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Central Themes

• Computation and physics
– novel computational models to

exploit novel technologies
– computational control of matter

• Natural computation
– computation occurring in nature, or
– inspired by that occurring in nature

formal

material
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Current Research in Self-Organization
• Synthetic Ethology & the Emergence of

Communication
• Molecular Computing for Nanostructure Synthesis

& Control
• Radical Reconfiguration of Computing Systems
• Generalized Computation (U-Machine)
• Programmable Microorganisms for Artificial

Morphogenesis
• Applications in Command, Control &

Coordination
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Some Principles of
Adaptive Self-Organization

• Positive & negative
feedback

• Noise, randomness,
imperfection

• Amplification of random
fluctuations

• Symmetry breaking
• Diffusion
• Stigmergy
• Simple, local

microdecisions

• Multiple interactions
• Circular causality
• Excitable media
• Local nonlinear interactions
• Adaptive stationary states
• Nonconvergence, diversity

& suboptimal solutions
• Developmental cascades
• Entrainment & distributed

synchronization



Synthetic Ethology
and the

Emergence of Communication
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Evolution of Communication
(1990)

• Experiments to demonstrate self-
organized emergence of communication
among simple agents

• Selective pressure in favor of
cooperation

• Agents can modify or sense state of
shared global environment

• GA selects for best cooperators
• Agents evolve to communicate using a

simple code
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The U-Machine
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Computation in  General Sense
• A definition applicable to computation in

nature as well as computers
• Computation is a physical process, the

purpose of which is abstract operation on
abstract objects

• A computation must be implemented by
some physical system, but it may be
implemented by any physical system with
the appropriate abstract structure
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Abstract Spaces

• Should be general enough to include
continuous & discrete spaces

• Hypothesis: separable metric spaces
• Include continua & countable discrete

spaces
• separable ⇒ approximating sequences
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The U-Machine
• Goal: a model of computation over abstract

spaces that can be implemented in a variety
of physical media

• In particular, bulk nanostructured materials
in which:
– access to interior is limited
– detailed control of structure is difficult
– structural defects and other imperfections are

unavoidable
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Urysohn Embedding
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Computation in Hilbert Space
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An Abstract Cortex
• Finite-dimensional

representations of
abstract spaces can be
allocated disjoint
regions in data space

• Field representations
can be allocated to
separated regions

• Analogous to regions
in neural cortex
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Decomposition of Computations

• Complex computations may be decomposed
into simpler ones

• Variable regions provide interfaces between
constituent computational processes

• For maximum flexibility: don’t build in
specific primitive processes

• How are primitive processes implemented?
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Implementation of
Primitive Computations

• There are several “universal approximation
theorems” that make use of approximations
of the form:

• Works for a variety of simple nonlinear
“basis functions” rj

! 

v = F u( ) " a j rj u( )
j=1

H

#
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(Re-)Configuration Methods
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Overall Structure
• Variable (data) space

– Large number of scalar variables for Hilbert
coefficients

– Partitioned into regions representing abstract
spaces

• Function (program) space
– Flexible interconnection (∴ 3D)
– Programmable linear combinations
– Application of basis functions
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Depiction of UM Interior

• Shell contains variable
areas & computational
elements

• Interior filled with
solid or liquid matrix
(not shown)

• Paths formed through
or from matrix
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Layers in Data Space

• Connection matrix has
programmable weights

• Linear combinations are
inputs to nonlinear basis
functions

• Exterior access to both
sides for programming
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Depiction of UM Exterior
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Diffusion-Based Path Routing
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Example of Path Routing

• Starts and ends chosen
randomly

• Quiescent interval (for
attractant decay)
omitted from video

• Each path occupies
~0.1% of space

• Total: ~4%
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Front
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Right
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Back
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Left
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Top
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Bottom
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Remarks
• More realistic procedure:

– Systematic placement of regions
– Order of path growth
– Control of diffusion & growth phases

• General approach is robust (many variations
work about as well)

• Paths could be formed by:
– Migration of molecules etc.
– Change of state of immobile molecules
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Example Connection-Growth Process
• Goal: approximately full interconnection between

incoming “axons” (A) and “dendrites” (D) of basis
functions
– Doesn’t have to be perfect

• Each A & D periodically initiates fiber growth
– Growth is approximately away from source

• Fibers repel others of same kind
– Diffusible, degradable repellant
– Fibers follow decreasing gradient (in XZ plane)

• Contact formed when A and D fibers meet
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Example of Connection
Formation

• 10 random “axons”
(red) and “dendrites”
(blue)

• Simulation stopped
after 100 connections
(yellow) formed
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Resulting Connections
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Summary of U-Machine
• Permits computation on quite general

abstract spaces (separable metric spaces)
– Includes analog & digital computation

• Computation by linear combinations &
simple nonlinear basis functions

• Simple computational medium can be
reconfigured for different computations

• Potentially implementable in a variety of
materials
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Computational
(Re-)Configuration

of Systems
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“Radical Reconfiguration”
• Ordinary reconfiguration changes connections

among fixed components
• Radical reconfiguration of transducers

– to create new sensors & actuators
• Radical reconfiguration of processors

– to reallocate matter to different components

• Also for repair & damage recovery
• Requires rearrangement of atoms and molecules

into new components
• Requires “molar parallelism”
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Computational Control of Matter
• A material process may be used as a

substrate for formal computation
• Formal computation may be used to control

a material process
• A material process may be a substrate for

universal computation, controlled by a
formal program

• A formal program may be used to govern a
material process
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The Physical State
as Synthetic Medium

• Computation controls physical state (as
synthesis medium)

• Reconfigured computer is embodied in
physical state

• Computation must be able to distinguish
synthetically relevant physical states
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Universal Computer

physical
state

U
(equations)

external
input

synthesis
medium
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Initialization

Uexternal
input

d

δ

     s
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Computation

Uexternal
input

d′

     s′

waste

energy
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Completion

Uexternal
input

C
     

synthesized
computer
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Equilibrium vs. Stationary
Configurations

• Program terminates for equilibrium config.
• Program continues to run for stationary config.

U
C

     
U

C′     

waste

energy

input input′

d′ d′′
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Thermodynamics of a
Configuration

• Either, configuration is a stable state
– damage may shift to undesirable equilibrium

• Or, configuration is a stationary state of a
non-equilibrium system
– continuously reconfigures self
– self-repair as return to original stationary state
– adaptation & damage recovery as move to

different stationary state
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Useful Media for
Computational Synthesis

• For pure computation, move as little matter
& energy as possible

• For synthesis, need to control atoms &
molecules as well as electrons

• Need sufficiently wide variety of
controllable atoms & molecules

• Goal: structures on the order of optical
wavelengths (100s of nm)
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Models of Computation
for Synthesis

• Need massive parallelism to control detailed
organization of state

• Need tolerance to errors in state
– synthesis program should be tolerant
– configured computer should be tolerant
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Locus of Control of
Detailed Organization

• Reorganizing atoms & molecules
⇒ vast amount of detailed control

• Heterosynthesis
– external configuration controller determines

fine structure of medium (high bandwidth)
• Autosynthesis

– external configuration controller determines
general boundary conditions (low BW)

– fine structure results from self-organization
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General Model of
Radical Reconfiguration

• Synthesis controller
– low bandwidth to outside world
– bandwidth to medium:

• high for heterosynthesis
• low for autosynthesis

• Synthetic medium
– molar parallelism of interactions

• simple for heterosynthesis
• complex for autosynthesis

– what are suitable synthetic media?
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Simple Example:
Reaction-Diffusion System

• Many natural patterns can
be explained by reaction-
diffusion equations

• ∂c / ∂t = D∇2c + F(c)
• where c is a vector of

concentrations,
and D is a diagonal matrix
of diffusion rates,
and F is a nonlinear vector
function

photos ©2000, S. Cazamine
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Example:
Activation-Inhibition System

• Let σ be the logistic sigmoid function
• Activator A and inhibitor I may diffuse at

different rates in x and y directions
• Cell is “on” if activator + bias exceeds

inhibitor
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Double Activation-Inhibition System

• Two independently diffusing activation-inhibition
pairs

• May have different diffusion rates in X and Y
directions
– In this example, I1y >> I1x and I2x >> I2y

• Colors in simulation:
– green = system 1 active
– red = system 2 active
– yellow = both active
– black = neither active
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Formation of Pattern

• Random initial state
• System stabilizes to

< 1% cell changes
• Modest noise

(annealing noise)
improves regularity
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Stationary State

• System is being
continually
maintained in a
stationary state

• Continuing change
< 1%
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Recovery from Damage

• Simulated damage
• Damage destroys

activators & inhibitors
as well as structure

• System repairs self by
returning to stationary
state

• No explicit repair
signal
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Reconfiguration:
Orthogonal Structure

• Exchange inhibitor
diffusion rates for
systems 1 & 2

• Vertical stripes
become horizontal

• Horizontal stripes
become vertical

• No explicit
reconfiguration signal
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Summary of Radical
Reconfiguration

• Computation can be used to rearrange
matter

• External control of initial and boundary
conditions

• Detailed structure by self-organization with
molar parallelism

• Stationary states can be used for self-repair
and adaptation



Programmable Microorganisms
for

Artificial Morphogenesis
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Artificial Morphogenesis

• Based on models of
embryological
development

• Cells migrate by local
interaction & chemical
signals

• Possible implemen-
tation: “programmable”
micro-organisms
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Why Micro-Organisms?
• Micro-organisms can be viewed a micro-robots

with capabilities for:
– locomotion
– sensing
– control
– simple (low-precision analog) computation
– assembly
– collective, coordinated behavior
– reproduction
– self-defense
– metabolism (matter/energy acquisition, growth, repair)

• Can be genetically-engineered for our purposes
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The Programmable Microorganism
(“Promorg”)
• Noncoding DNA can be

used for “genetic circuits”
– in eukaryotes, 10–70%
– equivalent of about 3000 genes in yeast

• Equipped with an assortment of generally useful
sensors & receptors (especially for self-
organization)

• Special-purpose modifications for particular
applications

• Research: principles of design & self-organization
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Tentative Capabilities
• Neutral proteins for programmable control

– gene regulatory & coding sequences
– connections can be regulated by external signals

• Membrane & cytoplasm receptors for:
– chemical signals
– light, etc.

• Effectors
– cilia for locomotion
– cell adhesion
– exocytosis
– programmed cell death



Simulation of
Self-Organized Aggregation &

Protective Differentiation of
Simple Autonomous Agents
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Goal
• Adverse conditions  aggregate into dense colonies
• Differentiate into outer “boundary” and inner

“interior” cells
• Interior cells become dormant until favorable

conditions return
• Boundary cells secrete protective cyst material

and die
• When favorable conditions return, dormant cells

reanimate and break out of protective case
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Control
Diagram for

Cells
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Normal State

• Organisms wander
• & reproduce
• Until some

environmental condition
(“temperature”)
becomes unfavorable
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Distressed State

• Distressed cells emit
Distress signal (red)

• If concentration
exceeds quorum
threshold, cells climb
gradient

• Concentration of
distress signal shown
in red
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Aggregated State

• Cells in contact emit
Aggregated signal
(green)

• If concentration is
above Boundary
threshold, cell enters
Interior state (purple)

• Else remains in
Boundary state (green)
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Dormant State
• When Distress signal

exceeds signaling
threshold:

• Cell emits rapidly
diffusing Spore-
formation signal
(magenta)

• Interior cells enter
dormant state (blue)

• Boundary cells form
cysts (grey) & die
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Return of Favorable Conditions

• Surviving cells
reanimate

• Destroy cyst material
• Return to Normal state
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Conclusions

• Demonstrates useful collective behavior
based on:
– simple control mechanisms
– diffusible chemical signals

• Quorum sensing & aggregation of cells
• Differentiation of function
• Assembly of a simple protective structure
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Molecular Combinatory Computing
for

Nanostructure Synthesis & Control

Supported by NSF
Nanoscale Exploratory Research Grant

skip
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Definition
• Intelligent Matter

– a material in which individual molecules or supra-
molecular clusters function as agents to accomplish a
purpose

• Programmable Intelligent Matter
– a program controls the behavior of the material at the

molecular level
• Universally Programmable Intelligent Matter

– small set of molecular building blocks that can be
rearranged to accomplish any purpose describable by a
computer program

– power of Universal Turing Machine
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Non-Traditional Models of
Computation

• Need to explore non-traditional models of
computation more closely matched to
physical processes

• Discrete (digital) computation
• Continuous (analog) computation
• Hybrid computation
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Continuous (Analog) Computation

• Exploit continuous physical processes for
computation

• Need to identify small set of widely useful
systems of DEs & PDEs

• Research in universal analog computers is
relevant

• Field computation
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Discrete (Digital) Computation

• Alternatives to Boolean logic
• Need information representation more

closely matched to molecular & sub-
molecular structures

• Need elementary operations more closely
matched to molecular & sub-molecular
processes
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Alternative Models
of Discrete Computation

• Many Turing-equivalent models were
developed in the early 20th century
– e.g., Post productions, Markov algorithms,

lambda calculus, combinatory logic,
McCulloch-Pitts cells

• Cellular Automata are promising
– need to be universal in a relevant way
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Molecular Combinatory
Computing

• Systematic approach to nanotechnology
based on small set of MBBs

• Combinatory logic
• Computational universality from two

substitutions (+ a few more)
• Substitutions may be done in any order or in

parallel
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K-Substitution

((K X) Y)  ⇒  X
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S-Substitutions

(((S X) Y) Z)  ⇒  ((X Z) (Y Z′))
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Ý-Substitution

(Ý F)  ⇒  y(1)    where  y  ≡  (F y(0))
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Example of Simple Computation

((S(KS)K)S)
 ⇒ (((KS)S)(KS))



6 March 2007 Self-Organization for Nano-
Computation & Nano-Assembly

81

Example of Simple Computation

((KS)S) ⇒ S
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Example of Simple Computation

(((S(KS)K)K)
 ⇒ (((KS)K)(KK))



6 March 2007 Self-Organization for Nano-
Computation & Nano-Assembly

83

Example of Simple Computation

((KS)K) ⇒ S
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Example of Simple Computation

result = (S(KK))
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Example: Nanotube

Visualization of nanotube produced by ptube5,4
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Example: Nanotube
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In Functional Programming
Language

let prib(m) =
 compose (polyextend shared-formalize m) rib
    where rib = polyextend compose m cycle
      (reduce permute m identity)
in let ptube(m, n) = iterate n prib(m)
    in ptube(5, 4)
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Reduced to SKY Tree
(((S ((S (K S)) K))
  ((S ((S (K S)) K)) ((S ((S (K S)) K)) ((S ((S (K S)) K)) (K ((S K) K))))))
 ((((S ((((S (K S)) K) ((S (K S)) K)) S)) (K K))
   ((((S (K S)) K) S)
    (((S (K S)) K)
     ((((S (K S)) K) S)
      (((S (K S)) K)
       ((((S (K S)) K) S)
        (((S (K S)) K) ((((S (K S)) K) S) (((S (K S)) K) S)))))))))
  ((((((S (K S)) K) ((S (K S)) K))
     ((((S (K S)) K) ((S (K S)) K))
      ((((S (K S)) K) ((S (K S)) K))
       ((((S (K S)) K) ((S (K S)) K)) ((S (K S)) K)))))
    Y)
   (((((S (K S)) K)
      (((S (K S)) K)
       ((((S (K S)) K)
         (((S (K S)) K)
          ((((S (K S)) K)
            (((S (K S)) K)
             ((((S (K S)) K)
               (((S (K S)) K) ((S ((((S (K S)) K) ((S (K S)) K)) S)) (K K))))
              ((S ((((S (K S)) K) ((S (K S)) K)) S)) (K K)))))
           ((S ((((S (K S)) K) ((S (K S)) K)) S)) (K K)))))
        ((S ((((S (K S)) K) ((S (K S)) K)) S)) (K K)))))
     ((S ((((S (K S)) K) ((S (K S)) K)) S)) (K K)))
    ((S K) K)))))
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Linearized for Chemical
Synthesis & Replication

PPPS PPS PK SQQ KQQ PPS PPS PK SQQ KQQ PPS PPS PK SQQ KQQ PPS PPS
PK SQQ KQQ PK PPS KQ KQQQQQQ PPPPS PPPPS PK SQQ KQ PPS PK
SQQ KQQ SQQ PK KQQ PPPPS PK SQQ KQ SQ PPPS PK SQQ KQ PPPPS PK
SQQ KQ SQ PPPS PK SQQ KQ PPPPS PK SQQ KQ SQ PPPS PK SQQ KQ
PPPPS PK SQQ KQ SQ PPPS PK SQQ KQ SQQQQQQQQQ PPPPPPS PK SQQ
KQ PPS PK SQQ KQQ PPPPS PK SQQ KQ PPS PK SQQ KQQ PPPPS PK SQQ
KQ PPS PK SQQ KQQ PPPPS PK SQQ KQ PPS PK SQQ KQQ PPS PK SQQ
KQQQQQ YQ PPPPPS PK SQQ KQ PPPS PK SQQ KQ PPPPS PK SQQ KQ
PPPS PK SQQ KQ PPPPS PK SQQ KQ PPPS PK SQQ KQ PPPPS PK SQQ KQ
PPPS PK SQQ KQ PPS PPPPS PK SQQ KQ PPS PK SQQ KQQ SQQ PK
KQQQQ PPS PPPPS PK SQQ KQ PPS PK SQQ KQQ SQQ PK KQQQQQ PPS
PPPPS PK SQQ KQ PPS PK SQQ KQQ SQQ PK KQQQQQ PPS PPPPS PK SQQ
KQ PPS PK SQQ KQQ SQQ PK KQQQQQ PPS PPPPS PK SQQ KQ PPS PK
SQQ KQQ SQQ PK KQQQ PPS KQ KQQQQQ
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Molecular Computation
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Cross-Linked Membrane

Visualization of membrane produced by xgrid3,4 NNN
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Cross-linked Membrane
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Hexagonal Membrane
Produced by hgridt2,3 N

Arown = BW[n-1]°B[n]

Vrown = W[n]°KI°K(2n-2)°

  B[n-1]°C[n]IN°CIN
drowtn = Vrowtn°Arown

hgridtm,n =
  Zn-1W(ZmdrowtnN)
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Possible Molecular
Implementation

• Covalently-structured MBBs for nodes and
linking groups

• H-bonds for interconnections
• H-bonds for identification
• Synthetic components appended
• Substitutions controlled by enzyme-like

covalently-structured molecules
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Progress to Date

• Simulation & theoretical studies:
– ways of assembling hierarchical heterogeneous

structures from patches
– membranes, pores, sensor interface, one-shot

channels, simple actuators, nanotubes
• In progress:

– recyclable channels, cilia, rotary motion
– molecular implementations (including DNA)
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Summary of MCC

• Concept of molecular combinatory computing
– molecular networks self-organize by simple

substitution reactions
– computationally universal

• Simulated synthesis applications
• Synthesis of large, heterogeneous structures
• Possible molecular implementation based on H-

bonded, covalently-structured building blocks



Applications in
Command, Control & Coordination
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Potential Application Domains
• Robots & autonomous

vehicles
– contemporary robots &

AVs
– microrobots
– nanobots

• Informational agents
• Command, control &

coordination of human
agents

 Allocation of
resources

 Exploration vs.
exploitation

 Communication
 Distributed

synchronization
 Information storage
 Construction
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Conclusions
• Computation can be used to control matter

– for reconfiguration of computers, transducers, etc.
– for nano-assembly and control

• Detailed structure determined by self-organization
• Natural systems provide good models and possible

implementation technologies
• Artificial systems with the robustness of natural

systems should be achievable
• For more information: www.cs.utk.edu/~mclennan


