
1

CHAPTER 1

BODIES — BOTH INFORMED AND TRANSFORMED
EMBODIED COMPUTATION

AND INFORMATION PROCESSING

Bruce J. MacLennan

Department of Electrical Engineering & Computer Science
University of Tennessee, Knoxville

E-mail: maclennan@utk.edu

Post-Moore’s Law computing will require an assimilation between
computational processes and their physical realizations, both to achieve
greater speeds and densities and to allow computational processes to
assemble and control matter at the nanoscale. Therefore, we need to
investigate “embodied computing,” which addresses the essential
interrelationships of information processing and physical processes in
the system and its environment in ways that are parallel to those in the
theory of embodied cognition. We briefly discuss matters of function
and structure, regulation and causation, and the definition of
computation. We address both the challenges and opportunities of
embodied computation. Analysis is more difficult because physical
effects must be included, but information processing may be simplified
by dispensing with explicit representations and allowing massively
parallel physical processes to process information. Nevertheless, in
order to fully exploit embodied computation, we need robust and
powerful theoretical tools, but we argue that the theory of Church-
Turing computation is not suitable for the task.

1. Post-Moore’s Law Computation

Although estimates differ, it is clear that the end of Moore’s Law is in
sight; there are physical limits to the density of binary logic devices and
to their speed of operation. This will require us to approach computation

B. J. MacLennan

2

in new ways, which present significant challenges, but can also broaden
and deepen our concept of computation in natural and artificial systems.

In the past there has been a significant difference in scales between
computational processes and the physical processes by which they are
realized. For example, there are differences in spatial scale: the data with
which programs operate (integers, floating point numbers, characters,
pointers, etc.) are represented by large numbers of physical devices
comprising even larger numbers of particles. Also, there are differences
in time scale: elementary computational operations (arithmetic,
instruction sequencing, memory access, etc.), are the result of large
numbers of state changes at the device level (typically involving a device
moving from one saturated state to another). However, increasing the
density and speed of computation will force it to take place on a scale
(spatial and temporal) near that of the underlying physical processes.
With fewer hierarchical levels between computations and their physical
realizations, and less time for implementing computational processes,
computation will have to become more like the underlying physical
processes. That is, post-Moore’s Law computing will depend on a
greater assimilation of computation to physics.

In discussing the role of physical embodiment in the “grand
challenge” of non-classical computing, Stepney writes,

Computation is physical; it is necessarily embodied in a
device whose behaviour is guided by the laws of physics
and cannot be completely captured by a closed
mathematical model. This fact of embodiment is
becoming ever more apparent as we push the bounds of
those physical laws. [Stepney, 2004, p. 29]

Traditionally, a sort of Cartesian dualism has reigned in computer
science; programs and algorithms have been conceived as idealized
mathematical objects; software has been developed, explained, and
analyzed independently of hardware; the focus has been on the formal
rather than the material. Post-Moore’s Law computing, in contrast,
because of its greater assimilation to physics, will be less idealized, less
independent of its physical realization. On one hand, this will increase
the difficulty of programming since it will be dependent on (or, some
might say, contaminated by) physical concerns. On the other hand, as I
will argue here, it also presents many opportunities that will contribute to
our understanding and application of information processing in the

Bodies — Both Informed and Transformed 3

future. To understand them, I will make a brief digression through non-
Cartesian developments in philosophy and cognitive science.

2. Embodied Cognition

Johnson and Rohrer trace the theory of embodied cognition to its roots in
the pragmatism of James and Dewey, both of whom stressed the
importance of understanding cognition as an embodied biological
process [Johnson, Rohrer, 2007]. Dewey’s Principle of Continuity
asserts that there is no break from our highest, most abstract cognitive
activities, down through our sensory and motor engagement with the
physical world, to their foundation in biological and physical processes.
Cognition is the emergent pattern of purposeful interactions between the
organism and its environment (including other organisms).
Psychologists, such as Piaget and Gibson, and philosophers, such as
Heidegger, Polanyi, and Merleau-Ponty, have made similar points.

Hubert Dreyfus and others have stressed the importance and benefits
of embodiment in cognition. As Dreyfus observed, there are many
things that we (implicitly) know simply by virtue of having a body
[Dreyfus, 1979, pp. 248–250, 253]. Therefore, in embodied cognition,
embodiment is not incidental to cognition (or to information processing),
but essential to it. For representative recent work see [Clark, 1997;
Pfeifer, Scheier, 1999; Iida, Pfeifer, Steels, Kuniyoshi, 2004; Pfeifer,
Bongard, 2007]. Finally, from [Brooks, 1991] onward there has been
increasing understanding of the value and exploitation of embodiment in
AI and especially in robotics [Iida, et al., 2004].

3. Embodied Computation

Pfeifer, Lungarella, and Iida provide a concise definition of embodiment:
“the interplay of information and physical processes” [Pfeifer,
Lungarella, Iida, 2007, p. 1088]. On this basis we define embodied
computation as information processing in which the physical realization
and the physical environment play an unavoidable and essential role.

B. J. MacLennan

4

3.1. Physics for Computational Purposes

Embodied computing can be understood as a natural consequence of the
decreasing size and cost of computing devices. Historically, offline
computer applications were most common. Interaction with the
environment could be characterized as input—process—output. That is,
physical input (e.g., punched cards, magnetic tape) was presented to the
computer and converted into internal, computational representations, and
in this effectively abstract form it was processed. As abstract results
were generated they were converted into specific physical
representations (e.g., printed paper, punched cards, magnetic tape) for
use after the program terminated. It is easy to see offline computation as
the evaluation of a mathematical function on an argument, which is the
way it is treated in the traditional theory of computation.

As computers became smaller and less expensive, it became feasible
to embed them as controllers in larger systems. Embedded computations
are in ongoing interaction with their environments, are typically non-
terminating, and have to be of a physical size and real-time speed
compatible with the physical systems in which they are embedded. Their
basic structure is sensors—controller—actuators, in which, however,
there are critical real-time feedback loops through the physical
environment from the actuators back to the sensors. Nevertheless, the
basic model is similar to offline computing in that the sensors and
actuators perform the conversions to and from the computational
medium, which is effectively abstract (largely independent of specific
physical realization). Physical considerations are confined to the
embedding device and its environment, the transducers (sensors,
actuators), and basic physical characteristics of the control computer
(size, weight, electrical requirements, clock rate, memory capacity).

The difference between embedded computing and embodied
computing is that in the latter there is little or no abstract computation;
the computation must be understood as a physical system in continuing
interaction with other physical systems (its environment). The strength
of embodied computing, like the strength of embodied cognition, resides
in the fact that information representation is often implicit in the
computation’s physical realization and in its environment.
Representations and information processes emerge as regularities in the

Bodies — Both Informed and Transformed 5

dynamics of the physical systems that allow the computational system to
fulfill its function.

Another significant advantage of embodied computing is that many
computations are performed “for free” by the physical substrate. For
example, diffusion occurs naturally in many fluids, such as liquids and
gases, and in other media. It can be used for many computational
processes, including broadcasting of information and massively parallel
search, such as in path planning through mazes, optimization, and
constraint satisfaction [Khatib, 1986; Miller, Roysam, Smith, O’Sullivan,
1991; Rimon, Koditschek, 1989; Steinbeck, Tóth, Showalter, 1995; Ting,
Iltis, 1994]. Diffusion is expensive to implement by conventional
computation, but it comes for free in many physical systems.

As is well known, many artificial neural networks are based on
matrix-vector multiplications combined with simple nonlinear functions,
such as the logistic sigmoid,

€

1 1+ exp(−x)[] . Also, many universal
approximation theorems are based on linear combinations of sigmoids
and similar functions [Haykin, 1999, pp. 208–94]. Computing a sigmoid
on a conventional computer requires computing a series approximation
to a transcendental function (e.g., exp, tanh) or approximating the
sigmoid by table look-up and linear interpolation. However, sigmoidal
behavior is typical of many physical systems, for it results from an
exponential growth process that gradually saturates. For example,
available chemical receptors may become occupied or the supply of
signaling molecules may become exhausted. In general, sigmoidal
response comes for free because physical resources become saturated or
depleted. In embodied computing we do not need to program sigmoid
functions explicitly; we can exploit common physical processes with the
required behavior.

Further, many self-organizing systems depend on positive feedback
for growth and extension and on negative feedback for stabilization,
delimitation, separation, and the creation of structure (in space or time).
In embodied computation negative feedback may be implemented by
naturally occurring physical processes such as evaporation, dispersion,
and degradation of chemicals. These processes will occur anyway;
embodied computation makes productive use of them.

One final example must suffice. Many algorithms, such as simulated
annealing [Kirkpatrick, Gelatt, Vecchi, 1983] and stochastic resonance
[Benzi, Parisi, Sutera, Vulpiani, 1982], use randomness for productive
purposes, including escape from local optima, symmetry breaking,

B. J. MacLennan

6

deadlock avoidance, exploration, etc. Such randomness comes for free
in physical systems in the form of noise, uncertainty, imprecision, and
other stochastic phenomena.

In summary, with conventional computing technology we often
“torture” the physical substrate so that it implements desired
computations (e.g., using continuous electronic processes to implement
binary logic), whereas embodied computation “respects the medium,”
conforming to physical characteristics rather than working against them.a
The goal in embodied computation is to exploit the physics, not to
circumvent it (which is costly).

3.2. Computation for Physical Effect

We have seen how embodied computation exploits physical processes
for the sake of information processing, but embodied computation also
uses information processing to govern physical processes. That is,
typically we think of computation as a physical system in which the
physical states and processes represent (perhaps imperfectly) certain
abstract states and processes, which constitute a desired information
system. In mathematical terms, there is a (perhaps imperfect)
homomorphism from the concrete physical system onto the abstract
information system [MacLennan, 1994 a; MacLennan, 2004]. But we
can look at computation from a different perspective, since an
information system (and, in a general-purpose computer, the program)
governs the flow of matter and energy in the physical computer (subject,
of course, to the computer’s structure and the laws of physics). This is in
fact an essential function in natural embodied computation (including
embodied cognition), which governs physical processes (e.g., growth,
metabolism) in an organism’s body and its physical interactions with
other organisms and their environment. Often, the result of embodied
computation is not information, but action, and even self-action, self-
transformation, and self-construction.

When our purpose is information processing, then the goal is often to
represent the information with as small a quantity of energy or matter

a The metaphors of “torturing” and “respecting the medium” were suggested to me by
Christof Teuscher and Peter Dittrich, respectively.

Bodies — Both Informed and Transformed 7

(e.g., electrical charge) as possible — consistent with reliable operation
— so that state changes will require as small a movement of energy or
matter as possible, for the sake of minimizing state-transition time and
heat dissipation. Indeed, the (unattainable) goal has been a sort of
disembodied computation and communication, in which pure form is
represented, transmitted, and transformed without need of material
realization. On the other hand, when embodied computation is applied to
the control of matter and energy, we may want to move more rather than
less. This is because, in contrast to conventional embedded computers,
in embodied computation there may be no clear distinction between the
processors and the actuators; the physical effects may be a direct
consequence of the computational process (as opposed to being
controlled by them). Therefore embodied computation may involve the
movement of relatively large amount of matter or energy compared to
traditional computation, such as large molecules, large electrical
quantities, etc. For example, in algorithmic assembly DNA computation
is used to assemble nanostructures [e.g., Barish, Rothemund, Winfree,
2005; Rothemund, Papadakis, Winfree, 2004; Rothemund Winfree,
2000; Winfree, 1998], and our own work explores the use molecular
computation based on combinator reduction for nanostructure synthesis
and control [MacLennan, 2003 a].

Further, embodied computation can be applied to the implementation
of active materials, that is, materials that have a complex behavioral
repertoire. Thus, embodied computation might be used to implement an
artificial tissue that can recognize environmental conditions and open or
close channels in response to them, or otherwise transport matter or
energy across the membrane, perhaps transforming it in the process.
Embodied computation might be used to implement a material,
analogous to cardiac tissue, capable initiating and controlling organized
patterns of contraction.

Much current nanotechnology has a materials orientation, by which I
mean that it is most successful at producing bulk materials with a desired
nanostructure or microstructure; to create macroscopic structure we must
resort to more traditional manufacturing methods. Yet morphogenesis
and pattern formation in embryological development show us that
embodied computational processes can coordinate the proliferation,
movement, and disassembly of cells, macromolecules, and smaller
molecules to produce highly complex systems with elaborate hierarchical
structure from the nanoscale up to the macroscale. This is an inspiring

B. J. MacLennan

8

model for future nanotechnology: using embodied computation to control
the multistage self-organization of complex, functional, and active
hierarchical systems, that is, artificial morphogenesis [MacLennan, 2009
a, in press].

4. Related Work

Several authors have discussed embodied computation and related
concepts. There is not space here for a complete review (which, in any
case, would be premature at this point in time), so I will limit myself to a
few similarities and differences.

According to Hamann and Wörn an embodied computation system
consists of at least two levels, with adaptive self-organization and
collective behavior at the higher levels resulting from spatially local
interactions among “microscopic control devices,” which are embodied
devices comprising sensors, actuators, a processor, and memory
[Hamann, Wörn, 2007]. There are several aspects to their embodiment,
including a lack of separation between processor and memory and an
essential dependence of the computation on the physical world (e.g.,
spatial position). They name simple robots, cells, and molecules as
examples of microscopic control devices. Their definition has much in
common with our own, but seems to conflate embodiment with issues of
adaptation, self-organization, robustness, loose coupling, etc., which are
related to embodiment, but not essential to it.

Stepney discusses the ideas of material computation and in materio
computers, that is, systems in which the physical substrate “naturally”
computes [Stepney, 2008]. These concepts are very similar to embodied
computation as I have presented it, with perhaps two differences. First,
she advises that we focus on non-living substrates in order to understand
material computation, since biological systems are so much more
complicated. Second, it appears that she is primarily concerned with the
use of physical materials to implement computations, and less concerned
with the use of computational processes to organize and control matter
and energy. (Indeed, this difference is suggested by the terms material
computation and embodied computation, since the latter connotes a self-
organizing, self-regulating body and an organicist approach.) Stepney
considers a variety of physical media that might be used for computation.
She also cautions us against an ill-advised application to material

Bodies — Both Informed and Transformed 9

computation of notions from Turing computation, a topic that I address
later (Secs. 9–10).

5. Computation and Information Processing

An obvious question is whether embodied computation is a kind of
computation at all, that is, whether it is appropriate to apply the terms
computation and information processing to these physical processes. A
brief consideration of the usage of these terms may prove helpful.

We may begin with computation, which — like calculation —
originally referred to a human activity. Calculation was an embodied
human activity performed primarily with concrete objects (Lat., calculi =
pebbles). Computation was more abstract (Lat., computare, referring to
the reckoning of accounts, etc.), but even putare (to think over, reckon,
etc.) has a primary sense of tidying up physically [OLD, s.vv. computo,
puto]. As is well known, before the middle of the twentieth century, a
computer was a human occupation, which was later extended to certain
artificial systems, automatic computers [OED]. More recently the term
has been transferred back to natural systems, and we use natural
computation to refer to computation occurring in nature or inspired by it.
What are the features common to human and non-human natural
computation and to artificial computers? I will address this later.

The ordinary sense of information is derived from the verb to inform,
which means to give form to something or to oneself [OED, s.vv.]. That
is, it is the shape or configuration that is relevantly altered, not its
substance or material. Like computation, the activity of informing
(another or oneself) and the abstraction information refer originally to
human activities. By extension they are naturally applied to non-human
animals. In both cases the effect of information is to reshape the pattern
of (internal or external) activity of an organism or group of organisms.
Also like computing, the ideas of information and information processing
have been transferred to artifacts. Shannon (and before him, Hartley)
facilitated this extension in part by taking human relevance and meaning
out of the definition of information.

In order to expand our concepts of embodied computation and
information processing it is especially fruitful to understand natural (non-
technological) information processing systems. In addition to teaching us
information processing paradigms distinct from binary digital logic, they
can show us how to exploit embodiment for more effective information

B. J. MacLennan

10

processing. This raises a demarcation issue: how do we discriminate
information processing (and computation) from other natural processes?
To decide, we must look to the function (or purpose) of the process, a
topic to which I now turn.

6. Function and Structure

6.1. Function

Function, purpose, and other teleological notions are problematic in
science, but I will argue that they are largely unproblematic in the
context of computation and information processing.

On one hand, the function of an artifact is generally easy to
determine: ask the designer. That is, artifacts are designed for a purpose,
which is often explicitly stated or easy to determine in a contemporary or
historical cultural context. The function of some specific historical and
prehistoric artifacts may be unclear, but that fact does not invalidate the
general principle.

Similarly, although teleological notions, such as purpose and
function, are problematic in a biological context, and are ultimately
grounded in inclusive fitness, they are unproblematic in the context of
particular biological subsystems. For example, biologists routinely and
objectively investigate and describe the functions of the digestive,
reproductive, immune, and nervous systems. Therefore, we can, in
principle at least, establish criteria for whether or not the function of a
biological system is information processing and computation, or
something else.

However, in biology, but also in technology, structures and processes
may serve multiple functions. Although such combinations of function
may interfere with our understanding of the system, they improve system
efficiency. (In an engineering context it is called the Shanley Principle;
see Sec. 9).

I believe that the fundamental criterion distinguishing information
processing from other physical processes is that only the abstract form is
relevant to the purpose; it could as well be realized by other physical
systems. This is the root of the mutual realizability commonly taken to
be characteristic of computation. Furthermore, information, as
formalized by Shannon, depends on contrasts and distinctions, that is, on

Bodies — Both Informed and Transformed 11

form, and is independent of the physical substrate supporting the
contrasts.

In order to explore the essence of information processing, especially
in the context of embodiment, it will be convenient to use the
Aristotelian notions of form (Grk. eidos, Lat. forma) and matter (Grk.
hulê, Lat. materia) which correspond, in more modern terms, to
organization and energy. That is, it is the abstract shape or structure that
is relevant to information processing, and its physical substrate is
relevant only insofar as its suitability to support the form.

Computation is a physical process and therefore it takes place in a
physical medium, a substratum supporting its formal structures and their
transformations. For computation qua computation, the specific
properties of the medium are relevant only insofar as they support the
formal organization and process that constitutes the computation or
information process.b If we abstract away from these irrelevant specific
properties, we are left with a kind of generic matter, or neutral substrate,
not infinitely malleable or indeterminate, but able to support the formal
structures and processes that fulfill the computational system’s purpose.
For example, any modern computer architecture can be understood as a
(relatively) neutral medium (i.e., an array of bytes and certain primitive
operations on them) that can support a wide range of formal information
processes (i.e., programs).

In the context of the form-matter dichotomy it is natural to think of
matter as something fundamentally formless and simple, but form and
matter are relative to each other and to an appropriate level of system
analysis. In fact computational media are often quite complex. For
example, while the concept of a bit is simple, a modern digital computer
architecture is quite complex. Embodied computation, in particular, often
makes use of complex matter, which exhibits a wide repertoire of
complicated and interrelated, but not necessarily functional, behaviors.
Computation recruits, organizes, and coordinates these complex
behaviors to achieve the computation’s purpose. Examples of such
complex embodied computational media include neurons in the nervous
system, social insects in colonies, cells in morphogenesis, and proteins in
intracellular regulation [Tokuriki, Tawfik, 2009]. Many computational

b Obviously, the specific instantiation may be relevant to non-computational issues, such
as physical robustness, energy requirements, physical compatibility with the rest of the
system (e.g., a biological computational medium in a living organism, an electronic
computational medium in a robot).

B. J. MacLennan

12

media belong to Wolfram’s dynamical class IV, which resides on the
border between static and periodic behavior (classes I, II) on one hand
and chaotic behavior (class III) on the other [Wolfram, 2002]. As
Wolfram has stressed, rich, complex behavior can emerge from very
simple mechanisms [Wolfram, 2002, ch. 12]. This insight is summarized
in Stuart Kauffman’s slogan, “order for free.”

6.2. Regulation and Causation

A principal goal of natural information processing is regulation of other
physical processes to some end. That is, information is extracted from
the larger physical system, processed formally, and used to control or
influence physical processes. This includes the regulation of other
systems (i.e., in the environment of the computational system), but
especially self-regulation (homeostasis and development). Because
computation is a formal process, and essentially independent of physical
magnitude, it can regulate physical processes that involve more matter or
energy than the computation itself.

Regulation is for some purpose or end, and therefore it is always
future-directed. Its goal is either to maintain a current state into the future
or to alter the current state in the future in order to pursue some goal. As
a consequence, artificial computation, like natural computation, is
functional; it is directed toward some end (in the sense of purpose, not
final state; cf. Aris., Phys. 194b32–33). Teleology is unavoidable in
computation, whether natural or artificial.

As a consequence, all four of the Aristotelian primary “causes” (Grk.
aitia, Lat. causa) can be applied profitably to descriptions and
explanations of computation and information processing, especially in
nature (on the four causes, see Aris., Phys. II 194b–195a, Met. 983a–b,
1013a–1014a).c

The formal explanation appeals to “the form [eidos] or pattern
[paradeigma]; that is, the essential formula [logos] and the classes that
contain it” (Aris., Met. 1013a26–28). The form is correlative to the
matter in the physical state of the computational system, and it is the

c The conventional translation “cause” does capture the ancient terms’ ranges of meaning,
which include responsibility, motive, occasion, theme, category; i.e., explanation, answer
to “how? and why?” (LSJ, OLD).

Bodies — Both Informed and Transformed 13

form that governs the computational process, which is understood as a
process of transformation (change of form). In some cases, such as
morphogenesis and algorithmic self-assembly, the end and goal of
transformation is the creation of some final form (structure,
organization).

The material explanation accounts for computation in terms of its
matter, that is the computational medium, whether specific to a particular
realization, or generic for a class of computational systems. The medium
must be able to support the formal structures and processes of the
computation and be suited to the system’s purpose.d Aristotle (Phys.
194b9) observes that “the conception of ‛material’ [hulê] is relative, for it
is different material that is suited to receive the several forms.” The
material is the substratum of form and its transformation. The material
aspects assume a much larger importance in embodied computation than
they do in traditional computation.

The efficient explanation appeals to the agent or mover (Grk. kinoun,
Lat. efficiens, movens), that is, “to something to initiate the process of
change or its cessation when the process is completed” (Aris., Phys.
194b29–31). This is both the initial informing agent (which physically
imposes the initial formal state on the medium), and the transforming
agent of the initiation and completion of each successive step of
computation (each step imposing new form on the medium).
Computational systems are dissipative physical systems and their state
changes require energy. A few computational processes can be initialized
in a nonequilibrium state and allowed to compute to equilibrium, but
most computational processes must be fueled or powered so long as they
continue. Energy issues, both its provision and its dissipation, are more
important in embodied computation than they were in conventional
computation.

The final explanation focuses on the function, purpose, end, or
completion (Grk. telos, Lat. finis) of a process, and indeed the formal,
material, and efficient causes together constitute the means to achieve the
end, which is the final cause. The final explanation is relevant to
artifacts, which serve our ends, as well as to organisms, which serve their
own. In particular, we have seen that purpose is fundamental to the

d “In the crafts, then, it is we that prepare the material for the sake of the function it is to
fulfill, but in natural products Nature herself has provided the material. In both cases the
material is commanded by the end to which it is directed.” (Aris., Phys. 194b8–10, tr.
Wicksteed & Cornford).

B. J. MacLennan

14

definition of natural and artificial computational systems, since their
function is information processing, as manifest in multiple realizability.

In summary, all four of Aristotle’s “causes” or kinds of explanation
are relevant to computation and information processing, but in embodied
and natural computation the material, efficient, and final aspects play a
more important role than they do in traditional computation (for which
the formal aspect dominates).

6.3. Structure

Conventionally we think of the physical realization existing for the sake
of realizing an abstract computation. That is, we have some system of
forms and transformations (an information process) in which we are
interested, and we arrange (by construction or programming) the physical
process to instantiate the abstract process of interest. However, as we
have seen, sometimes the function of a computational process is
regulation, that is, its purpose is to inform (impose a form on) matter, or
to organize energy.

This is apparent in natural computation systems, where information
processing is often devoted to the maintenance of an organism, colony,
or species. For example, information-mediated regulatory processes
control tissue growth and repair, embryological development and
morphogenesis, social organization, and colony construction and
maintenance. It is significant that in many of these cases the information
process is modifying (transforming) its own physical realization or, to
put it in other terms, the computation is recomputing its physical
implementation. Embryological morphogenesis is a clear example, since
information processes regulate the development of the embryo, and the
structure of the embryo reciprocally governs the information process.
Similarly social insects coordinate their behavior to construct a physical
colony, which in turn conditions the collective behavior of the insects.

This sort of mutual determination of information processes and
physical processes will be increasingly important in artificial systems as
well, since we can use automatic information processing to fabricate or
manufacture systems that are too small or too intricate for traditional
techniques. For example, self-repairing or self-healing artificial systems,
like natural systems, may use intrinsic information processes to detect
damage, recruit repair resources, and coordinate (re-)construction. In

Bodies — Both Informed and Transformed 15

various self-assembly processes, such as artificial morphogenesis
[MacLennan, 2009 a, in press], elementary physical components, with
primitive information-processing capacities, organize into a physical
substrate for further, more coordinated behavior, which creates more
complex physical structures that in turn structure more complex
information processes. Finally, radically reconfigurable computers and
reconfigurable robot collectives can adapt themselves to changing
requirements by disassembling themselves into neutral physical
components and then reconfiguring themselves into a new physical
structure, in a process analogous to the metamorphosis of a caterpillar
into a butterfly. Thus information processes can reorganize matter and
energy, including the physical substrate realizing the information
processes, which is perhaps the best example of embodied computing.

7. A Mathematical Model of Embodied Computation

In this section I will provide a more precise, mathematical
characterization of the difference between information processing and
other physical processes. The key criterion, as previously discussed, is
multiple realizability in a teleological context.

Before developing a mathematical model it is essential to recall that
each model is suited to answering a certain class of questions, and
therefore exists in a frame of relevance [MacLennan, 2003 b;
MacLennan, 2009 b], determined by the model’s intended use, and that
in conformity to its frame, a model exists at a corresponding level of
description, and that it incorporates factors relevant to these questions
and excludes the rest for the sake of simplicity.

7.1. States and Trajectories

Therefore we will consider the set

€

S of states for a closed system (which
I’ll also call

€

S). Since computation is relative to a purpose, of an artifact,
in an organism, in a colony, etc., we will decompose

€

S into two
subsystems,

€

A an agent involving information processing, and

€

E , its
environment. In terms of the state space,

€

S = E × A.
However,

€

A is typically only partially computational, and so as a
first approximation, we might factor the agent into a body

€

B and a
computational part

€

C , that is,

€

A = B ×C . The computational part is

B. J. MacLennan

16

devoted to information processing, as will be explicated shortly. This
decomposition is suitable for conventional computation, which is internal
to the agent, but in embodied computation the information is partially
externalized to the environment. Therefore it is more accurate to factor
the complete system into a physical part

€

P and a computational part

€

C ,
that is,

€

S = P ×C . The computational state

€

C has exterior and interior
parts,

€

CE and

€

CA , which reside in the environment and agent
respectively:

€

C = CE ×CA .
An additional complication that arises in embodied computation is

that the state spaces might not be fixed through time. Think of
embryological morphogenesis; as cells proliferate, the state space of the
embryo increases in dimension (degrees of freedom), including the
computational state space, which increases to accommodate the
information processing of the proliferating cells. Conversely, in
embryological development apoptosis (programmed cell death)
decreases the dimension of both computational and non-computational
state spaces.

The easiest way to treat this possibility is by defining the state spaces
(

€

S ,

€

C ,

€

P , etc.) to be large enough to accommodate the highest
dimension required. An increasing effective state space then corresponds
to a state trajectory rising out of a lower dimensional subspace into
higher dimensions. Conversely, a contracting state space corresponds to
the trajectory confining itself to progressively lower dimensional
subspaces.

Since we are concerned with information processes, which govern
behavior, we must consider trajectories in state space over some defined
time interval

€

T = [to,tf]. Thus we may consider the state

€

s(t)∈ S at
time

€

t ∈ T , and its computational component

€

c(t)∈ C .
However, at the appropriate level of modeling the trajectories may be

nondeterministic, and therefore each trajectory has a probability
distribution over states at a given time. The probabilities of the
trajectories themselves are conditional on their initial states and also, for
open systems, on their boundary conditions, but for simplicity we restrict
the presentation here to closed systems. Therefore we interpret a
trajectory as a function

€

τ : S ×T × S→ [0,1] so that

€

τ(s0,t,σ) = Pr s(t) =σ | s(t0) = s0{ } is the probability that the trajectory
beginning at

€

s0 is in state

€

σ at time

€

t . Of course probabilities are
required to be normalized,

€

τ (s,t,σ)dµ(σ) =1
S∫ for all

€

s∈ S and

Bodies — Both Informed and Transformed 17

€

t ∈ T , where a measure

€

µ appropriate to the state space is chosen. In
specific cases there will of course be other restrictions on the trajectories,
but that is not relevant to our present discussion.

7.2. Multiple Realizability

With this background we can formulate the property of multiple
realizability, which is fundamental to information processing. The idea
we want to express is that all physical systems realizing the same abstract
computational process will generate the same distribution of trajectories,
but it is not so simple as this, because the computational state is part of
the total state, and so any change of its realization will change the state
space.

A certain subspace

€

I of

€

C constitutes the interface between
computational system and the physical system

€

P . Thus we write

€

C = I ×H , where

€

H is the “hidden” (non-interface) subspace of the
computational state. Thus,

€

I represents the physical inputs and outputs
of the computational system, which must have a specific physical
representation in order for the computation to fulfill its purpose. For
example, its purpose may be to detect a gradient in the concentration of
some particular chemical and move in the corresponding direction. In
more conventional terms, the relation between

€

I and

€

H is that between
the input/output transducers and the rest of the computational system.

Therefore consider a potentially alternative realization of

€

C with
physical state space

€

′ C = I × ′ H . We are concerned with the trajectories
generated by computations in

€

C and

€

′ C on the visible state space

€

V = P × I . Each trajectory

€

τ in

€

S generates a projected visible
trajectory

€

υ :V ×T ×V → [0,1] defined by:

€

υ(v0,t,v) = τ (v0,h0), t,(v,h)[]dµ(h) ⋅Pr h0 | v0{ }dµ(h0),H∫H∫

where

€

v0 ,

€

v ∈ V and

€

Pr h0 | v0{ } is the probability of initial state

€

s0 = (v0,h0) given

€

v0 ; they are the initial states

€

h0 of the computation
consistent with observable state

€

v0 .
Then, if we have two computational realizations

€

C and

€

′ C , the
condition for their realizing the same abstract computation (and hence
serving the same purpose) is the equality of their visible projections:

€

υ = ′ υ . This defines an equivalence relation on physical realizations of

B. J. MacLennan

18

computations, and the corresponding equivalence classes correspond to
abstract computations.

We have described how the same abstract computation can be
realized in different physical state spaces

€

C, ′ C , ′ ′ C , … There are also
abstract computational state spaces

€

C*, in which, in effect, all the
components are dimensionless numbers as opposed to real physical
quantities. All physical realizations C of this computation generate the
same observable behavior as

€

C*, that is,

€

υ =υ *.
The foregoing are necessary conditions for multiple realizability, but

what are the sufficient conditions? To establish them, we need to know
something about the structure of the computation. To illustrate, we will
restrict our attention to a system that can be specified by a simple
differential or difference equation,

€

s(′ t) = F s(t)[] , where

€

′ t represents
the next “instant” of time:

€

t + Δt in the case of a difference equation,

€

t + d t in the case of a differential equation.e The initial state is

€

s(t0) = s0 . Next, we separate the non-computational from the
computational components of the system:

€

v(′ t) = FV v(t),h(t)[],
h(′ t) = FH v(t),h(t)[].

€

FV incorporates output transduction and

€

FH incorporates input
transduction. Similarly, the abstract computation is described:

€

v(′ t) = FV
* v(t),h*(t)[],

h*(′ t) = FH
* v(t),h*(t)[].

A sufficient condition for the physical system to realize the abstract
computation is that there exists a mapping

€

r :H→ H* satisfying the
following homomorphism conditions [cf., MacLennan, 1994 a;
MacLennan, 2004]:

€

FV = FV
*
 i × r(),

r FH = FH
*
 i × r().

e It is straight-forward to put these differential equations into standard form.

Bodies — Both Informed and Transformed 19

where

€

i :V →V is an identity function; see the commutativity diagrams
(Figs. 1 and 2). For the initial state the condition is

€

h0
* = r(h0) .

When stated in such abstract terms it is easy to mistake multiple

realizability for a mathematical property, but it is not; it is physical
property or, more properly, a property of physical systems in a
teleological context. Therefore, it is helpful to consider an example.

Ants lay down pheromone trails when they return to their nests with
food [Camazine, Deneubourg, Franks, Sneyd, Theraulaz, Bonabeau,
2001]. In addition to showing the way to the food source, these trails
convey other information, such as the quality of the food source. The
competition between reinforcement of the trail as the ants use it, and its
disappearance as the pheromone dissipates and degrades, ensures that the
path structure is adaptive and efficient in guiding the ants to and from
their food sources. The primarily computational function of this system
is evident in the fact that the pheromone could be replaced by other
physical substances that would work as well. The transducers would
have to be replaced appropriately; that is, the ants would have to be able
to produce and detect the new signal substance. Of course, to fulfill its
function adequately, the new substance would have to have the same

Fig. 1. Commutativity diagram for visible state.

Fig. 2. Commutativity diagram for hidden state.

B. J. MacLennan

20

rates of increase and decrease (although it is likely that any substance
with the same ratio of increase rate to decrease rate would work as well).
The ready availability of such a substance and the difficulty of ants
producing or detecting it are not the important issues. What is important
is that we can see that the functioning of the process does not depend in
an essential way on any specific substance. The process is essentially
formal not physical; it is information processing.

We may contrast this with a non-computational process that has some
superficial similarities: the transport of food to the nest. If we think of it
in purely mathematical terms it might seem to be multiply realizable. We
can imagine a sort of input transducer that converts a portion of physical
food into a number (encoding the food’s quality and quantity in some
way). This number is conveyed by a formal process (perhaps modeling
the movement of the ants to the nest), where an output transducer
converts the encoding into corresponding physical food.

Certainly, such a system could be constructed, but we can see that it
would not fulfill the same purpose as the original transport process,
which was to convey energy (stored in specific substances) from one
physical location to another. In order to actually implement the
alternative realization described, it would be necessary for the output
transducer to be able to take the input signal (encoding the amount and
kind of food) and use it to guide the synthesis of physical food that could
be used by real ants. Naturally, this output transducer would consume
energy and raw materials to fuel this synthesis, which would defeat the
purpose of the transport process, which was to bring resources to the
nest. Since the purpose of the transport process is to convey real,
physical matter and energy from one place to another, we can see that a
formal process is not suitable.

Therefore, when we are considering a supposed alternative
realization, we must do so in the context of physical reality, not
mathematical structure. It is an alternative realization only it fulfills the
same physical function as the original system. There will, of course, be
borderline cases, and we know that some systems may not be purely
computational, but such complications do not invalidate the general
concept. Categories may be useful even though neither nature nor
engineering is compelled to conform exactly to them.

Bodies — Both Informed and Transformed 21

8. Design of Embodied Computation Systems

One of the challenges of embodied computation is that we have very
little experience doing it. Much of our programming has been done in
the idealized worlds of perfect logic and implementation-independent
programming languages; unavoidable interactions with physical reality
have been relegated to the periphery. Fortunately nature provides
numerous examples of effective embodied computation, from
intracellular genetic regulatory circuitry to the swarm intelligence of
social insects and other animals. Therefore we can look to nature to
learn how computation can cooperate with physics, rather than opposing
it, and how information processing systems can fruitfully interact with
the physical embodiment of themselves and other systems.

Since embodied computation is a new computing paradigm, it may be
worthwhile to say a few words about how embodied computation
systems might be designed. The first step is to understand how
information processing occurs, and interacts with physical reality, in
natural systems. We may benefit both from studies of specific systems
relevant to some application of interest, but also from more general
information about embodied computation in nature [e.g., Camazine, et
al., 2001].

The second step is to abstract the process, so far as possible, from the
specifics of its physical realization. In practical terms, this often
amounts to developing a mathematical model of the relevant aspects of
the system (i.e., the embodied information processing). This might seem
like a return to disembodied, abstract models of computation, but it is
not, for it incorporates physical processes in their essential form. For
example, a natural system might exploit the diffusion and degradation of
some pheromone, but its mathematical description would be in terms of
the diffusion and degradation of some substance (with appropriate
relative rate constants). That is, once we understand the computational
principles, a specific quantity can be replaced by a generic quantity. Of
course, some natural embodied computational systems will be more
dependent on specific realizations (e.g., particular physical quantities)
than others, and the more generically realizable ones will be the more
generally useful to us.

The last step in developing an embodied computation system is to
realize the abstract computational principles in an appropriate medium
by selecting substances, forms of energy, quantities, and processes

B. J. MacLennan

22

conformable to the mathematical model and the purposes of the system.
This, of course, is more difficult than the disembodied computing with
which we are familiar, but it will be necessary to master these techniques
as we enter the post-Moore’s Law era and attempt to apply computing
principles more widely.

In the end, the process of designing an embodied computation system
is not so different from designing a conventional computation system.
The designer develops an abstract dynamical organization that will
exhibit the required interactions with its environment. This is analogous
to programming, the principal difference being that embodied
computation makes use of different primitive processes and
representations, namely those that have comparatively direct physical
realizations. As a consequence, the physical environment and the
physical realization of the computation will never be far from the
designer’s mind.

By looking at embodied computation in nature we may begin to
isolate computational primitives that are generally useful and realizable
in a variety of media. Because of its importance, I will focus here on
embodied computation in morphogenesis (the self-organized
development and metamorphosis of hierarchical form). Although there
is some overlap and ambiguity, we may distinguish those primitives that
pertain to the individual elements of the system and those that pertain to
masses of them.

An embodied computation system, especially one organizing
morphogenesis, will comprise a very large number of elementary units,
such as cells or molecules. In the first case we are interested in physical
processes involving single elements, which may respond passively or
actively. Examples of such individual primitives include mobility
(translation, rotation), adhesion and release, shape change, differentiation
or state change, collision and interaction, and proliferation and apoptosis
(programmed cell death, unit disassembly). Other processes pertain
more to spatially distributed masses of elementary units, and they may be
called collective primitives. Examples include elasticity, diffusion,
degradation, fluid flow, and gradient ascent.

Finally, biological morphogenesis teaches us that embodied
computation can orchestrate and organize complex, multistage processes
operating in parallel at both the microscopic and macroscopic levels. For
example, Bonabeau, Dorigo, and Theraulaz, in their investigations of
swarm intelligence in wasp nest construction, recognized the concept of

Bodies — Both Informed and Transformed 23

a coordinated algorithm, which leads to an organized nest structure
[Bonabeau, Dorigo, Theraulaz, 1999]. Similarly, we need to discover
how to design coordinated algorithms for embodied computation in
artificial morphogenesis and similarly complex applications.

9. But Is It Computing?

The reader may allow that embodied computing, as described above, is
interesting and potentially useful, but object to considering it a species of
computing. After all, we have a precise definition of computation in the
Turing machine and its equivalents (according to the notion of
equivalence defined in Church-Turing computation theory). On the other
hand, the notion of embodied computing may seem imprecise and
difficult to discriminate from other physical processes.

If we consider “computation” and related terms, both in historical
usage (which includes “analog computation”) and in the context of
contemporary discussions in philosophy and computer science, we can
describe computation as a physical process, the purpose or function of
which is the formal manipulation (processing) of formal objects
[MacLennan, 1994 a; MacLennan, 2004]. As we have seen, a physical
process may be considered computation (or information processing) if its
purpose could be fulfilled as well by another physical system with the
same abstract (e.g., mathematical) structure. In short, its purpose is
formal rather than material.

This definition might seem to exclude embodied computation, or
make it an oxymoron, but I do not think this is so, for there is nothing
contradictory about embodied computation’s greater reliance on physical
processes for information processing. However, embodied computation
may be directed also at the production of specific material effects; that is,
its purpose may be physical rather than formal.

There are two answers to this. First, embodied computation’s
physical effects can often be understood abstractly (i.e., mathematically).
For example, an activator-inhibitor system will produce characteristic
Turing patterns, which can be characterized mathematically,
independently of specific substances involved [Turing, 1952]. Second,
we cannot expect all physical systems to fit neatly into categories such as
computational and non-computational, but we should expect there will

B. J. MacLennan

24

be degrees of essential embodiment and of independence from specific
physical realizations.

Indeed, we must recognize that while artificial systems often have
clearly specified purposes, and thus may be definitely computational or
not, things are not so clear cut in nature, which often combines multiple
functions into a single system. For example, ant foraging may
simultaneously bring food to the nest and accomplish computational
tasks such as adaptive path finding, path minimization, and exploration.
Also, the circulatory system transports oxygen and nutrients, but also
transmits hormonal signals.

Indeed, even well-engineered artificial systems obey the Shanley
Principle, which says that multiple functions should be combined into
single parts; orthogonal design is important for prototyping, but it should
be followed by integration of function [Knuth, 1974, p. 295]. Thus, as
we push the limits of computing technology and embed it more deeply
into our world, we will have to combine functions, which will result in
systems that are less purely computational and more essentially
embodied.

10. Non-Turing Computation

It is important to remember that Church-Turing (CT) computation is a
model of computation and that, like all models, it has an associated frame
of relevance [MacLennan, 2003 b; MacLennan, 2009 b]. As previously
remarked, a model’s frame of relevance is determined by its simplifying
assumptions — by the aspects and degrees to which the model is similar
to the modeled system or differs from it — since these (often unstated)
assumptions determine the sort of questions the model is suited to
answer. It is important to understand a model’s frame of relevance, since
if we use a model to address issues outside its frame of relevance, we are
apt to learn more about the model and its simplifying assumptions than
about the modeled system. For example, from a highway map we may
infer the travel distance between cities from the length of a line on the
map, but we cannot infer the width of the road from the width of the line,
nor conclude that many cities have circular boundaries and are colored
either black or red!

Recall that the theory of CT computation was developed to address
issues in effective calculability and formalist approaches to mathematics;

Bodies — Both Informed and Transformed 25

the simplifying assumptions that it makes are well-suited to these issues
and define its frame of relevance. Within this frame it makes sense to
consider something computable if it can be computed in a finite number
of steps (of finite but indeterminate duration) using a finite (but
unbounded) amount of memory. It also makes sense to treat computation
as a matter of function evaluation and to define computability in terms of
sets of functions. (See [MacLennan, 1994 a, 2003 b, 2004, 2009 b] for
more on the frame of relevance of CT computation.)

Unfortunately, the CT model is not well-suited to address issues in
embodied computation or, more generally, natural computation, which
lie outside its frame of relevance; its simplifications and approximations
are bad ones for embodied computation systems. For example, the CT
model ignores the real-time rates of the operations, but they are highly
relevant in embodied computation. Similarly, the CT notions of
equivalence and universality do not address the efficiency (in real-time,
not asymptotic, terms) with which one system may simulate another.

Although it is premature to define a model of embodied computation,
since we do not yet understand which issues are relevant and which are
not, and premature formalization can impede the progress of a field,
nevertheless we can produce a preliminary list of relevant issues. They
include robustness (in the presence of noise, errors, faults, defects, and
uncertainty), generality, flexibility, adaptability, morphological and steric
constraints, physical size, consumption of matter and energy, reversible
reactions, and real-time response [MacLennan, 2003 b; MacLennan,
2004; MacLennan, 2009 b].

11. Conclusions

In conclusion, we can see that embodied computation will play an
increasingly important role in post-Moore’s Law computing, but that we
will need new models of computation, orthogonal to the Church-Turing
model, that address the relevant issues of embodied computation and
information processing. As a consequence we also expect there to be an
ongoing fruitful interaction between investigations of embodiment in
computation, psychology, and philosophy.

B. J. MacLennan

26

References

Abbreviations:
LSJ = Liddell, Scott, & Jones, Greek-English Lexicon, 9th ed., 1940.
OED = Oxford English Dictionary, 2nd ed., 1989.
OLD = Oxford Latin Dictionary, 1982.

Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence,

149, pp. 91–130.
Barish, R. D., Rothemund, P. W. K., and Winfree, E. (2005). Two computational

primitives for algorithmic self-assembly: Copying and counting. Nano Letters, 5,
pp. 2586–92.

Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A. (1982). Stochastic resonance in
climatic change. Tellus, 34, pp. 10–16.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: From
natural to artificial systems. New York: Oxford Univ. Press.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47, pp.
139–59.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, G., Theraulaz, J., and
Bonabeau, E. (2001). Self-organization in biological systems. New York: Princeton
Univ. Pr.

Clark, A. (1997). Being there: Putting brain, body, and world together again.
Cambridge: MIT Press.

Dreyfus, H. (1979). What computers can’t do: The limits of artificial intelligence,
rev. ed. New York: Harper & Row.

Hamann, H., and Wörn, H. (2007). Embodied computation. Parallel Processing
Letters, 17 (3), pp. 287–98.

Haykin, S. (1999). Neural networks: A comprehensive foundation, 2nd ed. Upper
Saddle River: Prentice-Hall.

Iida, F., Pfeifer, R., Steels, L., and Kuniyoshi, Y. (Eds.) (2004). Embodied artificial
intelligence. Berlin: Springer.

Johnson, M., and Rohrer, T. (2007). We are live creatures: Embodiment, American
pragmatism, and the cognitive organism. In J. Zlatev, T. Ziemke, R. Frank and R.
Dirven (Eds.), Body, Language, and Mind, Berlin: Mouton de Gruyter, vol. 1, pp.
17–54.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5, pp. 90–9.

Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P (1983). Optimization by
simulated annealing. Science, 220, pp. 671–80.

Knuth, D. E. (1974). Structured programming with go to statements. Computing
Surveys, 6 (4), pp. 261–301.

Bodies — Both Informed and Transformed 27

MacLennan, B. J. (1994 a). Continuous computation and the emergence of the
discrete. In K.H. Pribram (Ed.), Rethinking neural nets: Quantum fields and
biological data, Hillsdale: Lawrence-Erlbaum, pp. 199–232.

MacLennan, B. J. (1994 b). Continuous symbol systems: The logic of connectionism.
In D.S. Levine and M. Aparicio IV (Eds.), Neural networks for knowledge
representation and inference, Hillsdale: Lawrence-Erlbaum, pp. 83–120.

MacLennan, B. J. (2003 a). Molecular combinatory computing for nanostructure
synthesis and control. In IEEE Nano 2003 (Third IEEE Conference on
Nanotechnology), IEEE Press.

MacLennan, B. J. (2003 b). Transcending Turing computability. Minds & Machines,
13 (1), pp. 3–22.

MacLennan, B. J. (2004). Natural computation and non-Turing models of
computation. Theoretical Computer Science, 317, pp. 115–145.

MacLennan, B. J. (2009 a). Computation and nanotechnology (editorial preface).
International Journal of Nanotechnology and Molecular Computation, 1 (1), pp. i–
ix.

MacLennan, B. J. (2009 b). Super-Turing or non-Turing? Extending the concept of
computation. International Journal of Unconventional Computing, 5 (3–4), pp.
369–387.

MacLennan, B. J. (in press). Models and Mechanisms for Artificial Morphogenesis.
In Hiroshi Umeo (Ed.), International Workshop on Natural Computing. Springer
series, Proceedings in Information and Communications Technology (PICT).
Berlin: Springer.

Miller, M. I., Roysam, B., Smith, K. R., and O’Sullivan, J. A. (1991). Representing
and computing regular languages on massively parallel networks. IEEE
Transactions on Neural Networks, 2, pp. 56–72.

Pfeifer, R., and Bongard, J. C. (2007). How the body shapes the way we think — A
new view of intelligence. Cambridge: MIT.

Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-organization, embodiment, and
biologically inspired robotics. Science, 318, pp. 1088–93.

Pfeifer, R., and Scheier, C. (1999). Understanding intelligence. Cambridge: MIT.
Rimon, E. and Koditschek, D. E. (1989). The construction of analytic

diffeomorphisms for exact robot navigation on star worlds. In Proceedings of the
1989 IEEE International Conference on Robotics and Automation, Scottsdale AZ.
New York: IEEE Press, pp. 21–6.

Rothemund, P. W. K., Papadakis, N., and Winfree, E. (2004). Algorithmic self-
assembly of DNA Sierpinski triangles. PLoS Biology, 2 (12), pp. 2041–53.

Rothemund, P. W. K, and Winfree, E. (2000). The program-size complexity of self-
assembled squares. In Symposium on Theory of Computing (STOC), New York:
Association for Computing Machinery, pp. 459–68.

Steinbeck, O., Tóth, A., and Showalter, K. (1995). Navigating complex labyrinths:
Optimal paths from chemical waves. Science, 267, pp. 868–71.

B. J. MacLennan

28

Stepney, S. (2004). Journeys in non-classical computation. In T. Hoare and R.
Milner (Eds.), Grand Challenges in Computing Research, Swindon: BCS, pp. 29–
32.

Stepney, S. (2008). The neglected pillar of material computation. Physica D, 237 (9),
pp. 1157–64.

Ting, P.-Y., and Iltis, R. A. (1994). Diffusion network architecture for
implementation of Gibbs samplers with applications to assignment problems. IEEE
Transactions on Neural Networks, 5, pp. 622–38.

Tokuriki, N., and Tawfik, D. S. (2009). Protein dynamics and evolvability. Science,
324, pp. 203–7.

Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society, B 237, pp. 37–72.

Winfree, E. (1998). Algorithmic self-assembly of DNA. Unpublished doctoral
dissertation, California Institute of Technology, Pasadena.

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

