Configuration and Reconfiguration of Complex Systems by Artificial Morphogenesis

Bruce MacLennan

Dept. of Electrical Engineering and Computer Science

University of Tennessee, Knoxville

www.cs.utk.edu/~mclennan [sic]

Long-Range Challenge

- How can we (re)configure systems that have complex hierarchical structures from microscale to macroscale?
- Examples:
 - reconfigurable robots
 - other computational systems with reconfigurable sensors, actuators, and computational resources
 - brain-scale neurocomputers
 - noncomputational systems and devices that would be infeasible to fabricate or manufacture in other ways
 - systems organized from nanoscale up to macroscale

Motivation for Artificial Morphogenesis

- Embryological morphogenesis shows how to organize millions of relatively simple units to self-assemble into complex, hierarchical structures
- Morphogenesis: creation of 3D pattern & form in matter
- Characteristics:
 - structure implements function
 - function creates structure
 - no fixed coordinate frame
 - soft matter
 - sequential (overlapping) phases
 - temporal structure creates spatial structure

Artificial Morphogenesis

- Morphogenesis can coordinate:
 - proliferation
 - movement
 - disassembly
- to produce complex, hierarchical systems
- Approach: use AM for multiphase selforganization of complex, functional, active hierarchical systems

(Images from internet)

Self-Organization of Physical Pattern and 3D Form

Reconfiguration & Metamorphosis

- Degrees of metamorphosis:
 - incomplete
 - complete
- Phase 1: partial or complete dissolution

Phase 2: morphogenetic reconfiguration

(Images from Wikipedia)

Microrobots, Cells, and Macromolecules

7/22/09

Components

- Both active and passive
- Simple, local sensors (chemical, etc.)
- Simple effectors
 - local action (motion, shape, adhesion)
 - signal production (chemical, etc.)
- Simple regulatory circuits (need not be electrical)
- Self-reproducing or not
- Ambient energy and/or fuel

Metaphors for Morphogenesis

- Donna Haraway: Crystals, Fabrics, and Fields: Metaphors that Shape Embryos (1976) — a history of embryology
- The fourth metaphor is soft matter:
 - 1. crystals
 - 2. fabrics
 - 3. fields
 - 4. soft matter

Fundamental Processes*

- directed mitosis
- differential growth
- apoptosis
- differential adhesion
- condensation
- contraction
- matrix modification

- migration
 - diffusion
 - chemokinesis
 - chemotaxis
 - haptotaxis
- cell-autonomous modification of cell state
 - asymmetric mitosis
 - temporal dynamics
- inductive modif. of state
 - hierarchic
 - emergent

Embodied Computing

- Embodiment: "the interplay of information and physical processes." Pfeifer, Lungarella, & Iida (2007)
- Cf. embodied cognition, embodied Al
- <u>Embodied computation</u> = computation whose physical realization is directly involved in computational process or its goals
- Includes computational processes:
 - that directly exploit physical processes for computational ends
 - in which information representations and processes are implicit in physics of system and environment
 - in which intended effects of computation include growth, assembly, development, transformation, reconfiguration, or disassembly of the physical system embodying the computation

Motivation for Embodied Computing

- Post-Moore's Law computing
- Computation for free
- Noise, defects, errors, indeterminacy
- Massive parallelism
 - E.g. diffusion
 - E.g., cell sorting by differential adhesion
- Exploration vs. exploitation

- Representation for free
- Self-making (the computation creates the computational medium)
- Adaptation and reconfiguration
- Self-repair
- Self-destruction

Disadvantages

- Less idealized
- Energy issues
- Lack of commonly accepted and widely applicable models of computation
- But nature provides good examples of how:
 - computation can exploit physics without opposing it
 - information processing systems can interact fruitfully with physical embodiment of selves & other systems

A preliminary model for morphogenesis

as an approach to the configuration and reconfiguration of physical systems

Some Prior Work

- Plant morphogenesis (Prusinkiewicz, 1988-)
- Evolvable Development Model (Dellaert & Beer, 1994)
- Fleischer Model (1995-6)
- CompuCell3D (Cickovski, Izaguirre, et al., 2003-)
- CPL (Cell Programming Language, Agarwal, 1995)
- Morphogenesis as Amorphous Computation (Bhattacharyya, 2006)
- Many specific morphogenetic models
- Field Computation (MacLennan, 1987-)

Goals & Requirements

- Continuous processes
- Complementarity
- Intensive quantities
- Embodied computation in solids, liquids, gases especially soft matter
- Active and passive elements
- Energetic issues

- Coordinate-independent behavioral description
- Mathematical interpretation
- Operational interpretation
- Influence models
- Multiple space & time scales
- Stochastic

Substances

- Complemenarity
 - physical continua
 - phenomenological continua
- Substance = class of continua with similar properties
- Examples: solid, liquid, gas, incompressible, viscous, elastic, viscoelastic, physical fields, ...
- Multiple realizations as physical substances
- Organized into a class hierarchy
- Similarities and differences to class hierarchies in OOP

Bodies (Tissues)

- Composed of substances
- Deform according to their dynamical laws
- May be able to interpenetrate and interact with other bodies

Mathematical Definition

- A body is a set B of particles P
- At time t, $\mathbf{p} = C_t(P)$ is position of particle P
- C_t defines the configuration of \mathcal{B} at time t
- Reflects the deformation of the body
- C is a diffeomorphism

Embodied Computation System for Morphogenesis

- An embodied computation system for morphogenesis comprises a finite number of bodies of specified substances
- Each body is prepared in an initial state
 - specify region initially occupied by body
 - specify initial values of variables
 - should be physically feasible
- System proceeds to compute, according to its dynamical laws in interaction with its environment

Elements

(Particles or material points)

Material vs. Spatial Description

- Material (Lagrangian) vs. spatial (Eulerian) reference frame
- Physical property Q considered a function Q(P, t) of fixed particle P as it moves through space
- rather than a function $q(\mathbf{p}, t)$ of fixed location \mathbf{p} through which particles move
- Reference frames are related by configuration function $\mathbf{p} = C_t(P)$
- Example: velocity

Intensive vs. Extensive Quantities

- Want independence from size of elements
- Use intensive quantities so far as possible
- Examples:
 - mass density vs. mass
 - number density vs. particle number
- Continuum mechanics vs. statistical mechanics
- Issue: small sample effects

Behavior

Particle-Oriented Description

- Often convenient to think of behavior from particle's perspective
- Coordinate-independent quantities: vectors and higherorder tensors
- Mass quantities as random variables

Material Derivatives

 For particle-oriented description: take time derivatives with respect to fixed particle as opposed to fixed location in space

$$\mathrm{D}_t X = \partial X/\partial t|_{P\,\mathrm{fixed}}$$
 vs. $\dot{X} = \partial X/\partial t|_{\mathbf{p}\,\mathrm{fixed}}$

• Conversion:

$$D_t X = \dot{X} + \mathbf{v} \cdot \nabla X$$

All derivatives are assumed to be relative to their body

Change Equations

 Want to maintain complementarity between discrete and continuous descriptions:

$$D_{t}X = F(X,Y)$$

$$\Delta_{t}X = F(X,Y)$$

$$\text{where } \Delta_{t}X = \frac{\Delta X(t)}{\Delta t} = \frac{X(t + \Delta t) - X(t)}{\Delta t}$$

• Neutral "change equation":

$$DX = F(X, Y)$$

Qualitative "Regulations"

- Influence models indicate how one quantity enhances or represses increase of another
- Y

- We write as "regulations": $DX \sim -X, Y, Z$
- Meaning: DX = F(-X, Y, Z)

where F is monotonically non-decreasing

• Relative magnitudes: $DX \sim Y, Z; -X$

Stochastic Change Equations

- Indeterminacy is unavoidable
- W_t is Wiener process
- Complementarity dictates
 Itō interpretation

$$X_{t} = \int_{0}^{t} H_{s} dW_{s}$$

$$dX_{t} = H_{t} dW_{t}$$

$$\Delta X_{t} = H_{t} \Delta W_{t}$$

$$DX_{t} = H_{t} DW_{t}$$

$$\Delta_{t} X_{t} = H_{t} \Delta_{t} W_{t}$$

$$D_{t} X_{t} = H_{t} D_{t} W_{t}$$

Interpretation of Wiener Derivative

- Wiener process is nowhere differentiable
- May be interpreted as random variable
- Multidimensional Wiener processes considered as primitives

$$\Delta W_t = W_{t+\Delta t} - W_t$$
 $\sim \mathcal{N}(0, \Delta t)$
 $\Delta_t W_t = \Delta W_t / \Delta t$
 $\sim \mathcal{N}(0, 1)$
 $\Phi W_t \sim \mathcal{N}(0, 1)$

Examples

Simple Diffusion

substance morphogen:

behavior:

$$\mathbf{j} = \boldsymbol{\mu}\phi - \nabla \cdot (\boldsymbol{\sigma}\boldsymbol{\sigma}^{\mathrm{T}}\phi)/2 \quad \| \text{ flux}$$

$$\boldsymbol{\Phi}\phi = -\nabla \cdot \mathbf{j} \quad \| \text{ change in conc.}$$

A Simple Diffusion System

body Concentration **of** morphogen:

for
$$X^2 + Y^2 \le 1$$
 and $-1 \le Z \le 1$:

 $\mathbf{j} = 0$ | initial 0 flux

 $\mu = 0$ || drift vector

 $\sigma = 0.1 I$ | isotropic diffusion

for
$$X^2 + Y^2 + Z^2 \le 0.1$$
:

 $\phi = 100$ || initial density inside sphere

for
$$X^2 + Y^2 + Z^2 > 0.1$$
:

 $\phi = 0$ | zero density outside sphere

Activator-Inhibitor System

substance activator-inhibitor:

scalar fields:

4 | activator concentration

 $I \hspace{1cm} \parallel$ inhibitor concentration

order-2 fields:

 σ_A | activator diffusion tensor

 σ_I | inhibitor diffusion tensor

behavior:

$$DA = f_A(A, I) + \triangle(\boldsymbol{\sigma}_A \boldsymbol{\sigma}_A^T A)$$

$$DI = f_I(A, I) + \triangle(\boldsymbol{\sigma}_I \boldsymbol{\sigma}_I^{\mathrm{T}} I)$$

Activator-Inhibitor System as Regulations

substance activator-inhibitor:

scalar fields:

A

I

order-2 fields:

 σ_A

 σ_I

|| activator concentration

|| inhibitor concentration

|| activator diffusion tensor

|| inhibitor diffusion tensor

behavior:

$$\mathrm{D} A \sim A, -I, \triangle(oldsymbol{\sigma}_A oldsymbol{\sigma}_A^\mathrm{T} A)$$

$$DI \sim A, -I, \triangle(\boldsymbol{\sigma}_I \boldsymbol{\sigma}_I^{\mathrm{T}} I)$$

Vasculogenesis* (Morphogen)

substance morphogen is medium with:

scalar fields:

C

order-2 field D

scalar au

concentration

source

diffusion tensor

degradation time constant

behavior:

$$DC = \triangle(\mathbf{D}C) + S - C/\tau \quad \| \text{ diffusion } + \text{ release - degradation} \|$$

* from Ambrosi, Bussolino, Gamba, Serini & al.

Vasculogenesis (Cell Mass)

substance cell-mass is morphogen with:

behavior: ...

Vasculogenesis (Cell-Mass Behavior)

behavior:

```
S = \alpha n || production of morphogen || follow morphogen gradient, subject to drag and compression: \mathbf{D}\mathbf{v} = \beta \nabla C - \gamma \cdot \mathbf{v} - n^{-1} \nabla \phi || change of density in material frame: \mathbf{D}n = -\nabla \cdot (n \cdot \mathbf{v}) + \mathbf{v} \cdot \nabla n \phi = [(n-n_0)^+]^3 || arbitrary penalty function
```

Clock-and-Wavefront Model of Segmentation

- Vertebrae: humans have 33, chickens 35, mice 65, corn snake 315 — characteristic of species
- How does developing embryo count them?
- Somites also govern development of organs
- Clock-and-wavefront model of Cooke & Zeeman (1976), recently confirmed (2008)
- Depends on clock, excitable medium (cell-to-cell signaling), and diffusion

Simulated Segmentation by Clock-and-Wavefront Process

2D Simulation of Clock-and-Wavefront Process

Example of Path Routing

- Agent seeks attractant at destination
- Agent avoids repellant from existing paths
- Quiescent interval (for attractant decay)
- Each path occupies~0.1% of space
- Total: ~4%

Example of Connection Formation

- 10 random "axons" (red) and "dendrites" (blue)
- Each repels own kind
- Simulation stopped after 100 connections (yellow) formed

Conclusions & Future Work

- Artificial morphogenesis is a promising approach to configuration and reconfiguration of complex hierarchical systems
- Biologists are discovering many morphogenetic processes, which we can apply in a variety of media
- We need new formal tools for expressing and analyzing morphogenesis and other embodied computational processes
- Our work is focused on the development of these tools and their application to artificial morphogenesis

Extra Slides

Example of Path Routing

Path Routing 40 paths, random starts & ends

- Starts and ends chosen randomly
- Quiescent interval (for attractant decay) omitted from video
- Each path occupies~0.1% of space
- Total: ~4%

Example of Connection Formation

- 10 random"axons" (red) and"dendrites" (blue)
- Simulation stopped after 100 connections (yellow) formed

