
The U-Machine:
A Model of Generalized Computation

Technical Report UT-CS-06-587

Bruce J. MacLennan∗

Department of Computer Science
University of Tennessee, Knoxville

www.cs.utk.edu/~mclennan

December 14, 2006

Abstract

We argue that post-Moore’s Law computing technology will require the ex-
ploitation of new physical processes for computational purposes, which will be
facilitated by new models of computation. After a brief discussion of computa-
tion in the broad sense, we present a model of generalized computation, and a
corresponding machine model, which can be applied to massively-parallel nano-
computation in bulk materials. The machine is able to implement quite general
transformations on a broad class of topological spaces by means of Hilbert-space
representations. Neural morphogenesis provides a model for the physical struc-
ture of the machine and means by which it may be configured, a process that
involves the definition of signal pathways between two-dimensional data areas
and the setting of interconnection strengths within them. This approach also
provides a very flexible means of reconfiguring of the internal structure of the
machine.

Keywords: analog computer, field computation, nanocomputation, natu-
ral computation, neural network, radial-basis function network, reconfigurable,
Moore’s law, U-machine.

AMS (MOS) subject classification: 68Q05.

∗This report may be used for any non-profit purpose provided that the source is credited.

1

1 Introduction

This report describes a computational model that embraces computation in the broad-
est sense, including analog and digital, and provides a framework for computation
using novel materials and physical processes. We explain the need for a generalized
model of computation, define its mathematical basis, and give examples of possible
implementations suitable to a variety of media.

As is well known, the end of Moore’s Law is in sight, and we are approaching
the limits of digital electronics and the von Neumann architecture, so we need to
develop new computing technologies and methods of using them. This process will
be impeded by assuming that binary digital logic is the only basis for practical com-
putation. Although this particular approach to computation has been very fruitful,
the development of new computing technologies will be aided by stepping back and
asking what computation is in more general terms. If we do this, then we will see that
there are many physical processes available that might be used in future computing
technologies. In particular, physical processes that are not well suited to implement-
ing binary digital logic may be better suited to alternative models of computation.
Thus one goal for the future of computing technology is to find useful correspon-
dences between physical processes and models of computation. But what might an
alternative to binary digital computation look like?

Neural networks provide one alternative model of computation. They have a
wide range of applicability, and are effectively implementable in various technologies,
including conventional general-purpose digital computers, digital matrix-vector mul-
tipliers, analog VLSI, and optics. Artificial neural networks, as well as neural informa-
tion processing in the brain, show the effectiveness of massively-parallel, low-precision
analog computation for many applications; therefore neural networks exemplify the
sorts of alternative models we have in mind.

More generally, nature provides many examples of effective, robust computation,
and natural computation has been defined as computation occurring in nature or
inspired by it. In addition to neural networks, natural computation includes genetic
algorithms, artificial immune systems, ant colony optimization, swarm intelligence,
and many similar models. Computation in nature does not use binary digital logic, so
natural computation suggests many alternative computing technologies, which might
exploit new materials and processes for computation.

Nanotechnology, including nanobiotechnology, promises to provide new materials
and processes that could, in principle, be used for computation, but they also provide
new challenges, including three-dimensional nanoscale fabrication, high defect and
failure rates, and inherent, asynchronous parallelism. In many cases we can, of course,
engineer these materials and processes to implement the familiar binary digital logic,
but that strategy may require excessive overhead for redundancy, error correction,
synchronization, etc., and thus waste much of the potential advantage of these new
technologies.

2

We believe that a better approach is to match computational processes to the
physical processes most suited to implement them. On the one hand, we should have
an array of physical processes available to implement any particular alternative useful
model of computation. On the other, we should have libraries of computational mod-
els that can implemented by means of particular physical processes. Some guidelines
for the application of a wider range of physical processes to computation can be found
elsewhere [10], but here we will consider a model of generalized computation that can
be implemented in a variety of potential technologies.

2 Generalized Computation

We need a notion of computation that is sufficiently broad to allow us to discover and
to exploit the computational potentials of a wide range of processes and materials,
including those emerging from nanotechnology and those inspired by natural systems.
Therefore we have argued for a generalized definition of computational systems that
encompasses analog as well as digital computation and that can be applied to com-
putational systems in nature as well as to computational devices (i.e., computers in
the strict sense) [5, 6, 9]. According to this approach, the essential difference between
computational processes and other physical processes is that the purpose of computa-
tional processes is the mathematical “manipulation” of mathematical objects. Here
“mathematical” is used in a broad sense to refer to any abstract or formal objects and
processes. This is familiar from digital computers, which are not limited to manipu-
lating numbers and to numerical calculation, but can also manipulate other abstract
objects such as character strings, lists, and trees. Similarly, in addition to numbers
and differential equations, analog computers can process images, signals, and other
continuous information representations. Here, then, is our definition of generalized
computation [5, 6, 9]:

Definition 1 (Computation) Computation is a physical process, the purpose of
which is abstract operation on abstract objects.

What distinguishes computational processes from other physical systems is that
while the abstract operations must be instantiated in some physical medium, they
can be implemented by any physical process that has the same abstract structure.
That is, a computational process can be realized by any physical system that can be
described by the same mathematics (abstract description). More formally:

Definition 2 (Realization) A physical system realizes a computation if, at the level
of abstraction appropriate to its purpose, the system of abstract operations on the
abstract objects is a sufficiently accurate model of the physical process. Such a physical
system is called a realization of the computation.

3

Any perfect realization of a computation must have at least the abstract structure
of that computation (typically it will have additional structure); therefore, we may
say there is a homomorphism from the structure of a physical realization to the
abstract computation; in practice, however, many realizations are only approximate
(e.g., digital or analog representations of real numbers) [5, 9].

With this background, we can state that the goal of this research is to develop
a model of generalized computation that can be implemented in a wide variety of
physical media. Therefore we have to consider the representation of a very broad
class of abstract objects and the computational processes on them.

3 Representation of Data

3.1 Urysohn Embedding

First we consider the question of how we can represent quite general mathematical
objects on a physical system. The universe of conceivable mathematical objects is,
of course, impractically huge and lacking in structure (beyond the bare requirements
of abstractness and consistency). Therefore we must identify a class of mathematical
objects that is sufficiently broad to cover analog and digital computation, but has
manageable structure. In this paper we will limit the abstract spaces over which
we compute to second-countable metric spaces, that is, metric spaces with countable
bases.1 Such metric spaces are separable, that is, they have countable dense subsets,
which in turn means there is a countable subset that can be used to approximate
the remaining elements arbitrarily closely. Further, since a topological continuum
is often defined as a (non-trivial) connected compact metric space [11, p. 158], and
since a compact metric space is both separable and complete, the second-countable
spaces include the topological continua suitable for analog computation. On the other
hand, countable discrete topological spaces are second-countable, and so digital data
representation is also included in the class of spaces we address.

In this paper we describe the U-machine, which is named after Pavel Urysohn
(1898–1924), who showed that any second-countable metric space is homeomorphic
to a subset of the Hilbert space E∞. Therefore, computations on second-countable
metric spaces can be represented by computations on Hilbert spaces, which brings
them into the realm of physical realizability. To state the theorem more precisely, we
will need the following definition [12, pp. 324–5]:

Definition 3 (Fundamental Parallelopiped) The fundamental parallelopiped Q∞ ⊂
E∞ is defined:

Q∞ = {(u1, u2, . . . uk, . . .) | uk ∈ R ∧ |uk| ≤ 1/k}.
1Indeed, we can broaden abstract spaces to second-countable regular Hausdorff spaces, since

according to the Urysohn metrization theorem, these spaces are metrizable [17, pp. 137–9].

4

Urysohn showed that any second-countable metric space (X, δX) is homeomorphic
to a subset of Q∞ and thus to a subset of the Hilbert space E∞. Without loss of
generality we assume δX(x, x′) ≤ 1 for all x, x′ ∈ X, for if this is not the case we can
define a new metric

δ′X(x, x′) =
δX(x, x′)

1 + δX(x, x′)
.

The embedding is defined as follows:

Definition 4 (Urysohn Embedding) Suppose that (X, δX) is a second-countable
metric space; we will define a mapping U : X → Q∞. Since X is separable, it has a
countable dense subset {b1, b2, . . . , bk, . . .} ⊆ X. For x ∈ X define

U(x) = u = (u1, u2, . . . , uk, . . .), where uk = δX(x, bk)/k.

Note that |uk| ≤ 1/k so u ∈ Q∞.

Informally, each point x in the metric space is mapped into an infinite vector of
its (bounded) distances from the dense elements; the vector elements are generalized
Fourier coefficients in E∞. It is easy to show that U is a homeomorphism and that
indeed it is uniformly continuous (although U−1 is merely continuous) [12, p. 326].
There are of course other embeddings of second-countable sets into Hilbert spaces,
but this example will serve to illustrate the U-machine.

Physical U-machines will not always represent the elements of an abstract space
with perfect accuracy, which can be understood in terms of ε-nets [12, p. 315].

Definition 5 (ε-net) An ε-net is a finite set of points E = {b1, . . . , bn} ⊆ X of a
metric space (X, δX) such that for each x ∈ X there is some bk ∈ E with δX(x, bk) < ε.

Any compact metric space has an ε-net for each ε > 0 [12, p. 315]. In particular, in
such a space there is a sequence of ε-nets E1, E2, . . . , Ek, . . . such that Ek is a 1

k
-net; they

provide progressively finer nets for determining the position of points in X. The union
of them all is a countable dense set in X [12, p. 315]. Letting Ek = {bk,1, . . . , bk,nk

}, we
can form a sequence of all the bk,l in order from coarser to the finer nets (k = 1, 2, . . .),
which we can reindex as bj. Most of the second-countable spaces over which we would
want to compute are compact, and so they have such a sequence of ε-nets. Therefore
we can order the coefficients of the Hilbert-space representation to go from coarser
to finer, U(x) = u = (. . . , uj, . . .) where uj = δX(x, bj)/j. I will call this a ranked
arrangement of the coefficients.

Physical realizations of computations are typically approximate; for example, on
ordinary digital computers real numbers are represented with finite precision, integers
are limited to a finite range, and memory (for stacks etc.) is strictly bounded. So also,
physical realizations of a U-machine will not be able to represent all the elements of
an infinite-dimensional Hilbert space with perfect accuracy. One way to get a finite
precision approximation for an abstract space element is to use a ranked organization

5

for its coefficients, and to truncate it at some specific n; thus, the representation is a
finite-dimensional vector u = (u1, u2, . . . , un)T. This amounts to limiting the fineness
of the ε-nets. (Obviously, if we are using finite-dimensional vectors, we can use the
simpler definition uk = δX(x, bk), which omits the k−1 scaling.)

The representation of a mathematical object in terms of a finite discrete set u
of continuous coefficients is reminiscent of a neural-net representation, in which the
coefficients uk (1 ≤ k ≤ n) are the activities of the neurons in one layer. Furthermore,
consider the “complementary” representation s = 1− u, that is,

sk = 1− uk = 1− δX(x, bk).

We can see that the components of s measure the closeness or similarity of x to
the ε-net elements bk. This is a typical neural-net representation, such as we find,
for example, in radial-basis function (RBF) networks. Therefore, some U-machines
will compute in an abstract space by means of operating, neural-network style, on
finite-dimensional vectors of generalized Fourier coefficients. (Examples are discussed
below.)

Other physical realizations of the U-machine will operate on fields, that is, on
continuous distributions of continuous data, which are, in mathematical terms, the
elements of an appropriate Hilbert function space. This kind of computation is called
field computation [2, 3, 4, 8]. More specifically, let L2(Ω) be a Hilbert space of
functions φ : Ω → R defined over a domain Ω, a connected compact metric space.
Let ξ1, ξ2, . . . , ξk, . . . ∈ L2(Ω) be an orthonormal basis for the Hilbert space. Then an
element x ∈ X of the abstract space is represented by the field φ =

∑∞
k=1 ukξk, where

as usual the generalized Fourier coefficients are uk = δX(x, bk)/k.
Physical field computers operate on band-limited fields, just as physical neural

networks have a finite number of neurons. If, as in the ordinary Fourier series, we
put the basis functions in order of non-decreasing frequency, then a band-limited field
will be a finite sum,

φ̂ =
n∑

k=1

ukξk.

The Euclidean space En is isomorphic (and indeed isometric) to the subspace of L2(Ω)
spanned by ξ1, . . . , ξn.

It will be worthwhile to say a few words about how digital data fit into the
representational frame we have outlined, for abstract spaces may be discrete as well as
continuous. First, it is worth recalling that the laws of nature are continuous, and our
digital devices are implemented by embedding a discrete space into a continuum (or,
more accurately, by distinguishing disjoint subspaces of a continuum). For example,
we may embed the discrete space {0, 1} in the continuum [0, 1] with the ordinary
topology. Similarly, n-bit strings in {0, 1}n can be embedded in [0, 1]n with any
appropriate topology (i.e., a second-countable metric space). However, as previously
remarked, countable discrete topological spaces (i.e., those in which δX(x, x′) = 1 for

6

x 6= x′) are second countable, and therefore abstract spaces in our sense; the space is
its own countable dense subset. Therefore the Urysohn Hilbert-space representation
of any bk ∈ X is a (finite- or infinite-dimensional) vector u in which the uk = 0 and
uj = 1 for j 6= k. Also, the complementary similarity vector s = 1 − u is a unit
vector along the k-th axis, which is the familiar 1-out-of-n or unary representation
often used in neural networks. On a field computer, the corresponding representation
is the orthonormal basis function ξk (i.e., discrete values are represented by “pure
states”).

3.2 An Abstract Cortex

Hitherto, we have considered the Hilbert-space representation of a single abstract
space, but non-trivial computations will involve processes in multiple abstract spaces.
Therefore, just as the memory of an ordinary general-purpose digital computer may
be divided up into a number of variables of differing data types, we need to be able
to divide the state space of a U-machine into disjoint variables, each representing its
own abstract space. We have seen that an abstract space can be homeomorphically
embedded in Hilbert space, either a discrete set [0, 1]∞ of generalized Fourier coef-
ficients or a space L2(Ω) of continuous fields over some domain Ω. Both can easily
accommodate the representation of multiple abstract spaces.

This is easiest to see in the case of a discrete set of Fourier coefficients. For
suppose we have a set of abstract spaces X1, . . . , XN , represented by finite numbers
n1, . . . , nN of coefficients, respectively. These can be represented in a memory that
provides at least n =

∑N
k=1 nk coefficients in [0, 1]. In effect we have at least n neurons

divided into groups (e.g., layers) of size n1, . . . , nN . This is exactly analogous to the
partitioning of an ordinary digital computer’s memory (which, in fact, could be used
to implement the coefficients by means of an ordinary digital approximation of reals
in [0, 1]).

In a similar way multiple field-valued variables can be embedded into a single field-
valued memory space. In particular, suppose a field computer’s memory represents
real-valued time-varying fields over the unit square; that is, a field is a function
φ(t) ∈ L2([0, 1]2). Further suppose we have N field variables over the same domain,
ψ1(t), . . . , ψN(t) ∈ L2([0, 1]2). They can be stored together in the same memory field
φ(t) by shrinking the sizes of their domains and translating them so that they will
occupy separated regions of the memory’s domain. Thus ψj(t) is replaced by ψ̂j(t),
which is defined over [u, u+ w] × [v, v + w] (0 < u, v, w < 1) by the definition

ψ̂j(t;x, y) = ψj

(
t;
x

w
− u,

y

w
− v

)
.

That is, ψ̂j is ψj shrunk to a w2 domain with its (0, 0) corner relocated to (u, v)
in the memory domain. With an appropriate choice of locations and domain scale
factors so that the variables are separated, φ(t) =

∑N
j=1 ψ̂j(t). Of course, shrinking

7

the field variables pushes information into higher (spatial) frequency bands, and so
the capacity of the field memory (the number of field variables it can hold) will be
determined by its bandwidth and the bandwidths needed for the variables.

As will be discussed in Sec. 4.6, there are good reasons for using fields defined over
a two-dimensional manifold, as there are for organizing discrete neuron-like units in
two-dimensional arrays. This is, of course, to a first approximation, the way neurons
are organized in the neural cortex. Furthermore, much of the cortex is organized in
distinct cortical maps in which field computation takes place [7, 8]. (Indeed, cortical
maps are one of the inspirations of field computing.) Therefore the memory of a U-
machine can be conceptualized as a kind of abstract cortex, with individual regions
representing distinct abstract spaces. This analogy suggests ways of organizing and
programming U-machines (discussed below) and also provides a new perspective on
neural computation in brains.

4 Representation of Process

4.1 Introduction

The goal of our embedding of second-countable metric spaces in Hilbert spaces is
to facilitate computation in arbitrary abstract spaces. As a beginning, therefore,
consider a map Φ : X → Y between two abstract spaces, (X, δX) and (Y, δY). The
abstract spaces can be homeomorphically embedded into subsets of the Hilbert space
Q∞ by U : X → Q∞ and V : Y → Q∞. These embeddings have continuous inverses
defined on their ranges; that is, U−1 : U [X] → X and V −1 : V [Y] → Y are continuous.
Therefore we can define a function F : U [X] → V [Y] as the topological conjugate
of Φ; that is, F = V ◦ Φ ◦ U−1. Thus, for any map Φ between abstract spaces, we
have a corresponding computation F on their Hilbert-space representations. (In the
preceding discussion we have used representations based on discrete sets of coefficients
in Q∞, but a field representation in a Hilbert function space would work the same.
Suppose U : X → L2(Ω1) and V : Y → L2(Ω2). Then F = V ◦ Φ ◦ U−1 is the field
computation of Φ.)

In all but the simplest cases, U-machine computations will be composed from
simpler U-machine computations, analogously to the way that ordinary programs are
composed from simpler ones. At the lowest level of digital computation, operations
are built into the hardware or implemented by table lookup. Also, general-purposes
analog computers are equipped with primitive operations such as addition, scaling,
differentiation, and integration [14, 15, 16]. Similarly, U-machines will have to provide
some means for implementing the most basic computations, which are not composed
from more elementary ones. Therefore our next topic will be the implementation of
primitive U-machine computations, and then we will consider ways for composing
them into more complex computations.

8

4.2 Universal Approximation

In order to implement primitive U-machine computations in terms or our Hilbert-
space representations we can make use of several convenient “universal approximation
theorems,” which are generalizations of discrete Fourier series approximation [1, pp.
208–9, 249–50, 264–5, 274–8, 290–4]. These can be implemented by neural network-
style computation, which works well with the discrete Hilbert space representation.

We will consider the case in which we want to compute a known function Φ : X →
Y , for which we can generate enough input-output pairs (xk, yk), k = 1, . . . , P , with
yk = Φ(xk), to get a sufficintly accurate approximation. Our goal then is to approx-
imate F : [0, 1]M → [0, 1]N , since computation takes place on the finite-dimensional
vector-space representations. Our general approach is to approximate v = F(u) by
a linear combination of H vectors (aj) weighted by simple scalar nonlinear functions
rj : [0, 1]M → R, that is,

v ≈
H∑

j=1

ajrj(u).

Corresponding to (xk, yk) define the Hilbert representations uk = U(xk) and vk =
V (yk). For exact interpolation we require

vk =
H∑

j=1

ajrj(u
k), (1)

for k = 1, . . . , P . Let Vki = vk
i , Rkj = rj(u

k), and Aji = aj
i . Then Eq. 1 can be

written

Vki =
H∑

j=1

RkjAji.

That is, V = RA. The best solution of this equation, in a least-squares sense, is
A ≈ R+V, where the pseudo-inverse is defined R+ = (RTR)−1RT. (Of course a
regularization term can be added if desired [1, ch. 5].)

The same approach can be used with field computation. In this case we want
to approximate ψ = F(φ) for φ ∈ L2(Ω1) and ψ ∈ L2(Ω2). Our interpolation will
be based on pairs of input-output fields, (φk, ψk), k = 1, . . . , P . Our approximation
will be a linear weighting of H fields αj ∈ L2(Ω2), specifically, ψ ≈

∑H
j=1 αjrj(φ).

Therefore the interpolation conditions are

ψk =
H∑

j=1

αjrj(φk), k = 1, . . . , P.

Let Rkj = rj(φ
k) and notice that this is an ordinary matrix of real numbers. For

greater clarity, write the fields as functions of an arbitrary element of their domain,

9

and the interpolation conditions are then ψk(s) =
∑H

j=1Rkjαj(s) for s ∈ Ω2. Let

ψ(s) = [. . . , ψk(s), . . .]
T and α(s) = [. . . , αj(s), . . .]

T, and the interpolation condition
is ψ(s) = Rα(s). The best solution is α(s) ≈ R+ψ(s), which gives us an equation
for computing the “weight fields”:

αj ≈
P∑

k=1

(R+)jkψk.

There are many choices for basis functions rj that are sufficient for universal
approximation. For example, for perceptron-style computation we can use rj(u) =
r(wj ·u+ bj), where r is any nonconstant, bounded, monotone-increasing continuous
function [1, p. 208]. The inner product is very simple to implement in many physical
realizations of the U-machine, as will be discussed later. Alternately, we may use
radial-basis functions, rj(u) = r(‖u− cj‖) with centers cj either fixed or dependent
on F. If H = P and ck = uk (k = 1, . . . , P), then R is invertible for a variety of
simple nonlinear functions r [1, p. 264–5]. Further, with an appropriate choice of
stabilizer and regularization parameter, the Green’s function G for the stabilizer can
be used, rk(u) = G(u,uk), and R will be invertible. In these cases there are suitable
nonlinear functions r with simple physical realizations.

In many cases the computation is a linear combination of a nonlinearity applied
to a linear combination, that is, v = A[r(Bu)], where [r(Bu)]j = r([Bu]j). For
example, as is well known, the familiar affine transformation used in neural networks,
wj · u + bj, can be put in linear form by adding a component to u that is “clamped”
to 1.

For an unknown function Φ, that is, for one defined only in terms of a set of
desired input-output pairs (xk, yk), we can use a neural network learning algorithm,
or interpolation and non-linear regression procedures, on the corresponding vectors
(uk,vk), to determine an acceptable approximation to F.

For known functions Φ : X → Y and their topological conjugates F : U [X] →
V [Y] we can generate input-output pairs (uk,vk) from which to compute the param-
eters for a sufficiently accurate approximation of F. This could involve computing
the inverse or pseudo-inverse of a large matrix, or using a neural network learning
algorithm such as back-propagation. Alternately, if Φ is sufficiently simple, then the
optimal approximation parameters may be determined analytically.

Optimal coefficients (such as the A matrix) for commonly used and standard
functions can be precomputed and stored in libraries for rapid loading into a U-
machine. (Possible means for loading the coefficients are discussed below, Sec. 4.6.)

Depending on the application, standard operations might include those found in
digital computers or those found in general-purpose analog computers, such as scalar
addition and multiplication, and differentiation and integration [14, 15, 16]. For
image processing, the primitive operations could include Fourier transforms, wavelet
transforms, and convolution.

10

4.3 Decomposing Processes

The simplest way of dividing computations into simpler computations is by functional
composition. For example, for second-countable metric spaces (X, δX), (Y, δY), and
(Z, δZ) suppose we have the embeddings

U : X → Q∞, V : Y → Q∞, and W : Z → Q∞.

Further suppose we have functions Φ : X → Y and Ψ : Y → Z, which may be
composed to yield Ψ ◦ Φ : X → Z. To compute Ψ ◦ Φ we use its Hilbert-space
conjugate, which is

W ◦ (Ψ ◦ Φ) ◦ U−1 = (W ◦Ψ ◦ V −1) ◦ (V ◦ Φ ◦ U−1) = G ◦ F,

where G and F are the conjugates of Ψ and Φ, respectively. This means that once the
input has been translated to the Hilbert-space representation, computation through
successive stages can take place in Hilbert space, until the final output is produced.

If, as is commonly the case (see Sec. 4.2), computation in the Hilbert space is
a linear combination of nonlinearities applied to a linear combination, then the lin-
ear combination of one computation can often be composed with that of the next.
Specifically, suppose we have v = A[r(Bu)] and w = A′[r′(B′v)], then obviously,
w = A′(r′{C[r(Bu)])}), where C = B′A. The implication is that a U-machine
needs to performs two fundamental operations, matrix-vector multiplication and
component-wise application of a suitable nonlinear function, which is ordinary neural
network-style computation.

Finally we consider direct products of abstract spaces. Often we will need to
compute functions on more than one argument, which we take, as usual, to be func-
tions on the direct product of the spaces from which their arguments are drawn,
Φ : X ′ × X ′′ → Y . However, since (X ′, δX′) and (X ′′, δX′′) are second-countable
metric spaces, we must consider the topology on X = X ′×X ′′. The simplest choices
are the p-product topologies (p = 1, 2, . . . ,∞), defined by the p-product metric:

[δX(x1, x2)]
p = [δX′(x′1, x

′
2)]

p + [δX′′(x′′1, x
′′
2)]

p,

where x1 = (x′1, x
′′
1) and x2 = (x′2, x

′′
2). It is then easy to compute the generalized

Fourier coefficients uk of (x′, x′′) from the coefficients u′k of x′ and u′′k of x′′:

uk =
[(u′k)

p + (u′′k)
p]1/p

2
.

For p = 1 we have uk =
u′

k+u′′
k

2
, and for p = ∞ we can use uk = max(u′k, u

′′
k).

4.4 Transduction

We have seen that once the input to a U-machine computation has been mapped
into its Hilbert-space representation, all computation can proceed on Hilbert repre-
sentations, until outputs are produced. Therefore, the issue of translation between

11

the abstract spaces and the internal representation is limited to input-output trans-
duction. In these cases we are translating between some physical space (an input or
output space), with a relevant metric, and its internal computational representation.
Many physical spaces are described as finite-dimensional vector spaces of physical
quantities (e.g., forces in a robot’s joints). Others (e.g., images) are conveniently de-
scribed as functions in an appropriate Hilbert space. In all these cases transduction
between the physical space and the computational representation is straight-forward,
as will be outlined in this section.

For input transduction suppose we have a physical input space (X, δX) with an
ε-net (b1, . . . , bn). Then the components of the Hilbert-space representation u ∈
[0, 1]n are given by uk = δX(x, bk), k = 1, . . . , n. (We omit the 1/k scaling since
the representational space is finite dimensional.) In effect the input transduction
is accomplished by an array of feature detectors r1, . . . , rn : X → [0, 1] defined by
rk(x) = δX(x, bk); typically these will be physical input devices. The input basis
functions rk are analogous to the receptive fields of sensory neurons, the activities
of which are represented by the corresponding coefficients uk. For field computation,
the representing field φ is generated by using the uk to weight the orthonormal basis
fields of the function space: φ =

∑n
k=1 ukξk (recall Sec. 3).

Physical output spaces are virtually always vector spaces (finite dimensional or
infinite dimensional, i.e., image spaces), and so outputs usually can be generated by
the same kinds of approximation algorithms used for computation. In particular, if
(Y, δY) is an output space and V : Y → [0, 1]n is its embedding, then our goal is to
find a suitable approximation to V −1 : V [Y] → Y . This can be done by any of the
approaches discussed in Sec. 4.2. For example, suppose we want to approximate the
output with a computation of the form

V −1(v) = y ≈
H∑

j=1

ajrj(v)

for suitable basis functions rj. (Note that the aj are physical vectors generated by the
output transducers and that the summation is a physical process.) Let y1, . . . , yP be
the elements of some ε-net for (Y, δY) and let vk = V (yk). Let Yki = yk

i (since we are
assuming the output space is a finite-dimensional vector space), Rkj = rj(v

k), and
Aji = aj

i . Then the interpolation conditions are Y = RA, and the best least-squares
approximation to A is R+Y.

4.5 Feedback and Iterative Computation

Our discussion so far has been limited to feed-forward or non-iterative computation,
in which the output appears on the output transducers with some delay after the
inputs are applied to the input transducers. However in many applications a U-
machine will interact with its environment in realtime in a more significant way. In

12

general terms, this presents few problems, since to the time-varying values x(t) in
the abstract spaces there will correspond time-varying elements u(t) = U [x(t)] in
the Hilbert-space representation. In practical terms these will be approximated by
time-varying finite-dimensional vectors u(t) or time-varying band-limited fields φ(t).
(For simplicity we will limit discussion here to finite-dimensional vectors.) Therefore
a dynamical process over abstract spaces X1, . . . , XN can be represented by a set of
differential equations over their vector representations u1(t), . . . ,uN(t). Integration
of these equations is accomplished by accumulation of the differential values into the
areas representing the variables (enabled by activating the feedback connections in
the variable areas; see Sec. 4.6).

4.6 Configuration Methods

The model U-machine is divided into a variable (data) space and a function (program)
space. Typically the data space will comprise a large number M of scalar variables
uk ∈ [0, 1]. This set of scalar variables may be configured into disjoint subsets, each
holding the coefficients representing one abstract space. More precisely, suppose that
a U-machine computation involves abstract spaces X1, . . . , XN with their correspond-
ing metrics. Further suppose that we have decided to represent Xi with ni coefficients
in [0, 1]ni . Obviously M >

∑N
i=1 ni or the capacity of the U-machine will be exceeded.

Therefore we configure N disjoint subsets (individually contiguous) of sizes n1, . . . , nN

to represent the N spaces. (For field computation, the data space is a field defined
over a domain Ω, in which can be defined subfields over disjoint connected subdomains
Ω1, . . . ,ΩN ⊂ Ω.)

The program space implements the primitive functions on the Hilbert represen-
tations of the variables. As we have seen, an attractive way of computing these
functions is by linear combinations of simple scalar basis functions of the corre-
sponding input vector spaces (e.g., radial-basis functions). To implement a function
F : [0, 1]m → [0, 1]n by means of H basis functions requires on the order of mH
connection coefficients for the basis computation and Hn for the linear combination.
(More may be required if the same basis functions are not used for all components
of the output vector.) In practical computations the number of connections in a U-
machine configuration will be much less than the M2 possible, and so a U-machine
does not have to provide for full interconnection.

To permit flexible interconnection between the variables of a computation without
interference, it is reasonable to design the U-machine so that interconnection takes
place in three-dimensional space. On the other hand, we want the scalar coefficients
to be stored as compactly as possible subject to accessibility for interconnection, so
it makes sense to arrange them two-dimensionally. (For the same reasons, a field
computer would use fields over a two-dimensional manifold.)

The foregoing considerations suggest the general physical structure of a U-machine
(see Fig. 1). The data space will be a two-dimensional arrangement of scalar vari-

13

Figure 1: Conceptual depiction of interior of U-machine showing hemispherical data
space and several interconnection paths in program space. Unused program space is
omitted so that the paths are visible.

14

Lin
ea

r L
ay

er

No
nli

ne
ar

 La
ye

r
Incoming
Bundle

Outgoing
Bundle

Exterior

Interior

Co
nn

ec
tio

n
Matr

ix
Ba

sis
 Fu

nc
tio

n

Figure 2: Layers in the data space. Incoming bundles of fibers (analogous to axons)
from other parts of the data space connect to the Linear Layer, which can either
register or integrate the incoming signals. Many branches lead from the Linear Layer
into the Connection Matrix, which computes a linear combination of the input signals,
weighted by connection strengths (one connection is indicated by the small circle).
The linear combination is input to the Basis Functions, fibers from which form bundles
conveying signals to other parts of the data space. The Connection Matrix also
implements feedback connections to the Linear Layer for integration.

ables (or a field over a two-dimensional manifold), assumed here to be a spherical or
hemispherical shell in order to shorten connections. In one layer will be the hardware
to compute the basis functions; in many cases these will not be fabricated devices in
the usual sense, but a consequence of bulk material properties in this layer. In a par-
allel layer between the basis functions and the variable layer will be the material for
interconnecting them and forming linear combinations of the outputs of other basis
functions (see Fig. 2). These areas of interconnection, which we call synaptic fields,
effectively define the variable areas. In the interior of the sphere is an interconnection
medium or matrix which can be configured to make connections to other variable
areas. Input and output to the U-machine is by means of access to certain variable
areas from outside of the sphere (see Fig. 3).

Configuring a U-machine involves defining the variable areas and setting the inter-

15

Figure 3: Conceptual depiction of exterior of U-machine with components labeled.
(A) Exterior of hemispherical data-space. (B) Two transducer connections (one high
dimensional, one low) to transduction region of data space. (C) Disk of configuration-
control connections to computation region of data space, used to configure intercon-
nection paths in program space (front half of disk removed to expose data space); sig-
nals applied through this disk define connection paths in program space (see Sec. 4.7).
(D) Auxiliary support (power etc.) for data and program spaces.

16

connection weights. This can be accomplished by selecting, from outside the sphere,
the input and output areas for a particular primitive function, and then applying sig-
nals to set the interconnection coefficients correctly (e.g., as given by A = R+V). We
have in mind a process analogous to the programming of a field-programmable gate
array. The exact process will depend, of course, on the nature of the computational
medium.

4.7 Analogies to Neural Morphogenesis

In may be apparent that the U-machine, as we have described it, has a structure
reminiscent of the brain. This is in part a coincidence, but also in part intentional, for
the U-machine and the brain have similar architectural problems to solve. Therefore
we will consider the similarities in more detail, to see what we can learn from the
brain about configuring a U-machine.

In a broad sense, the variable space corresponds to neural grey matter (cortex)
and the function space to (axonal) white matter. The grey matter is composed of
the neuron cell bodies and the dense networks of synaptic connections; the white
matter is composed of the myelinated axons conveying signals from one part of the
brain to another. The division of the two-dimensional space of Hilbert coefficients
into disjoint regions (implicit in the synaptic fields) is analogous to the division of
the cortex into functional areas, the boundaries between which are moveable and
determined by synaptic connections (see also Sec. 3.2). (The same applies in a field
computer, in which the subdomains correspond to cortical maps.) Bundles of axons
connecting different cortical areas correspond to computational pathways in program
space implementing functions between the variable regions of the U-machine.

In order to implement primitive functions, bundles of connections need to be cre-
ated from one variable region to another. Although to some extent variable regions
can be arranged so that information tends to flow between adjacent regions, longer
distance connections will also be required. Since the U-machine is intended as a
machine model that can be applied to computation is bulk materials, we cannot, in
general, assume that the interior of the U-machine is accessible enough to permit the
routing of connections. Therefore we are investigating an approach based on neural
morphogenesis, in which chemical signals and other guidance mechanisms control the
growth and migration of nerve fibers towards their targets. By applying appropriate
signals to the input and output areas of a function and by using mechanisms that pre-
vent new connection bundles from interfering with existing ones, we can configure the
connection paths required for a given computational task. The growth of the connec-
tions is implemented either by actual migration of molecules in the bulk matrix, or by
changes of state in relatively stationary molecules (analogous to a three-dimensional
cellular automaton).

Computation is accomplished by a linear combination of basis functions applied
to an input vector. Mathematically, the linear combination is represented by a matrix

17

Figure 4: Simulation of growth of synaptic field, with ten “axons” (red, from top), ten
“dendrites” (blue, from bottom), and approximately 100 “synapses” (yellow spheres).

multiplication, and the basis functions typically take the form of a fixed nonlinearity
applied to a linear combination of its inputs (recall Sec. 4.2). In both cases we have
to accomplish a matrix-vector multiplication, which is most easily implemented by
a dense network of interconnections between the input and output vectors. The
interconnection matrices may be programmed in two steps.2

In the first phase a synaptic field of interconnections is created by two branching
growth processes, from the input and output components toward the space between
them, which establish connections when the fibers meet. Figure 4 shows the result of a
simulation in which “axonal” and “dendritic” fibers approach from opposite directions
in order to form connections; fibers of each kind repel their own kind so that they
spread out over the opposite area. (A fiber stops growing after it makes contact with
a fiber of the opposite kind.) The existence of such a synaptic field effectively defines
a variable area within the data space.

The pattern of connections established by growth processes such as these will
not, of course, be perfect. Thanks to the statistical character of neural network-style
computation, such imperfections are not a problem. Furthermore, the setting of the
matrix elements (described below) will compensate for many errors. This tolerance to
imprecision and error is important in nanocomputation, which is much more subject
to manufacturing defects than is VLSI.

2Both of these processes are reversible in order to allow reconfiguration of a U-machine.

18

Once the interconnection matrix has been established, the strength of the connec-
tions (that is, the value of the matrix elements) can be set by applying signals to the
variable areas, which are accessible on the outside of the spherical (“cortical”) shell
(Fig. 3). For example, an m× n interconnection matrix A can be programmed by

m∑
i=1

n∑
j=1

Aijviu
T
j ,

where vi is anm-dimensional unit vector along the i-th axis, and uj is an n-dimensional
unit vector along the j-th axis. That is, for each matrix element Aij we activate the i-
th output component and the j-th input component and set their connection strength
to Aij. In some cases the matrix can be configured in parallel.

As mentioned before, we have in mind physical processes analogous to the pro-
gramming of field-programmable gate arrays, but the specifics will depend on the
material used to implement the variable areas and their interconnecting synaptic
fields. Setting the weights completes the second phase of configuring the U-machine
for computation.

5 Conclusions

In summary, the U-machine provides a model of generalized computation, which can
be applied to massively-parallel nanocomputation in a variety of bulk materials. The
machine is able to implement quite general transformations on abstract spaces by
means of Hilbert-space representations. Neural morphogenesis provides a model for
the physical structure of the machine and means by which it may be configured, a
process that involves the definition of signal pathways between two-dimensional data
areas and the setting of interconnection strengths within them.

Future work on the U-machine will explore alternative embeddings and approxima-
tion methods, as well as widely applicable techniques for configuring interconnections.
Currently we are designing a simulator that will be used for empirical investigation
of the more complex and practical aspects of this generalized computation system.

19

6 References

[1] S. Haykin (1999), Neural Networks: A Comprehensive Foundation, 2nd ed.,
Upper Saddle River: Prentice-Hall.

[2] B.J. MacLennan (1987), Technology-independent design of neurocomputers:
the universal field computer, in M. Caudill & C. Butler (ed.), Proc. IEEE 1st
Internat. Conf. on Neural Networks, Vol. 3, New York: IEEE Press, pp. 39–49.

[3] B.J. MacLennan (1990), Field computation: a theoretical framework for mas-
sively parallel analog computation, Parts I–IV, Technical Report CS-90-100,
Dept. of Computer Science, Univ. of Tennessee, Knoxville.

[4] B.J. MacLennan (1993), Field computation in the brain, in K.H. Pribram (ed.),
Rethinking Neural Networks: Quantum Fields and Biological Data, Hillsdale:
Lawrence Erlbaum, pp. 199–232.

[5] B.J. MacLennan (1994), “Words lie in our way”, Minds and Machines 4: 421–
437.

[6] B.J. MacLennan (1994), Continuous computation and the emergence of the
discrete, in K.H. Pribram (ed.), Origins: Brain & Self-Organization, Hillsdale:
Lawrence Erlbaum, pp. 121–151.

[7] B.J. MacLennan (1997), Field computation in motor control, in P.G. Morasso &
V. Sanguineti (ed.), Self-Organization, Computational Maps and Motor Control,
Amsterdam: Elsevier, pp. 37–73.

[8] B.J. MacLennan (1999), Field computation in natural and artificial intelligence,
Information Sciences 119: 73–89.

[9] B.J. MacLennan (2004), Natural computation and non-Turing models of com-
putation, Theoretical Computer Science 317: 115–145.

[10] B.J. MacLennan (2005), The nature of computing — computing in nature, Tech-
nical Report UT-CS-05-565, Dept. of Computer Science, Univ. of Tennessee,
Knoxville. Submitted for publication.

[11] T.O. Moore (1964), Elementary General Topology, Englewood Cliffs: Prentice-
Hall.

[12] V.V. Nemytskii & V.V. Stepanov (1989), Qualitative Theory of Differential
Equations, New York: Dover.

20

[13] M.B. Pour-El (1974), Abstract computability and its relation to the general pur-
pose analog computer (some connections between logic, differential equations
and analog computers), Transactions of the American Mathematical Society
199: 1–29.

[14] L.A. Rubel (1981), A universal differential equation, Bulletin (New Series) of
the American Mathematical Society 4: 345–349.

[15] L.A. Rubel (1993), The extended analog computer, Advances in Applied Math-
ematics 14: 39–50.

[16] C.E. Shannon (1941), Mathematical theory of the differential analyzer, Journal
of Mathematics and Physics of the Massachusetts Institute Technology 20: 337–
354.

[17] G.F. Simmons (1963), Topology and Modern Analysis, New York: McGraw-
Hill.

21

