely cap-
tured by a closed mathematical model. This fact of embodiment is becom-
ing ever more apparent as we push the bounds of those physical laws.

Traditionally, a sort of Cartesian dualitism has reigned in computer science; programs and
algorithms have been conceived as idealized mathematical objects; software has been de-
veloped, explained, and analyzed independently of hardware; the focus has been on the
formal rather than the material.1 Post-Moore’s Law computing, in contrast, because of its
greater assimilation to physics, will be less idealized, less independent of its physical re-
alization. On one hand, this will increase the difficulty of programming since it will be
dependent on (or, some might say, contaminated by) physical concerns. On the other
hand, as I will argue here, it also presents many opportunities that will contribute to our
understanding and application of information processing in the future. To understand
them, I will make a brief digression through non-Cartesian developments in philosophy
and cognitive science.

1When I was in graduate school, I recall one of my fellow students announcing that he had heard
of a program so perfect that it would run without benefit of a computer! This jest betrays a com-
mon underlying attitude in computer science.

2

Embodied Cognition

Johnson and Rohrer (2007) trace the theory of embodied cognition to its roots in the
pragmatism of James and Dewey, both of whom stressed the importance of understanding
cognition as an embodied biological process. Dewey’s Principle of Continuity asserts
that there is no break from our highest, most abstract cognitive activities, down through
our sensory and motor engagement with the physical world, to their foundation in biolog-
ical and physical processes. Cognition is the emergent pattern of purposeful interactions
between the organism and its environment (including other organisms). Psychologists,
such as Piaget and Gibson, and philosophers, such as Heidegger and Merleau-Ponty, have
made similar points.

Hubert Dreyfus and others have stressed the importance and benefits of embodiment in
cognition. As Dreyfus (1979) observed, there are many things that we (implicitly) know
simply by virtue of having a body. Therefore, in embodied cognition, embodiment is not
incidental to cognition (or to information processing), but essential to it. For representa-
tive recent work see Clark (1997) and Pfeifer and Bongard (2007). Finally, from Brooks
(1991) onward there has been increasing understanding of the value and exploitation of
embodiment in AI and especially in robotics.

Embodied Computation

Pfeifer, Lungarella, and Iida (2007, p. 1088) provide a concise definition of embodiment:
“the interplay of information and physical processes.” This suggests that we can define
embodied computation as information processing in which the physical realization and
the physical environment play an unavoidable and essential role.

Physics for Computational Purposes

Embodied computing can be understood as a natural consequence of the decreasing size
and cost of computing devices. Historically, offline computer applications were most
common. Interaction with the environment could be characterized as input—process—
output. That is, physical input (e.g., punched cards, magnetic tape) was presented to the
computer and converted into internal, computational representations, in which (effective-
ly) abstract form it was processed. As abstract results were generated they were convert-
ed into specific physical representations (e.g., printed paper, punched cards, magnetic
tape) for use after the program terminated. It is easy to see offline computation as the
evaluation of a mathematical function on an argument, which is the way it is treated in
the traditional theory of computation.

As computers became smaller and less expensive, it became feasible to embed them as
controllers in larger systems. Embedded computations are in ongoing interaction with
their environments, are typically non-terminating, and have to be of a physical size and

3

real-time speed compatible with the physical systems in which they are embedded. Their
basic structure is sensors—controller—actuators, in which, however, there are critical
real-time feedback loops through the physical environment from the actuators back to the
sensors. Nevertheless, the basic model is similar to offline computing in that the sensors
and actuators perform the conversions to and from the computational medium, which is
effectively abstract (largely independent of specific physical realization). Physical con-
siderations are confined to the embedding device and its environment, the transducers
(sensors, actuators), and basic physical characteristics of the control computer (size,
weight, electrical requirements, clock rate, memory capacity).

The difference between embedded computing and embodied computing is that in the latter
there is little or no abstract computation; the computation must be understood as a physi-
cal system in continuing interaction with other physical systems (its environment). The
strength of embodied computing, like the strength of embodied cognition, resides in the
fact that information representation is often implicit in its physical realization and in its
environment. Representations and information processes emerge as regularities in the
dynamics of the physical systems that allow the computational system to fulfill its func-
tion.

Another significant advantage of embodied computing is that many computations are per-
formed “for free” by the physical substrate. For example, diffusion occurs naturally in
many fluids, such as liquids and gasses, and other media. It can be used for many com-
putational processes, including broadcasting of information and massively parallel
search, such as in path planning through mazes, optimization, and constraint satisfaction
(Miller, Roysam, Smith & O’Sullivan, 1991; Steinbeck, Tóth & Showalter, 1995; Ting &
Iltis, 1994). Diffusion is expensive to implement by conventional computation, but it
comes for free in many physical systems.

As is well known, many artificial neural networks are based matrix-vector multiplications
combined with simple nonlinear functions, such as the logistic sigmoid, 1/[1 + exp(–x)].
Also, many universal approximation theorems are based on linear combinations of sig-
moids and similar functions (Haykin, 1999, pp. 208–94). Computing a sigmoid on a con-
ventional computer requires computing a series approximation to a transcendental func-
tion (e.g., exp, tanh) or approximating the sigmoid by table look-up and linear interpola-
tion. However, sigmoidal behavior is typical of many physical systems, for it results
from an exponential growth process that eventually saturates. For example, available
chemical receptors may become occupied or the supply of signaling molecules may be-
come exhausted. In general, sigmoidal response comes for free because physical re-
sources become saturated or depleted. In embodied computing we do not need to pro-
gram sigmoid functions explicitly; we can exploit common physical processes with the
required behavior.

Further, many self-organizing systems depend on positive feedback for growth and exten-
sion and on negative feedback for stabilization, delimitation, separation, and the creation
of structure (in space or time). In embodied computation negative feedback may be im-
plemented by naturally occurring physical processes such as evaporation, dispersion, and

4

degradation of chemicals. These processes will occur anyway; embodied computation
makes productive use of them.

One final example must suffice. Many algorithms (e.g., simulated annealing, stochastic
resonance) use randomness for productive purposes, including escape from local optima,
symmetry breaking, deadlock avoidance, exploration, etc. Such randomness comes for
free in physical systems in the form of noise, uncertainty, imprecision, and other stochas-
tic phenomena.

In summary, with conventional computing technology we may “torture” the physical sub-
strate so that it implements desired computations (e.g., using continuous electronic pro-
cesses to implement binary logic), whereas embodied computation “respects the
medium,” conforming to physical characteristics rather than working against them. The
goal in embodied computation is to exploit the physics, not to circumvent it (which is
costly).2

Computation for Physical Effect

We have seen how embodied computation exploits physical processes for the sake of in-
formation processing, but embodied computation also uses information processing to
govern physical processes. That is, typically we think of computation as a physical sys-
tem in which the physical states and processes represent (perhaps imperfectly) certain ab-
stract states and processes, which constitute a desired information system. In mathemati-
cal terms, there is a (perhaps imperfect) homomorphism from the concrete physical sys-
tem onto the abstract information system (MacLennan, 2003b). But we can look at com-
putation from a different perspective, since an information system (and, in a general-pur-
pose computer, the program) governs the flow of matter and energy in the physical com-
puter (subject, of course, to the computer’s structure and the laws of physics). This is in
fact an essential function in natural embodied computation (including embodied cogni-
tion), which governs physical processes (e.g., growth, metabolism) in an organism’s body
and its physical interactions with other organisms and their environment. Often, the re-
sult of embodied computation is not information, but action, and even self-action, self-
transformation, and self-construction.

When our purpose is information processing, then the goal is often to represent the infor-
mation with a small a quantity of energy or matter (e.g., electrical charge) as possible —
consistent with reliable operation — so that state changes will require as small a change
of energy or matter as possible, for the sake of minimizing state-transition time and heat
dissipation. Indeed, the (unattainable) goal has been a sort of disembodied computation
and communication, in which pure form is represented, transmitted, and transformed
without need of material realization. On the other hand, when embodied computation is
applied to the control of matter and energy, we may want to move more rather than less.
This is because, in contrast to conventional embedded computers, in embodied computa-
tion there may be no clear distinction between the processors and the actuators; the physi-

2The metaphors of “torturing” and “respecting the medium” were suggested to me by Christof
Teuscher and Peter Dittrich, respectively.

5

cal effects may be a direct consequence of the computational process (as opposed to be-
ing controlled by them). Therefore embodied computation may involve the movement of
relatively large amount of matter or energy compared to traditional computation, such as
large molecules, electrical quantities, etc. For example, Winfree (1998) investigates al-
gorithmic assembly, in which DNA computation is used to assemble nanostructures, and
MacLennan (2003a) explores the use molecular computation based on combinator reduc-
tion for nanostructure synthesis and control.

Further, embodied computation can be applied to the implementation of active materials,
that is, materials that have a complex behavioral repertoire. Thus, embodied computation
might be used to implement an artificial tissue that can recognize environmental condi-
tions and open or close channels in response to them, or otherwise transport matter or en-
ergy across the membrane, perhaps transforming it in the process. Embodied computa-
tion might be used to implement a material, analogous to cardiac tissue, capable initiating
and controlling organized patterns of contraction.

Much current nanotechnology has a materials orientation, by which I mean that it is most
successful at producing bulk materials with a desired nanostructure or microstructure; to
create macroscopic structure we must resort to more traditional manufacturing methods.
Yet morphogenesis and pattern formation in embryological development show us that
embodied computational processes can coordinate the proliferation, movement, and dis-
assembly of cells, macromolecules, and smaller molecules to produce highly complex
systems with elaborate hierarchical structure from the nanoscale up to the macroscale.
This is an inspiring model for future nanotechnology: using embodied computation to
control the multistage self-organization of complex, functional, and active hierarchical
systems, that is, artificial morphogenesis.

Design of Embodied Computation Systems

One of the challenges of embodied computation is that we have very little experience do-
ing it. Much of our programming has been done in the idealized worlds of perfect logic
and implementation-independent programming languages; unavoidable interactions with
physical reality have been relegated to the periphery. Fortunately nature provides numer-
ous examples of effective embodied computation, from intracellular genetic regulatory
circuitry to the swarm intelligence of social insects and other animals. Therefore we can
look to nature to learn how computation can cooperate with physics, rather than opposing
it, and how information processing systems can fruitfully interact with the physical em-
bodiment of themselves and other systems.

Since embodied computation is a new computing paradigm, it may be worthwhile to say
a few words about how embodied computation systems might be designed. The first step
is to understand how information processing occurs, and interacts with physical reality, in
natural systems. We may benefit both from studies of specific systems relevant to some
application of interest, but also from more general information about embodied computa-

6

tion in nature (e.g., Camazine, Deneubourg, Franks, Sneyd, Theraulaz & Bonabeau,
2001).

The second step is to abstract the process, so far as possible, from the specifics of its
physical realization. In practical terms, this often amounts to developing a mathematical
model of the relevant aspects of the system (i.e., the embodied information processing).
This might seem like a return to disembodied, abstract models of computation, but it is
not, for it incorporates physical processes in their essential form. For example, a natural
system might exploit the diffusion and degradation of some pheromone, but its mathe-
matical description would be in terms of the diffusion and degradation of some substance
(with appropriate relative rate constants). That is, once we understand the computational
principles, a specific quantity can be replaced by a generic quantity. Of course, some nat-
ural embodied computational systems will be more dependent on specific realizations
(e.g., particular physical quantities) than others, and the more generically realizable ones
will be the more generally useful to us.

The last step in developing an embodied computation system is to realize the abstract
computational principles in an appropriate medium by selecting substances, forms of en-
ergy, quantities, and processes conformable to the mathematical model and the purposes
of the system. This, of course, is more difficult than the disembodied computing with
which we are familiar, but it will be necessary to master these techniques as we enter the
post-Moore’s Law era and attempt to apply computing principles more widely.

In the end, the process of designing an embodied computation system is not so different
from designing a conventional computation system. The designer develops an abstract
dynamical organization that will exhibit the required interactions with its environment.
This is analogous to programming, the principal difference being that embodied computa-
tion makes use of different primitive processes and representations, namely those that
have comparatively direct physical realizations. As a consequence, the physical environ-
ment and the physical realization of the computation will never be far from the designer’s
mind.

By looking at embodied computation in nature we may begin to isolate computational
primitives that are generally useful and realizable in a variety of media. Because of its
importance, I will focus here on embodied computation in morphogenesis (the self-orga-
nized development and metamorphosis of hierarchical form). Although there is some
overlap and ambiguity, we may distinguish those primitives that pertain to the individual
elements of the system and those that pertain to masses of them.

An embodied computation system, especially one organizing morphogenesis, will com-
prise a very large number of elementary units, such as cells or molecules. In this case we
are interested in physical processes involving single elements, which may respond pas-
sively or actively. Examples of such discrete primitives include mobility (translation, ro-
tation), adhesion and release, shape change, differentiation or state change, collision and
interaction, and proliferation and apoptosis (programmed cell death, unit disassembly).
Other processes pertain more to spatially distributed masses of elementary units, and they

7

may be called continuous primitives. Examples include elasticity, diffusion, degradation,
fluid flow, and gradient ascent.

Finally, biological morphogenesis teaches us that embodied computation can orchestrate
and organize complex, multistage processes operating in parallel at both the microscopic
and macroscopic levels. For example, Bonabeau, Dorigo, and Theraulaz (1999) in their
investigations of swarm intelligence in wasp nest construction, recognized the concept of
a coordinated algorithm, which leads to an organized nest structure. Similarly, we need
to discover how to design coordinated algorithms for embodied computation in artificial
morphogenesis and similarly complex applications.

But Is It Computing?

The reader may allow that embodied computing, as described above, is interesting and
potentially useful, but object to considering it a species of computing. After all, we have
a precise definition of computation in the Turing machine and its equivalents (according
to the notion of equivalence defined in Church-Turing computation theory). On the other
hand, the notion of embodied computing may seem imprecise and difficult to discrimi-
nate from other physical processes.

What distinguishes physically realized information processing from other physical pro-
cesses is, I think, an interesting and important question, but outside the scope of this re-
port. A few remarks must suffice here; towards the end this report I will address the rela-
tion between embodied computing and the familiar theory of Turing computation.

If we consider “computation” and related terms, both in historical usage (which includes
“analog computation”) and in the context of contemporary discussions in philosophy and
computer science, we can conclude that computation is a physical process, the purpose
or function of which is the abstract manipulation (processing) of abstract objects
(MacLennan, 1994a, 2004). That is, a physical process may be considered computation
(or information processing) if its purpose could be fulfilled as well by another physical
system with the same abstract (e.g., mathematical) structure. In short, its purpose is for-
mal rather than material.

This definition might seem to exclude embodied computation, or make it an oxymoron,
but I do not think this is so, for there is nothing contradictory about embodied computa-
tion’s greater reliance on physical processes for information processing. However, em-
bodied computation may be directed also at the production of specific material effects.

There are two answers to this. First, embodied computation’s physical effects can often
be understood abstractly (i.e., mathematically). For example, an activator-inhibitor sys-
tem will produce characteristic Turing patterns, which can be characterized mathemati-
cally, independently of specific substances involved. Second, we cannot expect all physi-
cal systems to fit neatly into categories such as computational and non-computational,

8

but we should expect there will be degrees of essential embodiment and of independence
from specific physical realizations.

Indeed, we must recognize that while artificial systems often have clearly specified pur-
poses, and thus may be definitely computational or not, things are not so clear cut in na-
ture, which often combines multiple functions into a single system. For example, ant for-
aging may simultaneously bring food to the nest and accomplish computational tasks
such as adaptive path finding, path minimization, and exploration. Also, the circulatory
system transports oxygen and nutrients, but also transmits hormonal signals.

Indeed, even well-engineered artificial systems obey the Shanley Principle, which says
that multiple functions should be combined into single parts; orthogonal design is impor-
tant for prototyping, but it should be followed by integration of function (Knuth, 1974, p.
295). Thus, as we push the limits of computing technology and embed it more deeply
into our world, we will have to combine functions, which will result in systems that are
less purely computational and more essentially embodied.

Related Work

Several authors have discussed embodied computation and related concepts. There is not
space here for a complete review (which would probably, in any case, be premature at
this point in time), so I will limit myself to a few similarities and differences.

According to Hamann and Wörn (2007) an embodied computation system consists of at
least two levels, with adaptive self-organization and collective behavior at the higher lev-
els resulting from spatially local interactions among “microscopic control devices,”
which are embodied devices comprising sensors, actuators, a processor, and memory.
There are several aspects to their embodiment, including a lack of separation between
processor and memory and an essential dependence of the computation on the physical
world (e.g., spatial position). They name simple robots, cells, and molecules as examples
of microscopic control devices. Their definition has much in common with our own, but
seems to conflate embodiment with issues of adaptation, self-organization, robustness,
loose coupling, etc., which are related to embodiment, but not essential to it.

Stepney (in press) discusses the ideas of material computation and in materio computers,
that is, systems in which the physical substrate “naturally” computes. These concepts are
very similar to embodied computation as I have presented it, with perhaps two differ-
ences. First, she advises that we focus on non-living substrates in order to understand
material computation, since biological systems are so much more complicated. Second,
it appears that she is primarily concerned with the use of physical materials to implement
computations, and less concerned with the use of computational processes to organize
and control matter and energy. (Indeed, this difference is suggested by the terms material
computation and embodied computation.) Stepney considers a variety of physical media
that might be used for computation. She also cautions us against an ill-advised applica-

9

tion to material computation of notions from Turing computation, a topic to which I now
turn.

Non-Turing Computation

It is important to remember that Church-Turing (CT) computation is a model of computa-
tion and that, like all models, it has an associated frame of relevance (MacLennan, 2003b,
in press). A model’s frame of relevance is determined by its simplifying assumptions —
by the aspects and degrees to which the model is similar to the modeled system or differs
from it — since these (often unstated) assumptions determine the sort of questions the
model is suited to answer. It is important to understand a model’s frame of relevance,
since if we use a model to address issues outside its frame of relevance, we are apt to
learn more about the model and its simplifying assumptions than about the modeled sys-
tem. For example, from a highway map we may infer the travel distance between cities
from the length of a line on the map, but we cannot infer the width of the road from the
width of the line, nor conclude that many cities have circular boundaries and are colored
either black or red!

Recall that the theory of CT computation was developed to address issues in effective
calculability and formalist approaches to mathematics; the simplifying assumptions that it
makes are well-suited to these issues and define its frame of relevance. Within this frame
it makes sense to consider something computable if it can be computed in a finite number
of steps (of finite but indeterminate duration) using a finite (but unbounded) amount of
memory. It also makes sense to treat computation as a matter of function evaluation and
define computability in terms of sets of functions. (See MacLennan, 1994a, 2003b, 2004,
in press, for more on the frame of relevance of CT computation.)

Unfortunately, the CT model is not well-suited to address issues in embodied computa-
tion or, more generally, natural computation, which lie outside its frame of relevance; its
simplifications and approximations are bad ones for embodied computation systems. For
example, the CT model ignores the real-time rates of the operations, but they are highly
relevant in embodied computation. Similarly, the CT notions of equivalence and univer-
sality do not address the efficiency (in real-time, not asymptotic, terms) with which one
system may simulate another.

Although it is premature to define a model of embodied computation, since we do not yet
understand which issues are relevant and which are not, and premature formalization can
impede the progress of a field, nevertheless we can produce a preliminary list of relevant
issues. They include robustness (in the presence of noise, errors, faults, defects, and un-
certainty), generality, flexibility, adaptability, morphology and steric constraints, physical
size, consumption of matter and energy, reversible reactions, and real-time response
(MacLennan, 2003b, 2004, in press).

10

Conclusions

In conclusion, we can see that embodied computation will play an increasingly important
role in post-Moore’s Law computing, but that we will need new models of computation,
orthogonal to the Church-Turing model, that address the relevant issues of embodied
computation. As a consequence we also expect there to be an ongoing fruitful interaction
between investigations of embodiment in computation and philosophy.

11

References

Anderson, M.L. (2003). Embodied cognition: A field guide. Artificial Intelligence 149,
91–130.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to
artificial systems. New York: Oxford Univ. Press.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence 47, 139–59.
Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, G., Theraulaz, J., & Bonabeau, E.

(2001). Self-organization in biological systems. New York: Princeton Univ. Pr.
Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge:

MIT Press.
Dreyfus, H. (1979). What computers can’t do: A critique of artificial reason. New York:

Harper & Row.
Hamann, H., & Wörn, H. (2007). Embodied computation. Parallel Processing Letters 17

(3), 287–98.
Haykin, S. (1999). Neural networks: A comprehensive foundation, 2nd ed. Upper Saddle

River: Prentice-Hall.
Johnson, M., & Rohrer, T. (2007). We are live creatures: Embodiment, American pragma-

tism, and the cognitive organism. In J. Zlatev, T. Ziemke, R. Frank & R. Dirven
(Eds.), Body, Language, and Mind, vol. 1 (pp. 17–54). Berlin: Mouton de Gruyter.

Knuth, D.E. (1974). Structured programming with go to statements. Computing Surveys 6
(4), 261–301.

MacLennan, B.J. (1994a). Continuous computation and the emergence of the discrete. In
K.H. Pribram (Ed.), Rethinking neural nets: Quantum fields and biological data
(pp. 199–232). Hillsdale: Lawrence-Erlbaum.

MacLennan, B.J. (1994b). Continuous symbol systems: The logic of connectionism. In
D.S. Levine & M. Aparicio IV (Eds.), Neural networks for knowledge representa-
tion and inference (pp. 83–120), Hillsdale: Lawrence-Erlbaum.

MacLennan, B.J. (2003a). Molecular combinatory computing for nanostructure synthesis
and control. In IEEE Nano 2003 (Third IEEE Conference on Nanotechnology).
IEEE Press.

MacLennan, B.J. (2003b). Transcending Turing computability. Minds & Machines 13 (1),
3–22.

MacLennan, B.J. (2004). Natural computation and non-Turing models of computation.
Theoretical Computer Science 317, 115–145.

MacLennan, B.J. (in press). Super-Turing or non-Turing? Extending the concept of com-
putation. International Journal of Unconventional Computing.

Miller, M.I., Roysam, B., Smith, K.R., & O’Sullivan, J.A. (1991). Representing and com-
puting regular languages on massively parallel networks. IEEE Transactions on
Neural Networks 2, 56–72.

12

Pfeifer, R., Lungarella, M., & Iida , F. (2007). Self-organization, embodiment, and biolog-
ically inspired robotics. Science 318, 1088–93.

Pfeifer, R., & Bongard, J.C. (2007). How the body shapes the way we think — A new view
of intelligence. Cambridge: MIT.

Steinbeck, O., Tóth, A., & Showalter, K. (1995). Navigating complex labyrinths: Optimal
paths from chemical waves. Science 267, 868–71.

Stepney, S. (2004). Journeys in non-classical computation. In T. Hoare & R. Milner
(Eds.), Grand Challenges in Computing Research (pp. 29–32). Swindon: BCS.

Stepney, S. (in press). The neglected pillar of material computation. Physica D.
Ting, P.-Y., Iltis, R.A. (1994). Diffusion network architecture for implementation of Gibbs

samplers with applications to assignment problems. IEEE Transactions on Neural
Networks 5, 622–38.

Winfree, E. (1998). Algorithmic self-assembly of DNA. Unpublished doctoral dissertation,
California Institute of Technology, Pasadena.

13

