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1 THE LIMITS OF TURING COMPUTATION

1.1 Frames of Relevance
It is important to remember that Turing-Church (TC) computation is a model
of computation, and that computation is a physical process taking place in
certain physical objects (such as computers). Models are intended to help us
understand some class of phenomena, and they accomplish this by making
simplifying assumptions (typically idealizing assumptions, which omit phys-
ical details taken to be of secondary importance). For example, we might use
a linear mathematical model of a physical process even though we know that
its dynamics is only approximately linear; or a fluid might be modeled as in-
finitely divisible, although we know it is composed of discrete molecules. We
are familiar also with the fact that several models may be used with a single
system, each model suited to understanding certain aspects of the system but
not others. For example, a circuit diagram shows the electrical interconnec-
tions among components (qua electrical devices), and a layout diagram shows
the components’ sizes, shapes, spatial relationships, etc.

As a consequence of its simplifying assumptions, each model comes with
a (generally unstated) frame of relevance, which delimits (often fuzzily) the
questions that the model can answer accurately. For example, it would be a
mistake to draw conclusions from a circuit diagram about the size, shape, or
physical placement of circuit components. Conversely, little can be inferred
about the electrical properties of a circuit from a layout diagram.

Within a (useful) model’s frame of relevance, its simplifying assumptions
are sensible (e.g., they are good approximations); outside of it they may not
be. That is, within its frame of relevance a model will give us good answers
(not necessarily 100% correct) and help us to understand the characteristics of
the system that are most relevant in that frame. Outside of its intended frame,
a model might give good answers (showing that its actual frame can be larger
than its intended frame), but we cannot assume that to be so. Outside of its
frame, the answers provided by a model may reflect the simplifying assump-
tions of the model more than the system being modeled. For example, in the
frame of relevance of macroscopic volumes, fluids are commonly modeled as
infinitely divisible continua (an idealizing assumption), but if we apply such a
model to microscopic (i.e., molecular scale) volumes, we will get misleading
answers, which are a consequence of the simplifying assumptions.

1.2 The Frame of Relevance of Turing-Church Computation
It is important to explicate the frame of relevance of Turing-Church compu-
tation, by which I mean not just Turing machines, but also equivalent models
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of computation, such as the lambda calculus and Post productions, as well as
other more or less powerful models based on similar assumptions (discussed
below). (Note however that the familiar notions of equivalence and power
are themselves dependent on the frame of relevance of these models, as will
be discussed.) The TC frame of relevance becomes apparent if we recall
the original questions the model was intended to answer, namely questions
of effective calculability and formal derivability. As is well known, the TC
model arises from an idealized description of what a mathematician could do
with pencil and paper. Although a full analysis of the TC frame of relevance
is beyond the scope of this article [13, 17, 18], I will mention a few of the
idealizing assumptions.

Within the TC frame of relevance, something is computable if it can be
computed with finite but unbounded resources (e.g., time, memory). This is a
reasonable idealizing assumption for answering questions about formal deriv-
ability, since we don’t want our notion of a proof to be limited in length or
“width” (size of the formal propositions). It is also a reasonable simplifying
assumption for investigating the limits of effective calculability, which is a
idealized model of arithmetic with paper and pencil. Again, in the context of
the formalist programme in mathematics, there was no reason to place an a
priori limit on the number of steps or the amount of paper (or pencil lead!)
required. Note that these are idealizing assumptions: so far as we know,
physical resources are not unbounded, but these bounds were not considered
relevant to the questions that the TC model was originally intended to ad-
dress; in this frame of relevance “finite but unbounded” is a good idealization
of “too large to be worth worrying about.”

Both formal derivation and effective calculation make use of finite for-
mulas composed of discrete tokens, of a finite number of types, arranged in
definite structures (e.g., strings) built up according to a finite number of prim-
itive structural relationships (e.g., left-right adjacency). It is further assumed
that the types of the tokens are positively determinable, as are the primitive
interrelationships among them. Thus, in particular, we assume that there is
no uncertainty in determining whether a token is present, whether a configu-
ration is one token or more than one, what is a token’s type, or how the tokens
are arranged, and we assume that they can be rearranged with perfect accu-
racy according to the rules of derivation. These are reasonable assumptions in
the study of formal mathematics and effective calculability, but it is important
to realize that they are idealizing assumptions, for even mathematicians can
make mistakes in reading and copying formulas and in applying formal rules!

Many of these assumptions are captured by the idea of a calculus, but a
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phenomenological analysis of this concept is necessary to reveal its back-
ground of assumptions [13]. Briefly, we may state that both information rep-
resentation and information processing are assumed to be formal, finite, and
definite [17, 18]. These and other assumptions are taken for granted by the
TC model because they are reasonable in the context of formal mathematics
and effective calculability. Although the originators of the model discussed
some of these simplifying assumptions [20], many people today do not think
of them as assumptions at all, or consider that they might not be appropriate
in some other frames of relevance.

It is important to mention the concept of time presupposed in the TC
model, for it is not discrete time in the familiar sense in which each unit of
time has the same duration; it is more accurate to call it sequential time. This
is because the TC model does not take into consideration the time required by
an individual step in a derivation or calculation, so long as it is finite. There-
fore, while we can count the number of steps, we cannot translate that count
into real time, since the individual steps have no definite duration. As a con-
sequence, the only reasonable way to compare the time required by compu-
tational processes is in terms of their asymptotic behavior. Again, sequential
time is reasonable in a model of formal derivability or effective calculability,
since the time required for individual operations was not relevant to the re-
search programme of formalist mathematics (that is, the time was irrelevant
in that frame of relevance), but it can be very relevant in other contexts, as
will be discussed.

Finally I will mention a simplifying assumption of the TC model that is
especially relevant to hypercomputation, namely, the assumption that com-
putation is equivalent to evaluating a well-defined function on an argument.
Certainly, the mathematical function, in the full generality of its definition, is
a powerful and versatile mathematical concept. Almost any mathematical ob-
ject can be treated as a function, and functions are essential to the description
of processes and change in the physical sciences. Therefore, it was natural,
in the context of the formalist programme, to focus on functions in the inves-
tigation of effective calculation and derivation. Furthermore, many early ap-
plications of computers amounted to function evaluations: you put in a deck
of cards or mounted a paper or magnetic tape, started the program, it com-
puted for a while, and when it stopped you had an output in the form of cards,
tape, or printed paper. Input — compute — output, that was all there was to
it. If you ran the program again with a different input, that amounted to an
independent function evaluation. The only relevant aspect of a program’s be-
havior was the input-output correspondence (i.e., the mathematical function).
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(This view can be contrasted with others, in which, for example, a compu-
tation involves continuous, non-terminating interaction with its environment,
such as might be found in control systems and autonomous robotics. Some
new models of computation have moved away from the idea of computation
as the evaluation of a fixed function [6, 21, 22, 27, 28, 29].)

Therefore, in the TC frame of relevance the natural way to compare the
“power” of models of computation was in terms of the classes of functions
they could compute, a linear dimension of power now generalized into a par-
tial order of set inclusions (but still based on a single conception of power:
computing a class of functions). (I note in passing that this approach raises all
sorts of knotty cardinality questions, which are inevitable when we deal with
such “large” classes; therefore in some cases results depend on a particular
axiomatization or philosophy of mathematics.)

2 NEW COMPUTATIONAL MODELS

A reasonable position, which many people take explicitly or implicitly, is
that the TC model is a perfectly adequate model of everything we mean by
“computation,” and therefore that any answers that it affords us are definitive.
However, as we have seen, the TC model exists in a frame of relevance, which
delimits the kinds of questions that it can answer accurately, and, as we will
show, there are important computational questions that fall outside this frame
of relevance.

2.1 Natural Computation
Natural computation may be defined as computation occurring in nature or in-
spired by computation in nature. The information processing and control that
occurs in the brain is perhaps the most familiar example of computation in
nature, but there are many others, such as the distributed and self-organized
computation by which social insects solve complicated optimization prob-
lems and construct sophisticated, highly structured nests. Also, the DNA
of multicellular organisms defines a developmental program that creates the
detailed and complex structure of the adult organism. For examples of com-
putation inspired by that in nature, we may cite artificial neural networks,
genetic algorithms, artificial immune systems, and ant swarm optimization,
to name just a few. Next I will consider a few of the issues that are important
in natural computation, but outside the frame of relevance of the TC model.

One of the most obvious issues is that, because computation in nature
serves an adaptive purpose, it must satisfy stringent real-time constraints.
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For example, an animal’s nervous system must respond to a stimulus — fight
or flight, for example — in a fraction of a second. Also, in order to control
coordinated sensorimotor behavior, the nervous system has to be able to pro-
cess sensory and proprioceptive inputs quickly enough to generate effector
control signals at a rate appropriate to the behavior. And an ant colony must
be able to allocate workers appropriately to various tasks in real time in order
to maintain the health of the colony.

In nature, asymptotic complexity is generally irrelevant; the constants mat-
ter and input size is generally fixed or varies over a relatively limited range
(e.g., numbers of sensory receptors, colony size). Whether the algorithm is
linear, quadratic, or exponential is not so important as whether it can deliver
useful results in required real-time bounds for the inputs that actually occur.
The same applies to other computational resources. For example, it is not so
important whether the number of neurons required varies linearly or quadrat-
ically with the number of inputs to the network; what matters is the absolute
number of neurons required for the actual number of inputs, and how well the
system will perform with the number of inputs and neurons it actually has.

Therefore, in natural computation, what does matter is how the real-time
response rate of the system is related to the real-time rates of its components
(e.g., neurons, ants) and to the actual number of components. This means
that it is not adequate to treat basic computational processes as having an
indeterminate duration or speed, as is commonly done in the TC model. In
the natural-computation frame of relevance, knowing that a computation will
eventually produce a correct result using finite but unbounded resources is
largely irrelevant. The question is whether it will produce a good-enough
result using available resources subject to real-time constraints.

Many of the inputs and outputs to natural computation are continuous in
magnitude and vary continuously in real time (e.g., intensities, concentra-
tions, forces, spatial relations). Many of the computational processes are also
continuous, operating in continuous real time on continuous quantities (e.g.,
neural firing frequencies and phases, dendritic electrical signals, protein syn-
thesis rates, metabolic rates). Obviously these real variables can be approxi-
mated arbitrarily closely by discrete quantities, but that is largely irrelevant in
the natural-computation frame of relevance. The most natural way to model
these systems is in terms of continuous quantities and processes.

If the answers to questions in natural computation seem to depend on
“metaphysical issues,” such as whether only Turing-computable reals exist,
or whether all the reals of standard analysis exist, or whether non-standard
reals exist, then I think that is a sign that we are out of the model’s frame of
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relevance, and that the answers are more indicative of the model itself than
of the modeled natural-computation system. For models of natural computa-
tion, naive real analysis, like that commonly used in science and engineering,
should be more than adequate; it seems unlikely that disputes in the founda-
tions of mathematics will be relevant to our understanding how brains coordi-
nate animal behavior, how ants and wasps organize their nests, how embryos
self-organize, and so forth.

2.2 Cross-frame Comparisons

This example illustrates the more general pitfalls that arise from cross-frame
comparisons. If two models have different frames of relevance, then they will
make different simplifying and idealizing assumptions; for example objects
whose existence is assumed in one frame (such as standard real numbers) may
not exist in the other (where all objects are computable). Therefore, a com-
parison requires that one of the models be translated from its own frame to
the other (or that both be translated to a third), and, in doing this translation,
assumptions compatible with the new frame will have to be made. For exam-
ple, if we want to investigate the computational power of neural nets in the TC
frame (i.e., in terms of classes of functions of the integers), then we will have
to decide how to translate the naive continuous variables of the neural net
model into objects that exist in the TC frame. For instance, we might choose
fixed-point numbers, computable reals (represented in some way by finite
programs), or arbitrary reals (represented by infinite discrete structures). We
then discover (as reported in the literature [10, 25]), that our conclusions de-
pend on the choice of numerical representation (which is largely irrelevant in
the natural-computation frame). That is, our conclusions are more a function
of the specifics of the cross-frame translation than of the modeled systems.

Such results tell us nothing about, for example, why brains do some things
so much better than do contemporary computers, which are made of much
faster components. That is, in the frame of natural computation, the issue of
the representation of continuous quantities does not arise, for it is irrelevant
to the questions addressed by this frame, but this issue is crucial in the TC
frame. Conversely, from within the frame of the TC model, much of what
is interesting about neural net models (parallelism, robustness, real-time re-
sponse) becomes irrelevant. Similar issues arise when the TC model is taken
as a benchmark against which to compare other models of computation, such
as quantum and molecular computation.
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2.3 Relevant Issues for Natural Computation
We have seen that important issues in the TC frame of relevance, such as
asymptotic complexity and the computability of classes of functions, are not
so important in natural computation. What, then, are the relevant issues?

One important issue in natural computation is robustness, by which I mean
effective operation in the presence of noise, uncertainty, imprecision, error,
and damage, all of which may affect the computational process as well as its
inputs. In the TC model, we assume that a computation should produce an
output exactly corresponding to the evaluation of a well-defined function on
a precisely specified input; we can, of course, deal with error and uncertainty,
but it’s generally added as an afterthought. Natural computation is better
served by models that incorporate this indefiniteness a priori.

In the TC model, the basic standard of correctness is that a program cor-
rectly compute the same outputs as a well-defined function evaluated on in-
puts in that function’s domain. In natural computation, however, we are often
concerned with generality and flexibility, for example: How well does a nat-
ural computation system (such as a neural network) respond to inputs that
are not in its intended domain (the domain over which it was trained or for
which it was designed)? How well does a neural control system respond to
unanticipated inputs or damage to its sensors or effectors? A related issue is
adaptability: How well does a natural computation system change its behav-
ior (which therefore does not correspond to a fixed function)?

Finally, many natural computation systems are not usefully viewed as
computing a function at all. As previously remarked, with a little clever-
ness anything can be viewed as a function, but this is not the simplest way
to treat many natural systems, which often are in open and continuous inter-
action with their environments and are effectively nonterminating. In natural
computation we need to take a more biological view of a computational sys-
tem’s “correctness” (better: effectiveness). It will be apparent that the TC
model is not particularly well suited to addressing many of these issues, and
in a number of cases begs the questions or makes assumptions incompatible
with addressing them. Nevertheless, real-time response, generality, flexibil-
ity, adaptability, and robustness in the presence of noise, error, and uncertainty
are important issues in the frame of relevance of natural computation.

2.4 Nanocomputation
Nanocomputation (including quantum computation) is another domain of com-
putation that seems to be outside the frame of relevance of the TC model.
By nanocomputation I mean any computational process involving sub-micron
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devices and arrangements of information; it includes molecular computation
(e.g., DNA computation), in which computation proceeds through molecular
interactions and conformational changes [1, 2, 4].

Due to thermal noise, quantum effects, etc., error and instability are un-
avoidable characteristics of nanostructures. Therefore they must be taken as
givens in nanocomputational devices and in their interrelationships (e.g., in-
terconnections), and also in the structures constructed by nanocomputational
processes (e.g., in algorithmic self-assembly [30]). Therefore, a “perfect”
structure is an over-idealized assumption in the context of nanocomputation;
defects are unavoidable. In many cases structures are not fixed, but are sta-
tionary states occurring in a system in constant flux. Similarly, unlike in the
TC model, nanocomputational operations cannot be assumed to proceed cor-
rectly, for the probability of error is always non-negligible. Error cannot be
considered a second-order detail added to an assumed perfect computational
system, but should be built into a model of nanocomputation from the be-
ginning. Indeed, operation cannot even be assumed to proceed uniformly
forward. For example, chemical reactions always have a non-zero probabil-
ity of moving backwards, and therefore molecular computation systems must
be designed so that they accomplish their purposes in spite of such reversals.
This is a fundamental characteristic of molecular computation, which should
be an essential part of any model of it.

2.5 Summary of Issues

In summary, the notion of super-Turing computation, stricto sensu, exists
only in the frame of relevance of the Turing-Church model of computation,
for the notion of being able to compute “more” than a Turing machine presup-
poses a particular notion of “power.” Although it is interesting and important
to investigate where alternative models of computation fall in this computa-
tional hierarchy, it is also important to explore non-Turing computation, that
is, models of computation with different frames of relevance from the TC
model. Several issues arise in the investigation of non-Turing computation:
(1) What is computation in the broad sense? (2) What frames of relevance are
appropriate to alternative conceptions of computation (such as natural compu-
tation and nanocomputation), and what sorts of models do we need for them?
(3) How can we fundamentally incorporate error, uncertainty, imperfection,
and reversibility into computational models? (4) How can we systematically
exploit new physical processes (molecular, biological, optical, quantum) for
computation? The remainder of this article addresses issues (1) and (4).
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3 COMPUTATION IN GENERAL

3.1 Kinds of Computation
Historically, there have been many kinds of computation, and the existence of
alternative frames of relevance shows us the importance of non-Turing mod-
els of computation. How, then, can we define “computation” in sufficiently
broad terms? Prior to the twentieth century computation involved operations
on mathematical objects by means of physical manipulation. The familiar
examples are arithmetic operations on numbers, but we are also familiar with
the geometric operations on spatial objects of Euclidean geometry, and with
logical operations on formal propositions. Modern computers operate on a
much wider variety of objects, including character strings, images, sounds,
and much else. Therefore, the observation that computation uses physical
processes to accomplish mathematical operations on mathematical objects
must be understood in the broadest sense, that is, as abstract operations on
abstract objects. In terms of the traditional distinction between form and mat-
ter, we may say that computation uses material states and processes to realize
(implement) formal operations on abstract forms. But what sorts of physical
processes?

3.2 Effectiveness and Mechanism
The concepts of effectiveness and mechanism, familiar from TC computa-
tion, are also relevant to computation in a broader sense, but they must be
similarly broadened. To do this, we may consider the two primary uses to
which models of computation are put: understanding computation in nature
and designing computing devices. In both cases the model relates informa-
tion representation and processing to underlying physical processes that are
considered unproblematic within the frame of relevance of the model.

For example, the TC model sought to understand effective calculability
and formal derivability in terms of simple processes of symbol recognition
and manipulation, such as are routinely performed by mathematicians. Al-
though these are complex processes from a cognitive science standpoint, they
were considered unproblematic in the context of metamathematics. Similarly,
in the context of natural computation, we may expect a model of computation
to explain intelligent information processing in the brain in terms of electro-
chemical processes in neurons (considered unproblematic in the context of
neural network models). Or we may expect a different model to explain the
efficient organization of an ant colony in term of pheromone emission and
detection, simple stimulus-response rules, etc. In all these cases the explana-
tion is mechanistic, in the sense that it refers to primary qualities, which can
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be objectively measured or positively determined, as opposed to secondary
qualities, which are subjective or depend on human judgment, feeling, etc.
(all, of course, in the context to the intended purpose of the model); mea-
surements and determinations of primary qualities are effective in that their
outcomes are reliable and dependable.

A mechanistic physical realization is also essential if a model of compu-
tation is to be applied to the design of computing devices. We want to use
physical processes that are effective in the broad sense that they result reli-
ably in the intended computations. In this regard, electronic binary logic has
proved to be an extraordinarily effective mechanism for computation. (Later
I will discuss some general effectiveness criteria.)

3.3 Multiple Realizability
Although the forms operated upon by a computation must be materially re-
alized in some way, a characteristic of computation that distinguishes it from
other physical processes is that it is independent of specific material realiza-
tion. That is, although a computation must be materially realized in some way,
it can be realized in any physical system having the required formal structure.
(Of course, there will be practical differences between different physical re-
alizations, but I will defer consideration of them until later.) Therefore, when
we consider computation qua computation, we must, on the one hand, restrict
our attention to formal structures that are mechanistically realizable, but, on
the other, consider the processes independently of any particular mechanistic
realization.

These observations provide a basis for determining whether or not a partic-
ular physical system (in the brain, for example) is computational [14, 18]. If
the system could, in principle at least, be replaced by another physical system
having the same formal properties and still accomplish its purpose, then it is
reasonable to consider the system computational (because its formal struc-
ture is sufficient to fulfill its purpose). On the other hand, if a system can
fulfill its purpose only by control of particular substances or particular forms
of energy (i.e., it is not independent of a specific material realization), then it
cannot be purely computational. (Nevertheless, a computational system will
not be able to accomplish its purpose unless it can interface properly with its
environment; this is a topic I will consider later.)

3.4 Defining Computation
Based on the foregoing considerations, we have the following definition of
computation [14, 18]:
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Definition 1 Computation is a mechanistic process, the purpose of which is
to perform abstract operations on abstract objects.

Alternately, we may say that computation accomplishes the formal transfor-
mation of formal objects by means of mechanistic processes operating on
the objects’ material embodiment. The next definition specifies the relation
between the physical and abstract processes:

Definition 2 A mechanistic physical system realizes a computation if, at the
level of abstraction appropriate to its purpose, the abstract transformation of
the abstract objects is a sufficiently accurate model of the physical process.
Such a physical system is called a realization of the computation.

That is, the physical system realizes the computation if we can see the ma-
terial process as a sufficiently accurate embodiment of the formal structure,
where the sufficiency of the accuracy must be evaluated in the context of the
system’s purpose. Mathematically, we may say that there is a homomorphism
from the physical system to the abstract system, because the abstract system
has some, but not all, of the formal properties of the physical system [18].
The next definition classifies various systems, both natural and artificial, as
computational:

Definition 3 A physical system is computational if its purpose is to realize a
computation.

Finally, for completeness:

Definition 4 A computer is an artificial computational system.

Thus the term “computer” is restricted to intentionally manufactured compu-
tational devices; to call the brain a computer is a metaphor. These definitions
raise a number of issues, which I will discuss briefly; no doubt the definitions
can be improved.

3.5 Purpose
First, these definitions make reference to the purpose of a system, but philoso-
phers and scientists are justifiably wary of appeals to purpose, especially in
a biological context. However, the use of purpose in the definition of com-
putation is unproblematic, for in most cases of practical interest, purpose is
easy to establish. (There are, of course, borderline cases, but that fact does
not invalidate the definition.) On the one hand, in a technological context, we
can look to the stated purpose for which an artificial system was designed. On
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the other, in a biological context, scientists routinely investigate the purposes
of biological systems, such as the digestive system and immune system, and
make empirically testable hypotheses about their purposes. Ultimately such
claims of biological purpose may be reduced to a system’s selective advantage
to a particular species in that species’ environment of evolutionary adapted-
ness, but in most cases we can appeal to more immediate ideas of purpose.

On this basis we may identify many natural computational systems. For
example, the function of the brain is primarily computational (in the sense
used here), which is easiest to see in sensory areas. For example, there is
considerable evidence that an important function of primary visual cortex
is to perform a Gabor wavelet transform on visual data [5]; this is an ab-
stract operation that could, in principal, be realized by a non-neural physical
system (such as a computer chip). Also, pheromone-mediated interactions
among insects in colonies often realize computational ends such as allocation
of workers to tasks and optimization of trails to food sources. Likewise DNA
transcription, translation, replication, repair, etc., are primarily computational
processes.

However, there is a complication that arises in biology and can be expected
to arise in our biologically-inspired robots. That is, while the distinction be-
tween computational and non-computational systems is significant to us, it
does not seem to be especially significant to biology. The reason may be that
we are concerned with the multiple realizability of computations, that is, with
the fact that they have alternative realizations, for this property allows us to
consider the implementation of a computation in a different technology, for
example in electronics rather than in neurons. In nature, typically, the real-
ization is given, since natural life is built upon a limited range of substances
and processes. On the other hand, there is often selective pressure in favor
of exploiting a biological system for as many purposes as possible. There-
fore, in a biological context, we expect physical systems to serve multiple
purposes, and therefore many such systems will not be purely computational;
they will fulfill other functions besides computation. From this perspective, it
is remarkable how free nervous systems are of non-computational functions.

3.6 Transduction
The purpose of computation is the abstract transformation of abstract objects,
but obviously these formal operations will be pointless unless the compu-
tational system interfaces with its environment in some way. Certainly our
computers need input and output interfaces in order to be useful. So also
computational systems in the brain must interface with sensory receptors,
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muscles, and many other noncomputational systems to accomplish their pur-
poses. In addition to these practical issues, the computational interface to the
physical world is relevant to the symbol grounding problem, the philosophi-
cal question of how abstract symbols can have real-world content [7, 8, 12].
Therefore we need to consider the interface between a computational system
and its environment, which comprises input and output transducers.

The relation of transduction to computation is easiest to see in the case of
analog computers. The inputs and outputs of the computational system have
some physical dimensions (light intensity, air pressure, mechanical force,
etc.), because they must have a specific physical realization for the system
to accomplish its purpose. On the other hand, the computation itself is essen-
tially dimensionless, since it manipulates pure numbers. Of course, these in-
ternal numbers must be represented by some physical quantities, but they can
be represented in any appropriate physical medium. In other words, compu-
tation is generically realized, that is, realized by any physical system with an
appropriate formal structure, whereas the inputs and outputs are specifically
realized, that is, constrained by the environment with which they interface to
accomplish the computational system’s purpose.

Therefore we can think of (pure) transduction as changing matter (or en-
ergy) while leaving form unchanged, and of computation as transforming
form independently of matter (or energy). In fact, most transduction is not
pure, for it modifies the form as well as the material substrate, for example,
by filtering. Likewise, transductions between digital and analog representa-
tions transform the signal between discrete and continuous spaces.

3.7 Classification of Computational Dynamics
The preceding definition of computation has been framed quite broadly, to
make it topology-neutral, so that it encompasses all the forms of computa-
tion found in natural and artificial systems. It includes, of course, the famil-
iar computational processes operating in discrete steps and on discrete state
spaces, such as in ordinary digital computers. It also includes continuous-
time processes operating on continuous state spaces, such as found in conven-
tional analog computers and field computers [1, 2, 11, 16]. However, it also
includes hybrid processes, incorporating both discrete and continuous com-
putation, so long as they are mathematically consistent. As we expand our
computational technologies outside of the binary electronic realm, we will
have to consider these other topologies of computation. This is not so much
a problem as an opportunity, for many important applications, especially in
natural computation, are better matched to these alternative topologies.
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In connection with the classification of computational processes in terms
of their topologies, it is necessary to say a few words about the relation be-
tween computations and their realizations. A little thought will show that a
computation and its realizations do not have to have the same topology, for
example, discrete or continuous. For instance, the discrete computations per-
formed on our digital computers are in fact realized by continuous physical
systems obeying Maxwell’s equations. The realization is approximate, but
exact enough for practical purposes. Conversely a discrete system can ap-
proximately realize a continuous system, analogously to numerical integra-
tion on a digital computer. In comparing the topologies of the computation
and its realization, we must describe the physical process at the relevant level
of analysis, for a physical system that is discrete on one level may be con-
tinuous on another. (The classification of computations and realizations is
discussed in more detail elsewhere [18].)

4 EXPANDING THE RANGE OF COMPUTING TECHNOLOGIES

4.1 A Vicious Cycle
A powerful feedback loop has amplified the success of digital VLSI technol-
ogy to the exclusion of all other computational technologies. The success
of digital VLSI encourages and finances investment in improved tools, tech-
nologies, and manufacturing methods, which further promote the success of
digital VLSI. Unfortunately this feedback loop threatens to become a vicious
cycle. We know that there are limits to digital VLSI technology, and, although
estimates differ, we will reach them soon. We have assumed there will always
be more bits and more MIPS, but that assumption is false. Unfortunately, al-
ternative technologies and models of computation remain undeveloped and
largely uninvestigated, because the rapid advance of digital VLSI has sur-
passed them before they could be adequately refined. Investigation of alter-
native computational technologies is further constrained by the assumption
that they must support binary logic, because that is the only way we know
how to compute, or because our investment in this model of computation is
so large. Nevertheless, we must break out of this vicious cycle or we will be
technologically unprepared when digital VLSI finally, and inevitably, reaches
its limits.

4.2 General Guidelines
Therefore, as a means of breaking out of this vicious cycle, let us step back
and look at computation and computational technologies in the broadest sense.
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What sorts of physical processes can we reasonably expect to use for compu-
tation? Based on the preceding discussion, we can see that any mathematical
process, that is, any abstract transformation of abstract objects, is a potential
computation. Therefore, in principle, any reasonably controllable, mathemat-
ically described, physical process can be used for computation. Of course,
there are practical limitations on the physical processes usable for computa-
tion, but the range of possible technologies is much broader than might be
suggested by a narrow conception of computation. Considering some of the
requirements for computational technologies will reveal some of the possibil-
ities as well as the limitations.

One obvious issue is speed. The rate of the physical process may be either
too slow or too fast for a particular computational application. That it might
be too slow is obvious, for the development of conventional computing tech-
nology has been driven by speed. Nevertheless, there are many applications
that have limited speed requirements, for example, if they are interacting with
an environment with its own limited rates. Conversely, these applications may
benefit from other characteristics of a slower technology, such as energy ef-
ficiency; insensitivity to uncertainty, error, and damage; and the ability to
be reconfigured or to adapt or repair itself. Another consideration that may
supersede speed is whether the computational medium is suited to the appli-
cation: Is it organic or inorganic? Living or nonliving? Chemical, optical, or
electrical?

A second requirement is the ability to implement the transducers required
for the application. Although computation is theoretically independent of its
physical embodiment, its inputs and outputs are not, and some conversions
to and from a computational medium may be easier than others. For exam-
ple, if the inputs and outputs to a computation are chemical, then chemical or
molecular computation may permit simpler transducers than electronic com-
putation. Also, if the system to be controlled is biological, then some form of
biological computation may suit it best.

Finally, a physical realization should have the accuracy, stability, control-
lability, etc. required for the application. Fortunately, natural computation
provides many examples of useful computations that are accomplished by re-
alizations that are not very accurate, for example, neuronal signals have at
most about one digit of precision. Also, nature shows us how systems that
are subject to many sources of noise and error may be stabilized and thereby
accomplish their purposes.
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4.3 Learning to Use New Technologies
A key component of the vicious cycle is our extensive knowledge about de-
signing and programming digital computers. We are naturally reluctant to
abandon this investment, which pays off so well, but as long as we restrict
our attention to existing methods, we will be blind to the opportunities of
new technologies. On the other hand, no one is going to invest much time or
money in technologies that we don’t know how to use. How can we break the
cycle?

In many respects natural computation provides the best opportunity, for
nature offers many examples of useful computations based on different mod-
els from digital logic. When we understand these processes in computational
terms, that is, as abstractions independent of their physical realizations in na-
ture, we can begin to see how to apply them to our own computational needs
and how to realize them in alternative physical processes. As examples we
may take information processing and control in the brain, and emergent self-
organization in animal societies, both of which have been applied already
to a variety of computational problems (e.g., artificial neural networks, ge-
netic algorithms, ant colony optimization, etc.). But there is much more that
we can learn from these and other natural computation systems, and we have
not made much progress in developing computers better suited to them. More
generally we need to increase our understanding of computation in nature and
keep our eyes open for physical processes with useful mathematical structure
[3, 4]. Therefore, one important step toward a more broadly based computer
technology will be a knowledge-base of well-matched computational meth-
ods and physical realizations.

Computation in nature gives us many examples of the matching of physical
processes to the needs of natural computation, and so we may learn valuable
lessons from nature. First, we may apply the actual natural processes as re-
alizations of our artificial systems, for example using biological neurons or
populations of microorganisms for computation. Second, by understanding
the formal structure of these computational systems in nature, we may real-
ize them in alternative physical systems with the same abstract structure. For
example, neural computation or insect colony-like self-organization might be
realized in an optical system.

4.4 General-purpose Computation
An important lesson learned from digital computer technology is the value
of programmable general-purpose computers, both for prototyping special-
purpose computers as well as for use in production systems. Therefore to
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make better use of an expanded range of computational methodologies and
technologies, it will useful to have general-purpose computers in which the
computational process is controlled by easily modifiable parameters. That is,
we will want generic computers capable of a wide range of specific compu-
tations under the control of an easily modifiable representation. As has been
the case for digital computers, the availability of such general-purpose com-
puters will accelerate the development and application of new computational
models and technologies.

We must be careful, however, lest we fall into the “Turing Trap,” which is
to assume that the notion of universal computation found in Turing machine
theory is the appropriate notion in all frames of relevance. The criteria of uni-
versal computation defined by Turing and his contemporaries was appropriate
for their purposes, that is, studying effective calculability and derivability in
formal mathematics. For them, all that mattered was whether a result was
obtainable in a finite number of atomic operations and using a finite number
of discrete units of space. Two machines, for example a particular Turing
machine and a programmed universal Turing machine, were considered to be
of the same power if they computed the same function by these criteria. No-
tions of equivalence and reducibility in contemporary complexity theory are
not much different.

It is obvious that there are many important uses of computers, such as
real-time control applications, for which this notion of universality is irrel-
evant. In some of these applications, one computer can be said to emulate
another only if it does so at the same speed. In other cases, a general-purpose
computer may be required to emulate a particular computer with at most a
fixed extra amount of a computational resource, such as storage space. The
point is that in the full range of computer applications, in particular in natu-
ral computation, there may be considerably different criteria of equivalence
than computing the same mathematical function. Therefore, in any particular
application area, we must consider in what respects the programmed general-
purpose computer must behave the same as the computer it is emulating, and
in what respects it may behave differently, and by how much. That is, each
notion of universality comes with a frame of relevance, and we must uncover
and explicate the frame of relevance appropriate to our application area.

There has been limited work on general-purpose computers in the non-
Turing context. For example, theoretical analysis of general-purpose analog
computation goes back to Claude Shannon (1941), with more recent work by
Pour-El (1974) and Rubel (1981, 1993) [23, 24]. In the area of neural net-
works we have several theorems based on Sprecher’s improvement of the Kol-
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mogorov superposition theorem [26], which defines one notion of universality
for feed-forward neural networks, although perhaps not a very useful one, and
there are several “universal approximation theorems” for neural networks and
related computational models [9]. Also, there are some TC-relative univer-
sality results for molecular computation [4] and for computation in nonlinear
media [1]. Finally, we have done some work on general-purpose field com-
puters [11, 16] and on general-purpose computation over second-countable
metric spaces (which includes both analog and digital computation) [19]. In
any case, much more work needs to be done, especially towards articulating
the relation between notions of universality and their frames of relevance.

It is worth remarking that these new types of general-purpose computers
might not be programmed with anything that looks like an ordinary program,
that is, a textual description of rules of operation. For example, a guiding
image, such as a potential surface, might be used to govern a gradient descent
process or even a nondeterministic continuous process [15, 18]. We are, in-
deed, quite far from universal Turing machines and the associated notions of
programs and computation, but non-Turing models are often more relevant in
natural computation and other new domains of computation.

5 CONCLUSIONS

The historical roots of Turing-Church computation remind us that the theory
exists in a frame of relevance, which is not well suited to natural computa-
tion, nanocomputation, and other new application domains. Therefore we
need to supplement it with new models based on different assumptions and
suited to answering different questions. Central issues include real-time re-
sponse, generality, flexibility, adaptability, and robustness in the presence of
noise, uncertainty, error, and damage. Once we understand computation in a
broader sense than the Turing-Church model, we begin to see new possibil-
ities for using physical processes to achieve our computational goals. These
possibilities will increase in importance as we approach the limits of elec-
tronic binary logic as a basis for computation, and they will also help us to
understand computational processes in nature.
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