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Abstract.  Recent discoveries of distinct molecular subtypes have led to remarkable advances in treatment for a 

variety of diseases. While subtyping via unsupervised clustering has received a great deal of interest, most methods 

rely on basic statistical or machine learning methods. At the same time, techniques based on graph clustering, 

particularly clique-based strategies, have been successfully used to identify disease biomarkers and gene networks. 

A graph theoretical approach based on the paraclique algorithm is described that can easily be employed to identify 

putative disease subtypes and serve as an aid in outlier detection as well. The feasibility and potential effectiveness 

of this method is demonstrated on publicly-available gene co-expression data derived from patient samples covering 

twelve different disease families. 
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1. Introduction 
 

It has long been established that many disease families exhibit a wide range of heterogeneity. This is 

especially true in cancer. Lung cancers, for example, fall into two overall types based on histological 

characteristics: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Although 

histological classification remains crucial, significant advances in the treatment of NSCLC over the last 

decade have centered around the development of therapies targeting subtypes at the molecular level, such 

as those defined by genetic mutations [1]. In particular, therapies targeting alterations in the epidermal 

growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genes have produced dramatic 

improvements in outcomes for patients in the underlying subgroups [2, 3]. In addition to providing new 

paths for treatment, advances in molecular subtyping allow practitioners to avoid needless high-risk 

therapies. For example, studies have identified transcriptomic signatures for chemo-resistance in both acute 

myeloid leukemia and breast cancer [4, 5]. Recent research has made positive steps towards targeted care 

for a variety of diseases, including Asthma, Alzheimer’s, and Crohn’s disease [6-8]. A key development 

driving these advances is the successful identification of molecular subtypes. 

 

Given the potential impact of disease subtype identification, it is not surprising therefore that the search for 

effective clustering methods has become an intense area of interest. Traditional approaches such as k-means 

and hierarchical clustering have long been used to identify sets of genes or samples that exhibit similar 

expression patterns [9-11]. Machine learning techniques based on neural networks have been investigated 

as well [12-14]. Latent variable and mixture models have also been used [15-17]. Meanwhile, a graph 

theoretical approach is to model a set of genes or samples as vertices in a graph, with edges connecting 

them based on thresholding some similarity metric. A systematic comparison of clustering methods over 

well-annotated S. cerevisiae (baker's yeast) gene co-expression data can be found in [18], where it was 

shown that clique-centric graph theoretical algorithms generally outperform other approaches. Moreover, 
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the top-down paraclique algorithm introduced in [19] was found to possess considerable computational 

advantages over other clique-based tools. Maximal clique [20], for example, is output bound, while k-clique 

communities [21] is hobbled by bottom-up inefficiencies. Paraclique has seen prior application in 

transcriptomics [22], proteomics [23], epigenetics [24] and the exposome [25] as well as in the study of 

specific diseases including lung cancer [26], diabetes [27], allergic rhinitis [28] and community-acquired 

pneumonia [29], and even in investigations of the effects of radiation on living organisms [30]. 

Nevertheless, to the best of our knowledge, this paper represents the first attempt to gauge paraclique’s 

potential merit in the context of molecular disease subtyping. 

 

To address this gap, we describe an initial study of putative subtypes based on molecular signatures using 

the paraclique method. Our technique is general and applies easily to other types of data such as protein 

interaction, metabolite abundance, or DNA methylation profiles, but we focus our experimentation on gene 

co-expression data thanks to its relative quality and ubiquity. In addition to subtype discovery, we will show 

how our techniques can be used to help pinpoint potential outliers, providing an automatic means for the 

identification of suspected data collection errors such as mislabeled samples or misdiagnosed patients. We 

hasten to observe, however, that biological variation can be inscrutable, inconsistent, and unpredictable. No 

method is therefore likely to be extraordinarily accurate. We will address this and related issues in the 

sequel. 

 

This paper is organized as follows. In the next section, we provide a brief review of the paraclique algorithm 

and discuss details of our workflow for subtyping in gene co-expression data. In Section 3, we outline our 

testing procedures, provide GO enrichment results that indicate functional biological relevance of the 

subtypes we identify, and describe additional testing with labeled data over known subtypes that 

demonstrate the fidelity of further stratification using this approach. In Section 4, we consider outlier 

detection and discuss how methods such as these can help address this problem. In a final section, we 

summarize results, place them in context, and consider avenues for future work. 

 

2. Methodology 
 

Clique-centric methods have long been used in a wide variety of applications [31]. On real and noisy data, 

however, clique finders may be inherently prone to high false negative rates. Indeed, an entire clique may 

be missed if even a single edge is lost. Thus, the paraclique algorithm is an effort to ameliorate difficulties 

posed by noise. Its essential strategy is first to isolate a maximum clique, and then expand it by glomming 

onto any new vertex that is adjacent to all but some predefined number of vertices already in this clique. 

This number is termed the glom term, g. An illustration of paraclique construction with g = 2 is provided 

in Figure 1. Paraclique details and a thorough discussion of clique selection, edge weights, densities, and 

other important algorithmic features can be found in [32, 33]. Web-based versions of paraclique and related 

tools are available to the community via GrAPPA [34]. 

 

In this effort, we were mainly concerned with case-control transcriptomic data, for which we applied an 

initial filtering step to limit the effects of confounding factors. False discovery rate adjusted p-values for 

the differential expression of genes between case data and control data were calculated using the Benjamini-

Hochberg method [35] accessed via the EntropyExplorer R package [36]. Only those genes with p-values 

less than or equal to 0.1 were retained. The motivation for such a filter was to restrict attention to genes of 

potential interest in the differential diagnosis of disease. After all, we wanted to concentrate on potential 

disease subtypes and not be distracted by irrelevant subgroups such as age, ethnicity, or hair color. Once 

filtering was complete, we focused our attention only on case data, and reversed the roles of variables and 
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correlations. We therefore calculated pairwise Pearson correlation coefficients between samples (not 

genes), and across their corresponding lists of expression levels (not patients). We then thresholded the 

resultant correlation matrix using spectral methods as in [37], and constructed an unweighted graph with 

vertices representing samples and edges between highly correlated sample pairs. Once this graph had been 

created, we invoked the paraclique algorithm to extract dense, noise resilient subgraphs. Thus, each such 

subgraph represented a putative subtype or outlier. 

 

For consistency, and because this work mainly represents a proof of concept, we set the glom term to g=1 

throughout this effort. Depending on the data under study, however, crisper results may naturally be 

anticipated with fine tuning. In [27], for example, a glom term of g=5 was found to produce superior 

ontological enrichments when studying non-obese diabetic mice as a model of type 1 diabetes mellitus.  

 

3. Experimental Results 
 

3.1 Discussion 

 

We applied this novel analytical approach to a dozen sets of publicly-available gene co-expression data 

obtained from the Gene Expression Omnibus (GEO). These data were selected because they provide a wide 

cross-section of human disease, and because each has both a case and a control group for the aforementioned 

filtering task. Table 1 provides an overview of the datasets we studied. 

 

Our investigation into the effectiveness of this proposed new methodology was focused on two guiding 

questions: (1) are these tools capable of reliably and robustly identifying putative subtypes, and (2) are 

these subtypes appropriate to the associated disease as supported by biological evidence from clinical, 

published, analytical or other orthogonal information source(s)? 

 

The answer to the first question seems to be an unequivocal yes. As summarized in Table 2, our methods 

decomposed raw data into putative subtypes in ten of our datasets. In the case of Asthma, for example, 

every patient sample fell into some paraclique. In other cases, patients were sometimes left unclassified, 

which is hardly surprisingly given limitations on dataset sizes coupled with possible extremes in disease as 

well as sample heterogeneity. Only for Parkinson’s disease and Type 2 Diabetes were no subtypes 

identified. It’s probably no coincidence then that these two diseases also have by far the smallest datasets, 

especially in light of clinical subtyping evidence to the contrary [38, 39]. 

 

The second question is considerably more difficult to answer because it depends on the availability of 

alternate, non-transcriptomic data sources. We therefore followed a two-prong approach in putative subtype 

comparisons. First, we calculated GO enrichments and their associated p-values for the top 100 

differentially expressed genes in each paraclique. These results and their corresponding GO categories are 

summarized in Table 3. In every case, we found statistical evidence for biological significance among the 

genes separating samples into subgroups, with enrichment p-values ranging from 1.1E-4 for asthma to 

4.92E-46 for prostate cancer. Next, we performed a literature search to check the top scoring genes for 

involvement in known subtypes. As such, this is at best a hit or miss proposition, and one depending for 

each disease on whether the research community has studied subtyping issues, found results, and published 

them in venues that we were able to search. Despite these obstacles, however, we found strong evidence in 

print to support our putative subtype decompositions for four of the diseases we studied. These are asthma, 

breast cancer, chronic lymphocytic leukemia, and colorectal cancer. 
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3.2 A Search for Unrecognized Subtypes 

  

Asthma 

 

The incidence of asthma in the U.S has been on the rise for two decades. It is currently estimated that nearly 

one in ten children under 18 are asthmatic. The risk for some groups is based largely on ethnicity 

(particularly African American and Puerto Rican), with incidence among those with lower socioeconomic 

status rising as high as one in six [40]. 

 

GEO series GSE4302 data was derived from the Affymetrix Human Genome U133 Plus 2.0 Array, and is 

designed to identify genes associated with response to corticosteroid treatment in asthmatics [41]. It consists 

of transcriptomic data taken from the epithelial airway brushings of 42 asthmatics, 28 healthy subjects and 

16 smokers. To avoid potential confounds, we discarded data taken from smokers and used only the healthy 

subjects as controls. 

 

Filtering reduced the number of probes from 54,676 to 2322. Our method produced three paracliques with 

respective sizes 31, 8 and 3 that were stable until they began to merge as the threshold was lowered below 

0.93. The 100 most differentially expressed genes across the two larger putative subtypes included CLCA1, 

periostin, and ovalbumin, which are all known to serve as markers of a Th2-high endotype of asthma [42]. 

 

Breast Cancer 

 

Genetic factors have long been known to play a significant role in breast cancer. Studies have shown that 

in families with at least four breast cancer cases, most can be linked to mutations in either BRCA1 or 

BRCA2 genes [43, 44]. Moreover, breast cancer has a variety of known subtypes that significantly impact 

prognosis and treatment. For example, tumors negative for estrogen receptors, progesterone receptors, and 

the expression of HER2 are indicative of triple-negative breast cancer, a subtype identified with higher risk 

of recurrence and a five-year mortality rate [45]. 

 

GEO series GSE10810 data was also derived from the Affymetrix Human Genome U133 Plus 2.0 Array, 

although values for only 18,382 probes were provided. This study was designed to investigate links between 

gene co-expression and phenotypic breast cancer differences [46], and contains data for 31 tumor samples 

and 27 healthy tissues. 

 

Filtering reduced the number of probes to 11,531. Our tools produced two paracliques of size 22 and 5 that 

persisted to a threshold of 0.8, and left four tumor samples unclassified. The 100 most differentially 

expressed genes between these putative subtypes include SLC39A6, S100a4, AGR3, Cd24, and epcam, all 

of which have been reported in the literature as biomarkers for distinct breast cancer phenotypes [47-51]. 

 

Chronic Lymphocytic Leukemia 

 

Chronic lymphocytic leukemia is one of the most common types of leukemia, with pathogenesis 

characterized by an overproduction of neoplastic B cells in the bloodstream. The current median age at 

diagnosis is 65, with males affected more often than females [52]. Chronic lymphocytic leukemia typically 

presents with a slow progression in which patients are able to enjoy a more or less a normal life expectancy. 

In some cases, however, chronic lymphocytic leukemia can be aggressive, with death occurring less than 

five years after the onset of symptoms. 
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GEO series GSE8835 data was instead derived from the Affymetrix Human Genome U133A Array with 

22,283 probes, and was designed to study the effects of chronic lymphocytic leukemia on T cells in 

peripheral blood [53]. The study comprised 24 CD4 cell samples from chronic lymphocytic leukemia 

patients and 12 CD4 cell samples from healthy, age-matched donors. 

 

Filtering reduced the number of probes to 1338. At a threshold of 0.8, our tools produced two paracliques 

of size 4 and 18, leaving 2 samples unclassified. The most differentially expressed genes across these two 

putative subtypes included ZAP-70, previously identified as the best discriminator of Ig-mutated and Ig-

unmutated chronic lymphocytic leukemia [54]. 

 

Colorectal Cancer 

 

The incidence of colorectal cancer has been in decline since the mid 1980’s [55]. Despite this significant 

drop in prevalence, it still accounts for both the third highest number of new cases of cancer, and the third 

highest number of cancer deaths each year [56]. As with breast cancer, there are known hereditary links to 

this disease. For example, a mutation of the gene APC is responsible for two syndromes, Familial 

Adenomatous Polyposis and Hereditary Nonpolyposis Colorectal Cancer, that each carry a significant 

increase in the risk of developing colorectal cancer [57]. 

 

GEO series GSE9348 data was again derived from the Affymetrix U133 Plus 2 array, and was intended to 

search for transcriptomic signatures of early stage colorectal cancer that is prone to metastasis [58]. The 

study contains gene co-expression data that was taken from 70 colorectal cancer patient tumors as well as 

tissues from 12 healthy subjects who were matched by age and ethnicity. 

 

Filtering reduced the number of probes from 54675 to 22968. At a threshold of 0.87, our tools produced 

two paracliques of size 63 and 5, covering all but two of the case samples. The list of 100 genes most 

differentially expressed between these two putative subtypes include Cd24, identified as a prognostic 

marker for colorectal cancer [59] as well as OLFM4, indicated in as a marker for tumor differentiation and 

progression [60, 61]. 

 

3.3 Alignment with Previously Known Subtypes 

 

The experimental effort just described suggests that our methods have the potential to identify both known 

and novel subtypes, as based on biologically relevant genetic signatures. The lack of any widespread 

established ground truth, however, places a limitation on any in-depth interpretation of these results. In an 

effort to address this shortcoming, we identified two sets of publicly-available data on GEO that include 

metadata labeling in the form of known subtyping information. These are based on gastric cancer and non-

small cell lung cancer. Because our intent is to identify and contrast novel subtypes in disease, our metric 

of interest is patient stratification. 

 

Gastric Cancer 

 

GEO series GSE35809 data, from the Affymetrix Human Genome U133 Plus 2.0 Array, was derived from 

70 primary gastric tumors intended for use as a validation set for subtype classifier testing [62-64]. The data 

contains values for 54675 probes. Arrays are subdivided into a collection of 29 identified as coming from 

proliferative tumors, 26 from invasive, and 15 from metabolic. 
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Filtering was irrelevant, because no healthy tissues were studied that could be used as controls. At a 

threshold of 0.955, paraclique produced subsets of size 29 and 16 and performed admirably. All but one of 

the invasive samples it classified were placed in the first paraclique, while all but one of the proliferative 

samples it classified were placed in the second. Metabolic samples proved only slightly more challenging, 

with 75% of those classified placed in the first paraclique. See Table 4. 

 

Non-Small Cell Lung Cancer 

 

GEO series GSE10245 data, also from the Affymetrix Human Genome U133 Plus 2.0 Array with 54675 

probes, was derived from 40 adenocarcinoma tumors and 18 squamous cell carcinoma tumors, NSCLC’s 

two most prevalent subtypes. These data were intended to provide a basis for studying co-expression 

differences between these two cancers [65]. 

 

Filtering was again irrelevant. Paraclique performed quite well on this data too. At a threshold of 0.94, it 

produced three subsets of size 26, 12 and 8. Roughly 74% of the adenocarcinoma samples were placed in 

the first paraclique while the second contained none, and 80% of the squamous cell carcinoma samples 

were placed in the second paraclique while the third had none. Again, see Table 4. 

Comparison with Other Methods 

 

We sought to compare this basic and untuned version of the paraclique algorithm with well-known 

strategies such as k-means and hierarchical clustering, as implemented in core-R through the functions 

kmeans( ) and hclust( ). 

Results for the k-means method were mixed. It proved extremely successful on the gastric cancer data. 

There it divided samples into two subsets of size 26 and 44. All but one of the invasive samples were placed 

in the first cluster, while all of the proliferative and all but one of the metabolic samples were placed in the 

second. But k-means failed completely on the non-small cell lung cancer data. Samples were divided into 

subsets of size 28 and 30, with both the adenocarcinoma and the squamous cell carcinoma samples spread 

almost evenly across these two clusters. The hierarchical approach was also a rather uneven performer. On 

the gastric cancer data, it divided samples into two subsets of size 33 and 37. While all of the proliferative 

samples found their way to the second cluster, the first contained 84% of the invasive and about 73% of the 

metabolic. On the non-small cell lung cancer data, it divided samples into subsets of size 9 and 49. All the 

adenocarcinoma samples were admirably grouped in the second cluster, but the squamous cell carcinoma 

samples were not convincingly stratified at all, with exactly half placed in each cluster. These results are 

also summarized in Table 4. 

As demonstrated by these experiments, the paraclique methodology can provide excellent patient 

stratification, further motivating the use of graph theoretical methods to differentiate samples based on their 

underlying genetic signatures. Such stratification is not perfect, of course, nor should we expect it to be 

given data limitations and biological variability. Moreover, unlike techniques such as k-means and 

hierarchical clustering, patients are not forced into a cluster under paraclique, as is evidenced by the 25 

samples it left unclassified in the gastric cancer data. We suggest therefore that the tools we have described 

here may be best suited to fast screening tasks, for example, when transcriptomic data is relatively easy to 

obtain. Once clinical and/or additional forms of data have been collected, histological and other more 

laborious techniques will likely help provide more comprehensive subtyping of entire patient populations. 
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4. Outlier Detection 
 

The methodology just described is readily extensible to automating the task of outlier detection. This 

follows from the observation that an outlier would be expected to appear as its own distinct subtype, and 

not reside in a paraclique of even modest size. Although detection may be accomplished with our algorithms 

in several ways, we endorse the use of thresholding, as follows. A normalized threshold of 0.0 will of course 

produce a single large clique, and a threshold of 1.0 will generally yield an edgeless graph, under the 

assumption that no two samples are perfectly correlated. As the threshold value is lowered from 1.0, the 

effect on cliques and paracliques is slightly nuanced. As more and more edges are added, cliques and 

paracliques will get larger but also begin to merge. If a vertex consistently fails to join any of these dense 

subgraphs, then the sample it represents is flagged as a potential outlier. The process is illustrated in Figure 

2. At this point it may be tempting simply to single out isolated vertices, but at any given threshold a vertex 

may of course have a variety of neighbors and yet still be a member of no paraclique. 

 

While this approach has intuitive appeal, we conducted a series of six experiments using known 

misclassifications to test its limitations. We formed test instances by introducing data from one randomly 

chosen healthy sample into data from the case samples for breast cancer (GSE10810), chronic lymphocytic 

leukemia (GSE8835), colorectal cancer (GSE9348), lung cancer (GSE7670), pancreatic cancer (GDS4102), 

and prostate cancer (GSE6919). For the breast, colorectal, lung, and pancreatic cancer sets, we observed 

that the normal sample was either the last or the next to last vertex to be drawn into the final paraclique. 

For the chronic lymphocytic leukemia and prostate cancer sets, we found instead that the healthy sample 

fell into a large paraclique early on and stayed there. From our previous experience with outlier detection 

[66], these observations suggest to us that although paraclique has a pronounced potential to serve as an 

automated outlier screening tool, feature selection [67] should probably first be performed to reduce any 

positive bias that results from whole genome correlations. We will revisit this topic in the next section. 

 

5. Summary, Discussion and Directions for Future Research 
 

We have developed and described a disease classification strategy based on the paraclique algorithm that 

can identify putative subtypes, segregating samples based on signatures in their molecular profiles. 

Although our tools are easily applicable to many types of biological data, we have focused on gene co-

expression data largely thanks to its overall quality and availability. We have analyzed high throughput data 

taken from a dozen different disease samples obtained from the Gene Expression Omnibus, and sought to 

validate the significance of our findings by reviewing the literature and examining ontological enrichment 

for the biological relevance of genes differentially expressed across putative subtypes. We also performed 

testing over data augmented with phenotypic information for known subtypes. Overall, the results of this 

study indicate a strong utility for this approach in the confirmation of known, and the discovery of novel, 

disease subtypes. Additionally, we described the extension of our methodology to the task of outlier 

identification. By iteratively lowering the threshold and re-running the paraclique algorithm, we can detect 

samples resistant to subtype coalescence. Such a finding can point to critical clinical errors such as tissue 

misclassifications and/or patient misdiagnoses. Throughout, our aim has been to employ scalable, cutting 

edge graph theoretical methods that can help automate the disease subtyping process, which can in turn 

accelerate the pace of discovery and lead to improvements in targeted therapies. 

 

We emphasize that this exploratory effort has focused exclusively on unsupervised techniques and tools 

that require no prior knowledge. To keep things simple, we even refrained from fine tuning the glom term 
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for each dataset. This therefore bolsters the argument that the methods we have espoused are really quite 

effective. In large-scale clinical applications, however, techniques such as feature selection and paraclique 

anchoring will almost surely prove helpful to narrow the focus on genes or other variables of interest and 

their disease-associated relationships. In the context of community-acquired pneumonia, for example, we 

have previously found it advantageous to anchor paraclique analytics at the interleukin genes IL-6 and IL-

10. See [68]. 

 

To place these results in proper context, we note that any subtyping method based on tissue morphology or 

molecular signatures is almost certain to be highly imperfect. And this holds true whether it be implemented 

in silico or conducted manually by a human pathologist. A 2015 study [38] underscores this problem. There, 

an expert panel of pathologists created a baseline diagnosis based on consensus of opinion for 240 breast 

tissue biopsies with samples that included malignancy, pre-cancerous cells and benign tumors. Pathologists 

from eight states with at least one year of experience in diagnosing cancer were then invited to examine 

these samples. 115 of them completed their analysis and provided their best diagnoses. Although findings 

showed that 96% of the invasive breast cancer samples had been diagnosed in concordance with expert 

consensus, 13% of the diagnoses underreported the severity of stage I breast cancer, while 48% (17%) 

underreported (overreported) the severity of precancerous samples. False negatives and false positives such 

as these can have devastating effects on patients. They may also lead to a wide spectrum of poor outcomes 

that includes excessive delay, unnecessary treatment, additional expense, needless worry, and even 

premature morbidity and death. 

 

Finally, we wish to emphasize that this work represents but a first step in determining the utility of 

paraclique in the molecular subtyping of disease. Although clique-based methods have been used as a basis 

for tasks such as biomarker detection and gene network elucidation, disease subtyping has received 

surprisingly little attention. In future work, it would thus be interesting to see systematic comparisons of 

this and other emergent subtyping technologies. Numerous other research directions beckon. For example, 

we would like to gain a better understanding of the impacts of improved feature selection, and see 

extensions of the basic method to multiple heterogeneous data types, an area that has attracted a flurry of 

recent attention [69-71]. Collaborative opportunities to partner with disease specialists may of course also 

help in subtyping verification via graph theoretical methods at large. Better thresholding and filtering 

methods may be studied as well, in hopes of increasing the accuracy of subtyping and in turn reducing the 

likelihood of confounding factors. In conclusion, we observe that the overall approach we have described 

can be applied to numerous other sorts of biological data, as well as data from application domains as 

diverse as cyberattack detection and social network analysis. 
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Figures and Tables 
 

 

 
Figure 1. An illustration of the paraclique algorithm with glom term g = 2. (a) Starting with a maximum 

clique of size 4 as shown by red vertices, (b) paraclique first gloms onto vertex 5, (c) and then it gloms 

onto vertex 8 to form a paraclique of size 6. 
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Figure 2. Outlier detection using paracliques. (a) A normalized threshold of 1.0 usually produces an 

empty graph. (b) As the threshold is lowered, more edges are added and paracliques begin to form and 

merge. (c) If a vertex consistently joins no paraclique, then it is flagged as a potential outlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Accepted for publication, Algorithms Special Issue on Biological Knowledge Discovery from Big Data 
 

Disease 
GEO 

Accession 

Patients Probes 

Case Control Initial Filtered 

Asthma GSE4302 42 28 54675 2322 

Breast Cancer GSE10810 31 27 18382 11531 

Chronic Lymphocytic Leukemia GSE8835 24 12 22283 1338 

Colorectal Cancer GSE9348 70 12 54675 22968 

Lung Cancer GSE7670 27 27 22283 7458 

Multiple Sclerosis GDS3920 14 15 54674 9844 

Pancreatic Cancer GDS4102 36 16 54613 23711 

Parkinson’s Disease GSE20141 10 8 54674 6625 

Prostate Cancer GSE6919 61 63 12625 1531 

Psoriasis GSE13355 58 58 54675 29407 

Schizophrenia GSE17612 28 23 54675 4250 

Type 2 Diabetes GSE20966 10 10 61294 93 
Table 1. Subtyping datasets. A profile of the datasets used in this study. 

 

 

 

 

 

Disease Subgroups Identified Subgroup Sizes 

Asthma 3 31,8,3 

Breast Cancer 2 22,5 

Chronic Lymphocytic Leukemia 2 4,18 

Colorectal Cancer 2 63,5 

Lung Cancer 2 21,5 

Multiple Sclerosis 2 11,3 

Pancreatic Cancer 2 31,5 

Parkinson’s Disease 1 8 

Prostate Cancer 2 56,3 

Psoriasis 2 49,5 

Schizophrenia 2 19,6 

Type 2 Diabetes 1 9 
Table 2. Subgroups identified. Summary of the numbers and sizes of putative subgroups identified by our 

methods in testing data. 
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Dataset GO Category p-value 

Asthma GSE4302 Oxireductase 1.1E-4 

Breast Cancer GSE10810 Secreted 1.0E-13 

Chronic Lymphocytic Leukemia GSE8835 Mhc ii 2.4E-15 

Colorectal Cancer GSE9348 Translational elongation 2.8E-28 

Lung Cancer GSE7670 Secreted 7.7E-10 

Multiple Sclerosis GDS3920 Translational elongation 1.9E-34 

Pancreatic Cancer GDS4102 Signal 4.59E-15 

Prostate Cancer GSE6919 Translational elongation 4.92E-46 

Psoriasis GSE13355 Immune response 3.5E-15 

Schizophrenia GSE17612 Organelle membrane 5.24E-4 
Table 3. GO enrichments. Listed is the GO term category with the lowest enrichment p-value of the 100 

most differentially expressed genes for each disease in this study. 

 

 

 

Paraclique Results 

Gastric Cancer NSCLC 

 Paraclique Sizes  Paraclique Sizes 

29 16 26 12 8 

Subtype  Subtype  

proliferative 1 12 AC 23 0 8 

invasive 19 1 SCC 3 12 0 

metabolic 9 3     

k-Means Results 

Gastric Cancer NSCLC 

 Cluster Sizes  Cluster Sizes 

26 44 28 30 

Subtype  Subtype  

proliferative 0 29 AC 18 22 

invasive 25 1 SCC 10 8 

metabolic 1 14     

Hierarchical Clustering Results 

Gastric Cancer NSCLC 

 Cluster Sizes  Cluster Sizes 

33 37 9 49 

Subtype  Subtype  

proliferative 0 29 AC 0 40 

invasive 22 4 SCC 9 9 

metabolic 11 4     
Table 4. Cluster compositions based on known subtypes. Shown is a breakdown of the subtypes obtained 

from datasets with best available ground truth for paraclique, k-means, and hierarchical clustering. 


