
Algorithmic Implications
of the Graph Minor Theorem∗

Daniel Bienstock Michael A. Langston
Dept. of Civil Engineering Dept. of Computer Science

Columbia University University of Tennessee
New York, NY 10027 Knoxville, TN 37996

A chapter prepared for the

Handbook of Operations Research and Management Science:

Volume on Networks and Distribution

∗Page proofs and related correspondence should be sent to M. A. Langston.

Algorithmic Implications
of the Graph Minor Theorem

Daniel Bienstock and Michael A. Langston

1 Introduction

In the course of roughly the last ten years, Neil Robertson and Paul Seymour have led

the way in developing a vast body of work in graph theory. One of their most celebrated

results is a proof of an old and intractable conjecture in graph theory, previously known as

Wagner’s Conjecture, and now known as the Graph Minor Theorem. The purpose of this

chapter is to describe some of the algorithmic ramifications of this powerful theorem and its

consequences.

Significantly, many of the tools used in the proof of the Graph Minor Theorem can be

applied to a very broad class of algorithmic problems. For example, Robertson and Seymour

have obtained a relatively simple polynomial-time algorithm for the disjoint paths problem

(described in detail later), a task that had eluded researchers for many years. Other ap-

plications include combinatorial problems from several domains, including network routing,

utilization and design. Indeed, it is a critical measure of the value of the Graph Minor The-

orem that so many applications are already known for it. Only the tip of the iceberg seems

to have surfaced thus far. Many more important applications are being reported even as we

write this.

The entire graph minors project is immense, containing almost 20 papers whose total

length may exceed 600 pages. Thus we focus here primarily on some of the main algorithmic

ideas, although a brief sketch of related issues is necessary. We assume the reader is familiar

with basic concepts in graph theory [BM]. Except where noted otherwise, all graphs we

2

consider are finite, simple and undirected.

2 A Brief Outline of the Graph Minors Project

Three of the key notions employed are minors, obstructions and well-quasi-orders, and

we examine them in that order.

Minors. Given graphs H and G, we say that H is a minor of G (or that G contains H

as a minor) if a graph isomorphic to H can be obtained by removing from G some vertices

and edges and then contracting some edges in the resulting subgraph. Thus every graph is

a minor of itself, and the single vertex graph is a minor of every nonempty graph. For a

slightly less trivial example, see Figure 1, which illustrates that the wheel with four spokes

(W4) is a minor of the binary three-cube (Q3).

.

..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
.

..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
.

.

..

..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
.

..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
.

.

..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
.

..

.

..

..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
.

..

.

..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..

...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...

.

...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
.

.

...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...

.

...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
.

.

...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
.

.

...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
.

G = Q3 H = W4

– – – contract

⊇ −→ −→ −→

.

..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
....

...
...
..
...
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
.

•

• •

•

•

•

•

•

•

• •

•

•

••

•

•

•

• •

•

•

•

•

•

•

•

•
• •

• •

•

•

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

..
..
..
...
..

.....
....
....
...
...
..
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
.
..
..
.
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
...
....
...
......

..
...
..
...
.
..
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

..
.
..
.
..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
....
.......
..............................

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
....
.......
..............................

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

..
.
..
.
..
..
.
..
..
..
...
...
...
.........
..

....
...
...
..
..
..
..
.

.............

.............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1

A concept related to minor containment is topological containment. We say that a graph

G is a subdivision of a graph H if G may be obtained by subdividing edges of H (an edge

{u, v} is subdivided by replacing {u, v} with a path with ends u and v and whose internal

vertices are new). We say that G topologically contains H if G contains a subgraph that is a

subdivision of H. Thus topological containment is a special case of minor containment (we

3

can only contract edges at least one of whose endpoints have degree two). Observe that W4

is not topologically contained in Q3.

Topological containment has been heavily studied by graph theorists. Perhaps the most

famous theorem in this regard is Kuratowski’s [Ku]: a graph is planar if and only if it does

not topologically contain K5 or K3,3. We note here that these two graphs are minimally

nonplanar, that is, every graph topologically (and properly) contained in either of them is

planar.

For the sake of exposition, let us view this theorem in terms of minors. Clearly, every

minor of a planar graph is also planar. That is, the class of planar graphs is closed in the

minor order. Consequently, no planar graph contains a K5 or K3,3 minor. Moreover, every

proper minor of either of these two graphs is planar, and neither one contains the other as

a minor. But can there be other minimal excluded minors? The answer is negative, for if

G were such a purported graph, then G would be nonplanar, and thus it would contain,

topologically (and therefore as a minor), either K5 or K3,3. In summary, a graph is planar

if and only if it does not contain a K5 or K3,3 minor.

We note in passing two other points of interest concerning planarity. One is that planarity

can be tested in polynomial time (in fact in linear time [HT]). The other is that a problem

of natural interest is to try to extend Kuratowski’s theorem to higher surfaces. (A surface is

obtained from the sphere by “gluing” onto it a finite number of “handles” and/or “crosscaps”

[Ma].) A graph can be embedded on a given surface if it can be drawn on that surface without

crossings. Given a surface S, can we characterize those graphs embeddable in S by a finite

list of excluded graphs in the topological order? In the 1930s, Erdös conjectured that the

answer is yes. No results were obtained on this conjecture until much later, first with a

proof for the case when S is the projective plane [Ar], and then for the case when S is

non-orientable [GHW].

4

Obstructions. Kuratowski’s theorem may be regarded as a characterization of planarity by

means of excluded graphs, henceforth termed obstructions. Characterizations of this nature

abound in combinatorial mathematics and optimization. Some familiar examples include the

max-flow min-cut theorem, Seymour’s description of the clutters with the max-flow min-cut

property and Farkas’ lemma. In all these, the presence of a desired feature is characterized

by the absence of some obstruction. Besides being aesthetically pleasing, theorems of this

type are desirable because such characterizations provide evidence of “tractability” of the

problem at hand, giving hope for a polynomial-time test for the desired feature.

The graph minors project contains several such theorems, many of which turn out to

be at the heart of both proofs and applications. As expected, there are algorithmic aspects

to these theorems. As a very introductory example, one can test in polynomial time if any

graph can be embedded on the torus.

Well-quasi-orders. A class Q, equipped with a transitive and reflexive relation ≤, is called

a quasi-order . For example, the class of all graphs is a quasi-order, where ≤ is the minor

containment relation. There has been some confusion as to the difference between quasi-

orders and partial-orders; it suffices to look at graph minors to understand this difference.

It is convenient to regard isomorphic copies of a given graph as different entities and so, for

distinct graphs G and H, we can simultaneously have G ≤ H and H ≤ G. Thus ≤ is not a

partial-order, because the minor relation is not anti-symmetric.

A quasi-order with class Q and relation ≤ is a well-quasi-order if (1) for every infinite

sequence a1, a2, . . . of elements of Q, there exist integers 1 ≤ i < j such that ai ≤ aj, and

(2) there exists no infinite descending chain b1 > b2 > . . . of distinct elements of Q.

Example 2.0.1 Let Q be the set of all closed intervals of the real line, with nonnegative

integer endpoints; i.e., Q = {[a, b] : 0 ≤ a ≤ b and a, b integer}. For I = [a, b], J = [c, d], we

5

write I ≤ J if either J contains I and a = c or if I and J are disjoint with b < c. Clearly

(Q,≤) is a quasi-order. To see that it is a well-quasi-order, note first that (2) is satisfied. To

prove that (1) holds, consider any sequence S = I1, I2, . . . with the property that there do

not exist integers 1 ≤ i < j such that Ii ≤ Ij. Let I1 = [a, b]. Clearly S contains no members

of the form [c, d] with b < c. It is also clear that S contains finitely many members of the

form [c, d] with d ≤ b. Finally, for each integer x with a ≤ x ≤ b, S contains finitely many

members of the form [x, y]. For if Ij(x) = [x, y∗] is the first such member, then all remaining

members of the form [x, y] satisfy y < y∗. We conclude that S is finite, as desired.

We use this example to illustrate that, given a well-quasi-order, we in general do not

have an absolute bound on the size of an antichain (set of pairwise incomparable elements),

we merely know it must be finite. In particular, “finite” does not necessarily imply “small.”

A result of relevance is Kruskal’s proof [Kr] of a conjecture of Vázsonyi, namely, that trees

form a well-quasi-order under topological containment.

2.1 The Graph Minor Theorem and Some of Its Consequences

We can now state the Graph Minor Theorem and some of the most important conse-

quences arising from its proof. Very little progress had been made on this result, formerly a

conjecture attributed to K. Wagner, until the work of Robertson and Seymour.

The Graph Minor Theorem The class of all graphs is a well-quasi-order under the minor

relation.

Corollary 2.1.1 Let C be a class of graphs closed under minors. Then C can be charac-

terized by a finite list of minor obstructions.

To see that this follows from the theorem, let S be the set of minor-minimal graphs not

6

in C. Then S is an antichain, and thus it is finite. Hence G ∈ C if and only if G does not

contain as a minor any graph isomorphic to a member of S.

Let v denote a vertex in a graph G. Let the edges incident on v be {v, ui}, 1 ≤ i ≤ p,

and {v, wj}, 1 ≤ j ≤ q, where 2 ≤ p, q. Let H be the graph obtained by replacing v with

two new vertices, u and w, replacing the edges incident on v with {u, ui}, 1 ≤ i ≤ p, and

{w, wj}, 1 ≤ j ≤ q, and adding a new edge {u, w}. We say H is obtained from G by splitting

v.

Corollary 2.1.2 [RSVIII] Let C be a class of graphs closed under minors. Then C can be

characterized by a finite number of topological obstructions. Moreover, each such obstruction

can be obtained from a minor obstruction with vertex splittings.

Corollary 2.1.3 [RSVIII] Let S be any surface. Then the class of graphs embeddable in S

can be characterized by a finite number of topological obstructions.

This follows from the last corollary since embeddability in S is closed under minors.

We remark here that the proof of Erdös’ Conjecture (Corollary 2.1.3) does not require a

solution to Wagner’s Conjecture. Rather, the tools used to settle the latter are a superset of

those used for the former. Also, the number of topological obstructions can be quite large

(indeed, for the projective plane there are 103, and for higher surfaces there are many more).

Theorem 2.1.4 [RSXIII] Let H be a fixed graph. Then there is a polynomial-time algorithm

for testing, for any input graph G, whether G contains H as a minor.

The running time of the algorithm is O(n3), where n = |V (G)|. The constant hidden in

the big Oh is a very rapidly growing function of the size of H.

Corollary 2.1.5 Let C be a class of graphs closed under minors. Then membership in C

7

can be tested in polynomial time.

With regards to Corollary 2.1.5, the testing algorithm would make use of Theorem 2.1.4,

by testing minor containment of all obstructions. Thus the proof of this corollary is intrinsi-

cally nonconstructive. We know the desired polynomial-time algorithm exists, but we cannot

implement it unless we have the list of obstructions, a task towards which the graph minors

project provides no clues. Moreover, even if the obstructions were available, the resulting

algorithm would be very impractical. Means of avoiding these problems in many general

cases have been developed by Fellows and Langston, and are discussed in Section 6.

Another way to interpret Corollary 2.1.5 is to regard minor closure as a certificate of

tractability. Once a given graph property is found to be closed, then an effort can be

launched to find an efficient, direct algorithm for testing that particular property.

Corollary 2.1.6 Let S be a given surface. Then graph embeddability in S can be tested

in polynomial time.

Of special interest are the consequences towards the disjoint paths problem: given vertices

si and ti (1 ≤ i ≤ k), not necessarily distinct, in a graph G, find pairwise vertex-disjoint

paths between si and ti (1 ≤ i ≤ k). This problem is NP-hard for general k [Ka]. For k = 1,

the problem is trivial. For k = 2, a complex solution has been known for some time [Se, Sh].

But the techniques used in [RSXIII] to obtain Theorem 2.1.4 yield the following.

Theorem 2.1.7 The disjoint paths problem can be solved in polynomial time for every

fixed k.

The algorithms of Theorems 2.1.4 and 2.1.7 are constructive. The disjoint paths problem

is addressed in more detail in Section 5.

8

This concludes our outline of some of the major results that stem from the graph minors

project. In the sequel, we provide more information on topics as promised above, and discuss

the important graph parameters treewidth and pathwidth.

3 Treewidth

Treewidth plays a critical role in the graph minors project. It may be said that it measures

the complexity of a graph, in the sense that a graph of small treewidth can be recursively

decomposed, by removing a few vertices, into two graphs of roughly equal size. A consequence

of this is that many NP-hard problems can be efficiently solved in graphs of small treewidth

with dynamic programming.

A tree decomposition of the graph G consists of a pair (T, X), where T is a tree (which

is not part of G, but merely another graph) and X = {Xt : t ∈ V (T)} is a family of subsets

of V (G), one for each vertex of T , satisfying the following properties:

(1) For every edge {u, v} of G, there exists t ∈ V (T) with u, v ∈ Xt, and

(2) For every pair y, z of vertices of T , if w is any vertex in the path between

y and z in T , then Xy ∩Xz ⊆ Xw.

The width of (T, X) is max{|Xt|−1 : t ∈ V (T)}. The treewidth of G is the minimum integer

w such that there is a tree decomposition of G of width w. Graphs of treewidth at most k

have also been called partial k-trees.

These definitions may be restated in a way that is more familiar to some readers. Con-

dition (2) states that, for every vertex v of G, the set of vertices t ∈ V (T) such that v ∈ Xt

forms a subtree of T , say Tv. Condition (1) then states that for every edge {u, v} of G,

the subtrees Tu and Tv must intersect. Now consider the graph H with vertex set V (G),

and such that {a, b} is an edge of H whenever Ta and Tb intersect. Then H is chordal,

9

and every chordal graph can be obtained as such an intersection graph of subtrees of a tree

[Ga]. Furthermore, the clique number of H is precisely the width of (T, X) plus one. Con-

sequently, we arrive at an equivalent definition of treewidth: it is the minimum, over all

chordal supergraphs H of G, of the clique number of H minus one.

It is NP-hard to compute treewidth [AP]. But the family of graphs with treewidth at

most k is minor-closed for every fixed k, and hence polynomial-time recognizable.

Example 3.0.1 Series-parallel graphs. These may be iteratively defined as follows: the

graph consisting of a single edge is series-parallel, and given a series-parallel graph, we obtain

a new one by adding an edge in parallel to an existing edge, or by subdividing an existing

edge. Series-parallel graphs have treewidth at most 2, which may be shown inductively. For

example, let G be series-parallel, and let (T, X) be a tree decomposition of G of width at

most 2. Let {u, v} be an edge of G. Suppose we subdivide {u, v} by introducing a new

vertex w, to obtain a new graph G′. Let r be a vertex of T such that u, v ∈ Xr. Now define

a new tree T ′ to consist of T , together with the edge {r, q}, where q is a new vertex. Set

Yt = Xt, for t ∈ V (T), and Yq = {u, v, w}. It is seen that (T ′, Y) is a tree decomposition of

G′, of width at most 2.

Example 3.0.2 Grids. Let m > 1 be an integer. The m-grid is the graph with vertex set

{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ m} and edge set {{(i, j), (i + 1, j)} : 1 ≤ i ≤ m − 1, 1 ≤ j ≤

m} ∪ {{(i, j), (i, j + 1)} : 1 ≤ i ≤ m, 1 ≤ j ≤ m − 1}. It can be shown that the m-grid

has treewidth m. To see that the treewidth is at most m, consider the tree decomposition

(T, X), where T is the path with vertices 1, 2, . . . , m2 −m, and, for 1 ≤ i ≤ m− 1, 1 ≤ j ≤

m, Xm(i−1)+j = {(i, k) : j ≤ k ≤ m} ∪ {{(i + 1, k) : 1 ≤ k ≤ j}. It is easily verified that this

is indeed a tree decomposition of width m. The lower bound (treewidth at least m) is more

difficult to establish [RSX].

10

Grids play an important role in the graph minors project, for it can be shown that for

every n ≥ 1, any planar graph with n vertices is a minor of the m-grid, with m = O(n2).

Moreover, grids are useful in proving the following results.

Theorem 3.0.3 [RSV] Let H be a planar graph. Then there exists a number w(H), such

that any graph with no minor isomorphic to H has treewidth at most w(H).

Corollary 3.0.4 [RSIV] Given an infinite list G1, G2, . . . of graphs, with G1 planar, there

exist i < j such that Gi is a minor of Gj.

Of course this corollary follows from the Graph Minor Theorem even without G1 being

planar. But using Theorem 3.0.3 its proof can proceed as follows: assuming that G1 is

not a minor of Gi, i > 1, it follows that Gi has bounded treewidth. Thus, Gi has “simple”

structure (think of it as a “thickened” tree) and now a generalization of the proof technique in

Kruskal’s theorem finishes the job. The main point here is, once more, that small treewidth

implies simple structure. We underscore the planarity requirement in Theorem 3.0.3. Is

there some “structure theorem” if this requirement is dropped? This question is studied in

[RSXV]–[RSXVII], and the result can be informally described as follows.

Let us first restate the above concerning the exclusion of planar graphs. Let H be a

fixed planar graph. If G does not contain a minor isomorphic to H, then G can be obtained

by pasting together small graphs in a tree-like structure. Now suppose H is not planar.

We obtain a corresponding structure theorem for graphs with no H-minor by replacing the

phrase “small graphs” with the phrase “graphs with simple structure.” This simple structure

is in fact rather complex to state precisely. It is convenient to view it as parameterized by

H itself; since H is fixed, this is loosely termed “simple.” We obtain a graph of simple

structure by starting with a graph of “small” genus, up to a “small” number of troublesome

11

vertices (that is, a graph that can be embedded on a surface of low genus after removing

only a few vertices). We attach to this graph a “small” number of necklace-like graphs. In

these necklaces, the beads are “small” graphs, and the beads are attached to one another in

a ring-like fashion.

We have obviously used the word “small” rather liberally. In the case of genus, small

means smaller that the genus of H. In the other cases (the number of troublesome vertices,

the number of necklaces and the sizes of the beads in the necklaces), it is again helpful

to think of these numbers as parameters of H. Thus, for a fixed H, we would be able to

write done explicit upper bounds for all parameters instead of the word “small.” The proof

techniques involved in obtaining these results are quite complex and interesting in their own

right.

It is worth pointing out one further structure theorem. In [AST] it is shown that for any

fixed graph H, if G has no minor isomorphic to H, then G satisfies a “separator theorem”

that generalizes Lipton and Tarjan’s [LT] planar separator theorem.

3.1 Bounded Treewidth and Efficient Algorithms

Suppose we are given a tree decomposition (T, X) of a graph G, whose width is bounded

by some small constant w. It is often the case that we can exploit the structure of (T, X)

to derive polynomial-time, dynamic-programming algorithms for solving problems that are

NP-hard on general graphs.

The generic approach would be as follows: first direct all edges of T away from a given

root r. Next, for any vertex t of T , let Tt denote the subtree of T rooted at t. The key

point is to notice that
⋃
{Xv : v ∈ V (Tt)} can “interact” with the rest of G only through

Xt, which is “small.” Thus one seeks to generate a dynamic-programming strategy that

stores all relevant information about the subgraph of G induced by
⋃
{XV : v ∈ V (Tt)} = Yt,

12

by listing all possible “states” of Xt. We may assume that, without loss of generality, T

is binary (degree at most 3), and thus it is easy for the recursion to move up the tree T .

This approach, which frequently yields polynomial-time algorithms, has been taken by many

authors, and it is essentially impossible to list all papers on this topic.

Let us discuss some folklore examples. The algorithms we sketch are not the best possible.

We simply want to illustrate how polynomiality is achieved. Using notation as before, for

any vertex t of T , we denote by Gt the subgraph of G induced by Yt.

Example 3.1.1 The vertex cover problem. Given a graph G we seek a subset of vertices

C, with minimum cardinality, such that every edge of G has at least one end in C. Now

suppose we are given a width-w tree decomposition (T, X) of G. Let t be a vertex of T and,

for each subset Z of Xt, let f(Z, t) denote the smallest cardinality of a vertex cover of Gt,

with the added restriction that we use Z in the cover. Thus a table with 2w+1 entries can

be used to record this information for each t. It is not difficult to see how to update the

table as we move up the tree T . Furthermore, min{f(Z, r) : Z ⊆ Xr} solves the vertex cover

problem. The run time of the algorithm is exponential in w, but linear in |E(G)|.

Example 3.1.2 The traveling salesman problem in graphs. Let G be a graph with weights on

the edges, where we seek a Hamiltonian cycle of minimum length. One possible recursion is

based on the following states. Let Z be a subset of Xt, and consider (for each 0 ≤ m ≤ |Xt|)

2m distinct vertices oi, di, 1 ≤ i ≤ m, contained in Xt−Z. Let P be the set of pairs {oi, di}.

Then we denote by f(t, Z, P) the minimum total length of a family of vertex-disjoint paths

Ri, 1 ≤ i ≤ m, in Yt, such that Ri has ends oi and di, and
⋃
{V (Ri) : 1 ≤ i ≤ m} = Yt − Z.

Example 3.1.3 The vertex coloring problem. Given a graph G, we seek to partition the

vertices of G into a minimum number of independent sets (the chromatic number of G).

13

Here the recursion works as follows: for each partition π of Xt, we denote by s(t, π) the

minimum cardinality of a partition of Y (t) into independent sets, such that the intersection

of Xt with the color classes yields the partition π.

Many graph problems are not amenable to this generic dynamic programming approach.

For example, any problem that is NP-hard on trees cannot be solved this way (trees have

treewidth 1). A partial characterization of the solvable problems, together with a prototype

algorithm, can be found in [ALS].

The fact that the algorithms described above exist is not, of course, a consequence of

Robertson and Seymour’s work; nevertheless, it is clearly related to the concepts of treewidth

and tree decomposition, and so it seems appropriate to touch on this topic here.

3.2 Branchwidth, Tangles and Graph Searching

An interesting graph parameter that is related to treewidth is branchwidth. Branchwidth

may be computationally more tractable than treewidth (at least in terms of approximation).

Further, concepts related to branchwidth play a crucial role in the development of the graph

minors project, and so it is useful to review them here.

Given a graph G, a branch decomposition of G consists of a pair (T, f), where T is a

binary tree, and f is an injective map from E(G) to the leaves of T . Notice that if e is an

edge of T , then there is a partition of E(G) into two classes (A, B) that corresponds to e —

this is defined by the partition of the leaves of T into the two subtrees of T − e. The order

of e is defined as the number of vertices of G that have incident edges both in A and in B.

The width of (T, f) is the maximum order of any edge in T . See Figure 2.

14

{1,4}

edges labeled using
order
Tree T, vertices
labeled according to f,

Graph G

{3,5}

{3,4}{2,3}{1,3}{1,2}

22
222

2

3

31

1 2

34

5

Figure 2

The branchwidth of G is the minimum width of any branch decomposition of G. Com-

puting the branchwidth of a graph is NP-hard. It is not very difficult to show the following.

Theorem 3.2.1 [RSX] The branchwidth and treewidth of any graph differ by at most a

factor of 3/2.

Does this theorem help in approximating treewidth? Historically, it first appeared that

the answer to this question should be positive, since in [RSX] a min-max characterization of

branchwidth was given, while no such characterization of treewidth was yet known. However,

the complete picture is more complex.

Theorem 3.2.2 [ST2] The branchwidth of a planar graph can be computed in polynomial

time.

In any case, the tools developed in [RSX] were extremely useful towards completing the

proof of the Graph Minor Theorem. Moreover, the ideas behind the min-max characteriza-

tion of branchwidth were later adapted to yield a similar characterization of treewidth (and

also of pathwidth, a concept we cover later). These min-max formulae were then used to

15

improve some of the original theorems in the graph minors project.

It is enlightening to describe the relationship of treewidth to a class of graph searching

games. Regard a graph as a system of roads. A fugitive resides in the vertices and can travel

along edges. We wish to capture the fugitive (whose position is always known) using a fixed

number of guards, who always occupy vertices and travel using helicopters. In one time unit,

some of the guards can move to a different subset of vertices. During the move the fugitive

can scurry, infinitely fast, to a new vertex, traveling along any path that is not blocked by

an unmoving guard. Our objective is to corner the fugitive in such a way that no escape is

possible.

The minimum number of guards needed for this purpose is called the search number of

the graph. Thus, for example, a tree has search number 2 (place a guard at any vertex and

observe which subtree is occupied by the fugitive, then corner the fugitive into smaller and

smaller subtrees). The graph in Figure 3 has search number 3. To see this, notice that with

at most 2 guards the fugitive can always occupy a vertex in V (G)− {s, t}. But using three

guards, with two guards we can first isolate the fugitive in one of the paths with ends s, t,

and with the third guard we then capture the fugitive.

ts

Figure 3

Theorem 3.2.3 [ST1] For any graph G, the treewidth of G equals the search number of

G minus 1.

16

Intuitively, a tree decomposition (T, X) of G yields a search strategy of G involving a

number of guards equal to the width of (T, X) plus one: we corner the fugitive into smaller

and smaller subgraphs of the form Gt (recall the notation of Section 2.1) by placing guards

in the subset Xt. The definition of tree decomposition shows that this strategy indeed works

and requires the desired number of guards. This argument yields one of the two bounds

needed to prove Theorem 3.2.3.

The proof of the other bound also yields a min-max formula for treewidth, as follows.

Let k be an integer. A haven of order k is a function g that assigns to each subset Y of

k or fewer vertices, the vertex set of one of the components of G − Y , denoted g(Y). The

function g, in addition, satisfies that whenever X and Y are subsets of vertices with |Y | ≤ k

and X ⊆ Y , then g(Y) ⊆ g(X). The tangle number of G is the maximum order of a tangle.

As examples, the tangle number of a tree is 1, and the tangle number of the complete graph

Kn is n− 1.

Theorem 3.2.4 For any graph G, the tangle number of G equals the treewidth of G.

Intuitively, think of a tangle of order k as the escape plan of the fugitive in case k guards

are being used: if the guards occupy Y , the fugitive hides in g(Y). The proof of Theorem

3.2.4 and the formalization of the preceding argument are quite complex, and are not given

here. These tools are related to some of the concepts in [RSX].

Given that it is NP-hard to compute treewidth, Theorem 3.2.4 is at first glance sur-

prising. But observe that (for arbitrary k) the complete description of a tangle requires

exponential time. Nevertheless, this theorem and its connection to graph searching may

turn out to be useful (from a computational point of view) towards estimating treewidth.

Graph searching games similar to the one given above have previously been considered

by researchers in the computer science community. They are of interest in that they provide

17

a worst-case scenario for the process of immunizing a network against a computer virus. We

return to this topic later.

3.3 Treewidth and Signal Routing Problems

A problem that frequently arises in communications networks is the following: suppose

we are given nodes 1, 2, . . . , n, and an n × n traffic matrix M (where mij is the traffic rate

between i and j). We wish to design a binary tree T , with leaves precisely 1, 2, . . . , n, to

carry the traffic. Notice that given such a tree T , each edge e of T will carry a certain total

amount of traffic or congestion (namely, the traffic between nodes separated in T by e). The

tree T is to be chosen so that the maximum such congestion is minimized. The resulting

optimal congestion level is called the carvingwidth of M [ST2]. We remark that the use of

trees as communications networks is widespread and natural in many applications because

of their simplicity and ease of fabrication. We are essentially designing a tree (a very simple

structure) to realize a more complex pattern (the traffic requirements).

Not surprisingly, it is NP-hard to compute carvingwidth. However, if M is planar (that

is, if the graph G with vertices {1, . . . , n} and an edge {i, j} whenever mij > 0 is planar)

then carvingwidth can be solved in polynomial time. In particular, there is a nice min-max

characterization of carvingwidth in this special case [ST2]. Further, the tools and proof

techniques are essentially the same as those used to prove Theorem 3.2.2.

The above results suggest that there is a deep connection between treewidth and carving-

width. Let us consider the case where M is a {0, 1}-matrix; i.e., M is the adjacency matrix

of G. Then computing carvingwidth corresponds to finding good graph embeddings [HMR].

Let congestion(G) denote the carvingwidth of M .

Theorem 3.3.1 [Bi] If G has treewidth k and maximum degree d, then Ω(max{k, d}) ≤

18

congestion(G) ≤ O(kd).

Thus, for graphs of bounded degree, treewidth and congestion are of the same order of

magnitude.

There is another parameter that arises in routing problems and is related to treewidth.

Consider a binary tree T with leaves labeled {1, 2, . . . , n} as above. If mij > 0, then it is

desirable that the path in T between i and j be short. The dilation of T is the maximum

length of any such path, and dilation(G) is the minimum dilation over all binary trees T .

Theorem 3.3.2 [Bi] If G has treewidth k and maximum degree d, then Ω(log k + log d) ≤

dilation(G) ≤ O(log k + log∗ n log d).

Thus, approximating treewidth is tantamount to approximating dilation within a very

small additive error (log∗ n is an extremely slowly growing function of n).

3.4 On Computing Treewidth

Given that the concepts associated with treewidth are extremely useful in a wide range of

applications, and that computing treewidth (and branchwidth, carvingwidth, etc.) is NP-

hard, what can one say about computability of treewidth? There are at least three ways

of approaching this problem: (1) approximation algorithms, (2) testing for small treewidth,

and (3) experimental results.

A polynomial-time approximation algorithm that does not depend on fixing the treewidth

has very recently been devised by Robertson, Seymour and Thomas.

Theorem 3.4.1 [Th] There is a polynomial-time algorithm that, given a graph G and an

integer k, either proves that G has treewidth at least k or provides a tree decomposition of

G of width at most k2 + 2k − 1.

19

The proof of this result relies on a minimax characterization from [ST1] and the decom-

position method of [RSXIII]. We stress that in this theorem the parameter k is not fixed, but

is instead part of the input. The algorithm is fairly reasonable (its run time does not involve

excessive constants or very high degrees) and its main application lies in testing whether the

treewidth of a given graph is small. This is important since many of the above applications

require bounded treewidth.

Are there sharper approximation algorithms? Ideally, one seeks a polynomial-time algo-

rithm that approximates treewidth up to a constant factor. Until branchwidth was shown to

be NP-hard, a natural approach was to seek an exact algorithm for this parameter instead.

In any case, approximating treewidth remains a crucial open problem. Moreover, it seems

likely that the tools required for this task would also be of use towards other NP-hard prob-

lems involving cuts (such as graph bisection) for which no constant-factor approximation

algorithms are known.

Next we turn to the problem of testing for small treewidth. Recall that the property

(for any given k) of having treewidth at most k is closed under minors. Thus, according to

Corollary 2.1.5, there is a polynomial-time algorithm to compute (exactly) the treewidth of

a graph known to have small treewidth. But this approach is nonconstructive and perhaps

not useful. Another approach would be to use a dynamic-programming scheme as described

in Section 3.1. However, such an algorithm may be quite unreasonable. A third approach is

the recent result of Reed.

Theorem 3.4.2 [Re] For each fixed k, we can test whether G has treewidth at most k in

O(n log n) time.

In terms of experimental results concerning the computation of treewidth, no major

results are available. An intriguing possibility is the use of integer programming to compute

20

tangles. It is easy to see that the existence of a tangle (of a given order) can be described by

a system of equations in 0-1 variables (but an exponential number of those, unfortunately).

A possible research problem of interest would be to describe the polyhedral structure of the

convex hull of tangles.

4 Pathwidth and Cutwidth

In the development of the graph minors project, treewidth was preceded by another graph

parameter, pathwidth. The pathwidth of a graph can be much larger than its treewidth.

Several important applications of pathwidth arose well before the graph minors project.

The definition of pathwidth is similar to that of treewidth, except that we restrict our-

selves to tree decompositions (T, X) where T is a path (such tree decompositions are called

path decompositions). Thus if (T, X) is a path decomposition of G, then every vertex v of G

is mapped into a subpath Pv of T (i.e., each vertex essentially is mapped into an interval),

so that whenever {u, v} is an edge of G, then Pu and Pv intersect. The width of the path

decomposition is the maximum number of subpaths Pv that are incident with any vertex of

T minus one. There is a connection similar to that between treewidth and chordal graphs:

pathwidth equals the smallest clique number over all interval supergraph of G minus one

[Go]. For example, paths have pathwidth 1, and a complete binary tree on m > 1 levels has

path width dm/2e.

In terms of graph minors, the most important theorem involving pathwidth is an analogue

to Theorem 3.0.3.

Theorem 4.0.1 [RSI] For every forest F there is a number p(F), such that if a graph G

does not have a minor isomorphic to F , then G has pathwidth less than p(F).

The original proof of Theorem 4.0.1 employed a function p that was very rapidly growing

21

in |V (F)|. This result has been improved [BRST] to show that p(F) = |V (F)| − 1, which is

best possible.

Recall that treewidth is related to graph searching and embedding problems. The same is

true for pathwidth, and again these connections chronologically preceded those for treewidth.

First we consider graph searching. There are two versions of this game that have been

known in the literature for some time. Here the main difference is that the guards do not

know where the fugitive is. In one version, called edge searching , the portion of the graph

“secured” by the guards can be extended by sliding a guard along an edge leading out of

this portion. In the other, called node searching , an edge is cleared by placing a guard at

each end, simultaneously. For either kind of game one can define the search number of a

graph, as previously, to be the minimum number of guards needed to catch the fugitive. It

is shown in [KP] that the edge-search number and the node-search number never differ by

more than 1, and that the node-search number always equals pathwidth plus 1. A different

version of the game, called mixed searching , is considered in [BS]. In mixed searching, moves

from both edge and node searching are allowed. This enables one to obtain short proofs for

the monotonicity of both edge and node searching (monotonicity here means that no search

strategy of a graph need ever repeat the same step).

With regards to graph embedding problems, the connection here is via the NP-hard

cutwidth problem, defined as follows. Given a graph G on n vertices, suppose we label

the vertices with the integers 1, 2, . . . , n. The width of this labeling is the maximum, over

1 ≤ h ≤ n − 1, of the number of edges {i, j} with i ≤ h and h < j. The objective is to

find a labeling with minimum width (defined as the cutwidth of G). This problem originally

arose in the design of linear arrays, an early form of printed circuit. In [MS] it is shown that

if G has pathwidth p and maximum degree d, then the cutwidth of G is Ω(max{p, d}) and

O(pd), a result similar to Theorem 3.3.1. Thus, for graphs of bounded pathwidth, there is a

22

polynomial-time algorithm that approximates cutwidth up to a constant factor.

It also turns out that pathwidth is linear-time equivalent to the gate matrix layout problem

[DKL], another problem with application to printed circuits. This problem can be stated

as follows. Suppose we are given a {0, 1} matrix M . Let M(π) result from permuting the

columns of M according to some permutation π, and suppose we replace the 0 entries of

M(π) in each row, between the first and last occurrences of 1 in that row, with 1’s. The

maximum number of 1’s in any column of the resulting matrix is called the width of π. Then

we seek a permutation π of minimum width (this corresponds to laying out devices in a chip

so as to minimize the number of wire tracks required to effect desired connections). Call

this number the layout width of M . To see the connection with pathwidth, let G denote the

clique graph of the transpose of M ; i.e., the graph with vertices the rows of M , and a clique

arising from the 1’s in each column. Then it is easy to verify that the layout width of M is

exactly the pathwidth of G (refer to the interval graph interpretation of pathwidth above).

As with treewidth, it is NP-hard to compute the pathwidth of a graph, and approxi-

mation algorithms are known only for very special cases [Ya]. Again, there is a min-max

formula for pathwidth with corresponding obstructions. These obstructions (an appropriate

name might be “linear tangles”) are described in detail in [BRST], and it suffices here to say

that they are closely related to the tangles of Section 3.2.

Much is known about the nature of obstructions for pathwidth k. For k = 0 there is one;

for k = 1 there are two; for k = 2 there are 110 [KL]; and for k = 3 there are at least 122

million! Moreover, all tree obstructions are known.

The approximate computation of pathwidth for general graphs is an interesting open

problem, and once more we point out the possible use of integer programming techniques in

this context. Notice that the existence of a path decomposition of given width corresponds

directly to the solvability of a system of linear equations in {0, 1} variables (as opposed to

23

the treewidth case, where it is easiest to describe the obstructions in this manner).

5 Disjoint Paths

Recall the definition of the disjoint paths problem. We are given, in a graph G, vertices

si and ti(1 ≤ i ≤ k), not necessarily distinct. We seek pairwise vertex-disjoint paths between

si and ti(1 ≤ i ≤ k). In this section we outline how graph minors theory yields an algorithm

with complexity O(n3) for this problem, for each fixed value of k.

It is worthwhile first to compare this problem to that of H-minor containment: given

G, test whether it has a minor isomorphic to H. For each fixed H, this problem can be

reduced to the disjoint paths problem. The resulting algorithm will, however, have high

complexity (the degree depends on |V (H)|, still polynomial for fixed H, but perhaps not

very appealing).

Similarly, the disjoint paths problem is somewhat reminiscent of the H-minor contain-

ment problem, where H consists of k independent edges. In any case, Robertson and Seymour

reduced both problems to a more general one, called the Folio problem [RSXIII].

We next briefly outline one of the main ideas in the disjoint paths algorithm. Our intent

is not to try to present an accurate description of the algorithm, but rather to illustrate the

deep connection between the disjoint paths problem and issues related to graph minors. The

argument is most persuasive when restricted to planar graphs. Thus we assume a planar

input graph, G.

If G has “not very large” treewidth (a condition that can be tested in polynomial time),

then the problem is fairly simple: one can apply a dynamic programming approach as in

Section 2.1. Suppose on the other hand that G has very large treewidth. Then, by Theorem

3.0.3, G contains an enormous square grid minor H; i.e., a minor isomorphic to the m-

grid where m is very large. For simplicity, assume H is actually a subgraph of G (the exact

24

situation is not very different). Since there are at most 2k vertices si, ti, we may even assume

that H is “far away” from all the si and ti. (For example, none of the internal faces of H,

as embedded in G, topologically contain any of the si and ti. See Figure 4.)

s

s

t

t

t

s

2

3

2

1

3

1

Figure 4

Now let v be a vertex of H located near the middle of H. Then removing v from G

should not alter the situation; that is, G contains the desired family of disjoint paths if and

only if G − v does. To see this, assume we are given the desired family of disjoint paths,

where one of these paths, p1, contains v. Suppose we perturb slightly p1 around v. This

perturbation will then cause a ripple effect: we will have to move other paths in order to

preserve disjointness. But the fact that H is a very large square grid, and far away from

all the si and ti, ensures that a global way of shifting the paths does exist, and we can

indeed remove v from G without changing the problem, as desired. Consequently, we have

now reduced the problem to an equivalent one in a smaller graph. Now we can go back

and repeat the treewidth test, and so on until the problem is solved after at most a linear

number of vertex removal steps. There remains the algorithmic problem of constructing the

25

square grid minors when needed — but here the fact that G has very high treewidth makes

the task easy.

How do we bypass the planarity assumption? The argument that yields H is just as

above. But if G is not planar all vertices near the middle of H may be crucial; i.e., always

needed in the disjoint paths. Moreover, the “far away” requirement for H may not work

out. But in any case, it turns out that one can always find an “irrelevant” vertex. With

such a vertex at hand we continue as above. The proof of all this uses several deep structure

theorems that are far too complex to describe here. See [RS] for an excellent detailed survey

of the disjoint paths algorithm.

5.1 Some New Developments Concerning Disjoint Paths

There are some interesting variants of the disjoint paths problem on planar graphs (in

fact, on graphs embedded on surfaces) that have recently been studied. The algorithms and

theorems involved do not follow from graph minors theory, but we describe them here for

completeness.

Some problems have been solved by Schrijver [Sc]. The problems were initially motivated

by certain issues in circuit routing, as follows. Suppose we are given a chip that contains

some devices (think of these as right-angle polygons). The chip also contains a system of

tracks, forming a grid, for the purpose of routing wires. Our problem is to route wires on this

grid so as to realize connections between given pairs of terminals on these devices. These

wires cannot touch one another or a device (other than at their ends) and, moreover, we

are even given a sketch of how each wire must look; i.e., how the wire must thread its way

among the devices. The algorithmic question is: can we find a wire routing that meets all

these requirements? A polynomial-time algorithm for this problem was given by Cole and

Siegel [CS] and Leiserson and Maley [LM].

26

The problem can be substantially generalized as follows. We are given a planar graph

G, a collection of faces F1, F2, . . . , Fm of G, a collection of vertices si, ti (1 ≤ i ≤ k) of G,

each located in the boundary of some Fj, and a collection of paths qi (1 ≤ i ≤ k) between si

and ti. Do there exist vertex-disjoint paths pi (1 ≤ i ≤ k) between si and ti, such that pi is

homotopic to qi in <2 − F1 ∪ F2 . . . ∪ F1?

Schrijver has presented an O(n2 log n) algorithm for this problem. We stress here that,

unlike the version of the disjoint paths problem discussed before, the parameter k is not

assumed to be fixed. At first glance this seems surprising, since the (standard) disjoint

paths problem is NP-hard for planar graphs. But notice that in this new version we are

told how each path must “look like.” Reed has improved the algorithm so as to achieve linear

run time. The algorithm can also be partially extended to handle disjoint trees (rather than

paths) that join specified vertex sets, and also to higher surfaces.

Another area of interest concerns the disjoint paths problem on directed graphs. Ding,

Schrijver and Seymour [DSS] have considered the following case: we are given a planar

digraph D, vertices si, ti(1 ≤ i ≤ k) all located on the boundary of one face F , and subsets

of edges Ai(1 ≤ i ≤ k). We seek vertex-disjoint si − ti paths pi, all of whose edges are

contained in Ai(1 ≤ i ≤ k). They presented a necessary and sufficient condition for the

existence of such paths (which extends one given in [RSVI]), together with a polynomial-time

algorithm for the problem.

6 Challenges to Practicality

We close this chapter with a discussion of several unusual aspects of algorithms provided

by the Graph Minor Theorem. Recall that if F is a minor-closed family of graphs, then we

know from the developments already sketched that F can be recognized in polynomial time.

Letting n denote the number of vertices in G, the general bound is O(n3). If F excludes a

27

planar graph, then the bound is reduced to O(n2). Interestingly, such algorithms suffer from

novel shortcomings:

• the algorithms require immense constants of proportionality,

• only the complexity of decision problems is established, and

• there is no general means for finding (or even recognizing) correct algorithms.

We tackle each of these issues in turn, illustrating algorithmic techniques with simple exam-

ples. We make no pretense that these examples reflect the state of the art. The interested

reader is referred to [FL1, FL2] for more complex methods.

6.1 Constants of Proportionality

The theory developed by Robertson and Seymour proceeds in distinct structural stages.

The theorems that employ this structural information introduce stunningly enormous con-

stants of proportionality into polynomial-time decision algorithms. These huge structural

constants can sometimes be eliminated by proving problem-specific structural bounds.

Example 6.1.1 Consider the gate matrix layout problem mentioned in the last section. It

is known that, for any fixed value of k, there is a surjective map from Boolean matrices to

graphs such that all matrices mapped to the same graph have the same layout cost, that the

“yes” family of graphs in the image of the map is minor-closed, and that planar obstructions

exist. Thus gate matrix layout is decidable for any fixed k in O(n2) time, but with a gigantic

structural constant ck bounding the treewidth of any graph in Fk entering into the constant

of proportionality of the algorithm. (This constant is computed by a nine step procedure

that involves several compositions of towers of 2’s functions [RSV].) As we have previously

noted, however, the family of matrices with gate matrix layout cost k turn out to correspond

28

to the family of graphs with pathwidth k−1, which is a proper subset of the family of graphs

with treewidth k− 1. Thus a direct consideration of the needed structural bound allows the

constant ck to be replaced by k − 1.

A more general approach is to prove structural bounds specific to a particular class of

obstructions. These bounds then apply to any family with an obstruction in that class.

Theorem 6.1.2 [FL2] Any minor-closed family that excludes a cycle of length l has

treewidth at most l − 2 and can be recognized in O(n) time.

Example 6.1.3 Reconsider the vertex cover problem, where we seek to determine whether

all edges in an input graph G can be covered by at most k vertices, for some fixed k. As

discussed in Example 3.1.1, this problem could be solved by finding a tree decomposition

and then applying dynamic programming. Both of these steps could require O(n2) time

without special tools. Moreover, the tree decomposition width is the enormous ck. But the

family of “yes” instances is minor-closed and excludes C2k+1, the cycle of length 2k + 1. By

applying the technique used in the proof of Theorem 6.1.2, only a (linear-time) depth-first

search is needed to obtain a tree decomposition of width at most 2k− 1, followed by a finite

number of obstruction tests, each taking linear time. Thus both the structural constant and

the time complexity are reduced.

6.2 Decision Problems versus Search Problems

Algorithms based on finite obstruction sets only solve decision problems. In practice, one

is usually more concerned with search problems, where the goal is to search for evidence that

an input is a “yes” instance. For example, a “yes” or “no” response is sufficient to answer

the decision version of vertex cover. For the search version, however, we want a satisfying

29

cover (set of k or fewer vertices) when any exist. Fortunately, decision algorithms can be

converted into search algorithms for the vast majority of problems amenable to the work

of the graph minors project. The general idea is often termed self-reduction, whereby the

decision algorithm is used as a subprogram by the search algorithm.

Example 6.2.1 In the decision version of the longest path problem, we seek to know whether

an input graph contains a simple path of length k or more. The problem is NP-complete in

general, but solvable in O(n) time for any fixed k, because the “no” family is minor-closed

and excludes a cycle of length k + 1. When solving this problem in a practical setting, of

course, we are concerned with finding a sufficiently long path when any exist, that is, solving

the search version of the problem. To accomplish this, we need only self-reduce as follows.

First, accept the input and pose the decision version of the problem. If the response is “no,”

then halt — no satisfying evidence exists. If the response is “yes,” then perform the following

series of operations for each edge in the graph:

1. temporarily remove the edge and pose the decision problem again

2. if the new graph is a “no” instance, replace the edge (it is needed in any sufficiently

long path)

3. if the new graph is a “yes” instance, permanently remove the edge (some sufficiently

long path remains).

Thus, O(n2) calls to an O(n) decision algorithm suffice, yielding an O(n3) time search algo-

rithm.

6.3 Nonconstructivity

As mentioned in Section 2, a guarantee of polynomial-time decidability provided by

30

minor-closure is nonconstructive. But need this be the case? To consider such a question,

we must decide on a finite representation for an arbitrary minor-closed family. (After all,

it would of course be impossible to construct algorithms if the representation were not

finite!) A reasonable choice is the Turing machine, the standard model of complexity theory.

Unfortunately, a reduction from the halting problem affirms that nonconstructivity cannot

be eliminated in a general sense.

Theorem 6.3.1 [FL2] There is no algorithm to compute, from a finite description of a

minor-closed family represented by a Turing machine that accepts precisely the graphs in

the family, the set of obstructions for that family.

So we must settle for something less. In the following, the term known refers to an

algorithm that can, at least in principle, be coded up and run.

Theorem 6.3.2 [FL2] Let PD denote a decision problem whose “yes” instances are minor-

closed. Let PS denote the corresponding search problem. If algorithms are known to self-

reduce PS to PD and to check whether a candidate solution satisfies PS, then an algorithm

is known that solves both PD and PS.

The proof of this has an interesting wrinkle, in that the resultant (known) algorithms

generate and make use of incomplete obstruction sets, yet they cannot be used to generate

complete sets or even to check the completeness of proffered sets!

Example 6.3.3 Consider the NP-complete modified cutwidth problem, in which we are

given a graph G and a positive integer k, and are asked whether G can be laid out with its

vertices along a straight line so that no plane that cuts the line on an arbitrary vertex can

cut more than k edges. Until recently, the fastest known algorithm for both the decision and

31

the search versions of this problem had time complexity O(nk). Thus modified min-cut is

technically in P for any fixed value of k. This can be improved on, but nonconstructively,

because the family of line graphs of “yes” instances is minor-closed. But modified min-cut

is easy to self-reduce and easy to check. Thus the decision and search versions of modified

min-cut can be solved in O(n3) time constructively (with known algorithms).

Acknowledgments

We wish to express our appreciation to Jean Blair, Heather Booth, Rajeev Govindan, Eric

Kirsch, Scott McCaughrin and Siddharthan Ramachandramurthi for carefully reviewing an

early draft of this chapter. We also wish to thank an anonymous reviewer for many helpful

comments.

Postscript

Progress on the topics we have discussed continues apace. By the time this chapter

reaches print, we are confident that many more relevant results will have been announced.

We apologize in advance to those authors whose recent work has thus been unfortunately

omitted from this treatment.

32

References

[Ar] D. Archdeacon, “A Kuratowski Theorem for the Projective Plane,” Ph.D. Thesis,

Ohio State University (1980).

[ALS] S. Arnborg, J. Lagergren and D. Seese, “Easy Problems for Tree Decomposable

Graphs,” Journal of Algorithms 12 (1991), 308–340.

[AP] S. Arnborg and A. Proskurowski, “Complexity of Finding Embeddings in a k-Tree,”

SIAM Journal on Algebraic and Discrete Methods 8 (1987), 277–284.

[AST] N. Alon, P. D. Seymour and R. Thomas, “A Separator Theorem for Non-Planar

Graphs,” to appear.

[Bi] D. Bienstock, “On Embedding Graphs in Trees,” Journal of Combinatorial Theory

Series B 49 (1990), 103–136.

[BM] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London, Macmil-

lan, 1976.

[BRST] D. Bienstock, N. Robertson, P. D. Seymour and R. Thomas, “Quickly Excluding a

Forest,” Journal of Combinatorial Theory Series B 52 (1991), 274–283.

[BS] D. Bienstock and P. D. Seymour, “Monotonicity in Graph Searching,” Journal of

Algorithms 12 (1991), 239–245.

[CS] R. Cole and A. Siegel, “River Routing Every Which Way, but Loose,” Proceedings,

25th Annual Symposium on Foundations of Computer Science (1984), 65–73.

[DKL] N. Deo, M. S. Krishnamoorthy and M. A. Langston, “Exact and Approximate Solu-

tions for the Gate Matrix Layout Problem,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 6 (1987), 79–84.

[DSS] G. Ding, A. Schrijver and P. D. Seymour, “Disjoint Paths in a Planar Graph – a

General Theorem,” to appear.

[FL1] M. R. Fellows and M. A. Langston, “Nonconstructive Tools for Proving Polynomial-

33

Time Decidability,” Journal of the ACM 35 (1988), 727–739.

[FL2] , “On Search, Decision and the Efficiency of Polynomial-Time Algo-

rithms,” Proceedings, 21st Annual ACM Symposium on Theory of Computing (1989),

501–512.

[Ga] F. Gavril, “The Intersection Graphs of Subtrees in Trees are Exactly the Chordal

Graphs,” Journal of Combinatorial Theory Series B 16 (1974), 47–56.

[GHW] H. Glover, P. Huneke and C. S. Wang, “103 Graphs That Are Irreducible for the

Projective Plane,” Journal of Combinatorial Theory Series B 27 (1979), 332–370.

[Go] M. O. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,

1980.

[HMR] J. Hong, K. Mehlhorn and A. Rosenberg, “Cost Trade-Offs in Graph Embeddings,

with Applications,” Journal of the ACM 30 (1983), 709–728.

[HT] J. E. Hopcroft and R. E. Tarjan, “Efficient Planarity Testing,” Journal of the ACM

21 (1974), 549–568.

[Ka] R. M. Karp, “On the Complexity of Combinatorial Problems,” Networks 5 (1975),

45–68.

[KL] N. G. Kinnersley and M. A. Langston, “Obstruction Set Isolation for the Gate Matrix

Layout Problem,” Technical Report CS-91-126, Department of Computer Science,

University of Tennessee, 1991.

[KP] L. M. Kirousis and C. H. Papadimitriou, “Searching and Pebbling,” Journal of The-

oretical Computer Science 47 (1986), 205–218.

[Kr] J. Kruskal, “Well-Quasi-Ordering, the Tree Theorem, and Vázsonyi’s Conjecture,”

Transactions of the American Mathematical Society 95 (1960), 210–225.

[Ku] C. Kuratowski, “Sur le problème des courbes gauches en topologie,” Fundamenta

Mathematicae 15 (1930), 271–283.

34

[LM] C. E. Leiserson and F. M. Maley, “Algorithms for Routing and Testing Routability

of Planar VLSI-Layouts,” Proceedings, 17th Annual ACM Symposium on Theory of

Computing (1985), 69–78.

[LT] R. J. Lipton and R. E. Tarjan, “A Separator Theorem for Planar Graphs,” SIAM

Journal on Applied Mathematics 36 (1979), 177–189.

[Ma] W. S. Massey, Algebraic Topology: An Introduction, New York: Springer, 1967.

[MS] F. Makedon and I. H. Sudborough, “On Minimizing Width in Linear Layouts,” Dis-

crete Applied Mathematics 23 (1989), 243–265.

[Re] B. Reed, personal communication.

[RS] N. Robertson and P. D. Seymour, “An Outline of a Disjoint Paths Algorithm,” in

Algorithms and Combinatorics (Korte, Lovász, Prömel and Schrijver, eds.), Springer-

Verlag, 1990, 267–292.

[RSI] , “Graph Minors. I. Excluding a Forest,” Journal of Combinatorial

Theory Series B 35 (1983), 39–61.

[RSIV] , “Graph Minors. IV. Treewidth and Well-Quasi-Ordering,” Journal of

Combinatorial Theory Series B 48 (1990), 227-254.

[RSV] , “Graph Minors. V. Excluding a Planar Graph,” Journal of Combina-

torial Theory Series B 41 (1986), 92–114.

[RSVI] , “Graph Minors. VI. Disjoint Paths Across a Disk,” Journal of Com-

binatorial Theory Series B 41 (1986), 115–138.

[RSVIII] , “Graph Minors. VIII. A Kuratowski Theorem for General Surfaces,”

Journal of Combinatorial Theory Series B 48 (1990), 255-288.

[RSX] , “Graph Minors. X. Obstructions to Tree Decomposition,” Journal of

Combinatorial Theory Series B 52 (1991), 152–190.

[RSXIII] , “Graph Minors. XIII. The Disjoint Paths Problem,” to appear.

35

[Th] R. Thomas, personal communication.

[Sc] A. Schrijver, “Decomposition of Graphs on Surfaces and a Homotopic Circulation

Theorem,” Journal of Combinatorial Theory Series B 51 (1991), 161–210.

[Se] P. D. Seymour, “Disjoint Paths in Graphs,” Discrete Mathematics 29 (1980), 239–309.

[Sh] Y. Shiloach, “A Polynomial Solution to the Undirected Two Paths Problem,” Journal

of the ACM 27 (1980), 455-456.

[ST1] P. D. Seymour and R. Thomas, “Graph Searching and a Minimax Theorem for

Treewidth,” to appear.

[ST2] , “Call Routing and the Rat-Catcher,” to appear.

[Ya] X. Yan, “Approximating the Pathwidth of Outerplanar Graphs,” M.S. Thesis, Wash-

ington State University, 1989.

