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Abstract

The Graph Minor Theorem of Robertson and Seymour establishes nonconstructively that

many natural graph properties are characterized by a �nite set of forbidden substructures, the

obstructions for the property. We prove several general theorems regarding the computation of

obstruction sets from other information about a family of graphs. The methods can be adapted

to other partial orders on graphs, such as the immersion and topological orders. The algorithms

are in some cases practical and have been implemented. Two new technical ideas are introduced.

The �rst is a method of computing a stopping signal for search spaces of increasing pathwidth.

This allows obstruction sets to be computed without the necessity of a prior bound on maximum

obstruction width. The second idea is that of a second order congruence for a graph property.

This is an equivalence relation de�ned on �nite sets of graphs that generalizes the recognizability

congruence that is de�ned on single graphs. It is shown that the obstructions for a graph ideal can

be e�ectively computed from an oracle for the canonical second-order congruence for the ideal and

a membership oracle for the ideal. It is shown that the obstruction set for a union F = F1 [ F2

of minor ideals can be computed from the obstruction sets for F1 and F2 if there is at least one

tree that does not belong to the intersection of F1 and F2. As a corollary, it is shown that the

set of intertwines of an arbitrary graph and a tree are e�ectively computable.

�Some of the results of this paper were presented at the 1989 IEEE Symposium on the Foundations of Computer

Science [FL89b].
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1 Introduction

The celebrated Graph Minor Theorem (GMT) of Robertson and Seymour [RS83, RS85, RS94] proves

the existence of �nite obstruction sets for arbitrary minor order ideals, of which there are many

natural examples. Planar graphs are famously an ideal for which the obstructions are K3;3 and K5

(Kuratowski's Theorem). The proof of the GMT is not e�ective, in the sense that knowing only a

decision procedure for a lower ideal F does not provide enough information to be able to compute

the obstruction set for F [FL89a]. For this reason the Graph Minor Theorem is commonly regarded

as \nonconstructive" since usually we know at least a decision algorithm for a natural ideal.

The purpose of this paper is to explore the question:

What combinations of information about an ideal F allow us to e�ectively compute

the obstruction set for F?

We are currently far from having a satisfactory account of this issue. Some of the open problems

that remain in this area are both elegant and apparently di�cult. Previous work can be summarized

as follows.

(1) Fellows and Langston proved in [FL89a] that there is no algorithm that will, provided with only

a decision oracle for an ideal F , compute the set of obstructions O for F .

(2) Fellows and Langston proved in [FL89b] that if we have access to the three pieces of information:

(i) A decision algorithm for F .

(ii) A bound B on the maximum treewidth (or pathwidth) of the F obstructions.

(iii) A decision algorithm for a �nite index congruence that re�nes the canonical congruence for F

on t-boundaried graphs (for t = 1; : : : ; B).

Then O can be computed. (The full argument is given here for the �rst time.)

A curious aspect of this result is that given (i) and (iii) as oracles (which is the assumption of

the theorem), then it is impossible to calculate in advance when the procedure to calculate O will

terminate, although the proof guarantees that the procedure will eventually halt, having correctly

computed O. In other words, the stopping time of the algorithm is nonconstructive. The proof

employs the GMT for �nitely edge-colored graphs to establish that the algorithm will halt, and this

is the source of the nonconstructivity concerning the stopping time.

(3) Lagergren and Arnborg [LA91, Lag93] showed that if we are given (i), (ii) and (iii) as above, and

are additionally given:

(iv) A computable function f(t) that bounds the index of the �nite congruences of (iii).

Then it is possible to e�ectively compute in advance a stopping time for the above procedure and

to remove the dependence of the termination argument on the GMT. This also means that given

(i){(iv) we can e�ectively compute a bound on the size of the largest obstruction, and from this

information could compute O by exhaustive search.

(4) An important class of lower ideals for which we have the pieces of information (i), (iii) and (iv)

are those that we know how to describe in Monadic Second Order (MSO) logic. In other words, if

we are given the information:

(v) An MSO expression � that describes the graphs of the lower ideal F .
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Then from this we can e�ectively derive (i), (iii) and (iv). This result is mainly due to Courcelle

[Co90].

(5) Other work on the systematic computation of obstruction sets has appeared in [Pr93, APS90,

CD94, CDF95, Kin94, KL91]. Some of these results support practical implementations that have

led to some signi�cant mechanical or partly-mechanical proofs of new and nontrivial forbidden sub-

structure theorems.

There has been a considerable amount of overlapping work in this area which is sometimes con-

fusing to sort through. The above review is framed from the point of view that we will develop further

here. In particular, we are concerned with identifying those combinations of abstract information

about a lower ideal F that either do or do not provide enough information to allow us to compute

the obstruction set O for F . It is important to be attentive to exactly how the information about F

is presented. For example, in our Theorem 1 we prove the result (1) above that (i), (ii) and (iii) are

enough to e�ectively compute O. In this theorem, (i) and (iii) are hypothesized to be available only

via oracles, i.e., (iii) is not assumed to be concretely available via a �nite state machine or dynamic

programming algorithm.

Part of our purpose in this paper is to articulate this area of research, which we believe to be an

appealing blend of combinatorics and recursion theory. There are clear models of both positive and

negative results in this area, with much that remains unresolved. For example, in view of (4), it is

natural to ask whether (v) alone is su�cient information about F to allow us to compute O. Ideally,

we should be able to settle this one way or the other, either by proving a positive result along the

lines of (2) | perhaps using the new techniques introduced in this paper | or by proving a negative

result along the lines of (1).

One of the main ingredients of the positive result (2) is a collection of �nite-index congruences.

There are several notions of congruence in the literature of this area that in many situations are

essentially equivalent or e�ectively interchangeable. The basic notion that we use is provided by the

following de�nitions.

De�nition. A t-boundaried graph G = (V;E;B; f) is an ordinary graph G = (V;E) together with:

(1) a distinguished subset of the vertex set B � V of cardinality t, the boundary of G, and

(2) a bijection f : B ! f1; : : : ; tg.

In some situations, we will forget the boundary. (For example, if G is a boundaried graph and

F is a family of ordinary graphs, we may write G 2 F , meaning by this that G belongs to F when

the boundary of G is ignored.) A fundamental operation (denoted �) on t-boundaried graphs is that

of gluing them together along their boundaries by identifying like-labeled vertices.

De�nition. If G = (V;E;B; f) and G0 = (V 0; E0; B0; f 0) are t-boundaried graphs, then G � G0

denotes the t-boundaried graph obtained from the disjoint union of the graphs G = (V;E) and

G0 = (V 0; E0) by identifying each vertex u 2 B with the vertex v 2 B0 for which f(u) = f 0(v).

In the sequel, we will consider both large and small universes of t-boundaried graphs. Many of

the main issues concern the large universe, which is easier to think about.

De�nition. The large universe U tlarge is the set of all t-boundaried graphs.

De�nition. If F is a family of graphs then the large canonical congruence for F is de�ned for

t-boundaried graphs X;Y 2 U tlarge by X �F Y if and only if

8Z 2 U tlarge : (X � Z 2 F)() (Y � Z 2 F)
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The following de�nition is from Abrahamson and Fellows [AF93].

De�nition. A graph family F is fully cutset regular if for every t, the large canonical congruence

on U tlarge has �nite index.

Courcelle and Lagergren proved in [CL94] that this notion is equivalent to that of recognizable

graph families introduced in [Co90]. This must be regarded as an extremely pretty idea, as it captures

an essential feature of the complexity of the \information 
ow" across a bounded-size cutset necessary

for determining membership in a graph family. We will refer to the large canonical congruence for a

graph family F as the canonical recognizability congruence for F .

It follows from the Graph Minor Theorem and Courcelle's Theorem on MSO graph properties

[Co90] that every minor order lower ideal is recognizable. It is interesting that only a few natural

graph families are presently known not to be recognizable [AF93, BFW92, FHW93].

The positive results of [FL89b] (our Theorem A) apply to many (if not most) natural lower

ideals. \Normally" we have the information (i) about F . Note that since we are concerned here

with the issue of whether O can be recursively computed, any algorithm that correctly decides

membership in F will serve for (i), i.e., the e�ciency of the algorithm is not an issue. It is also the

case that \usually" we can �nd (iii) constructively. The exceptions include the ideals associated with

the problems Knotless Embedding and Planar Diameter Improvement described in [DF94].

By far the most problematic aspect of Theorem A is the bound (ii) on the maximum obstruction

treewidth or pathwidth. For example, although a congruence for torus embedding is relatively easy

to produce, a bound on the maximum obstruction width is much more di�cult, although a (very

large) bound is now known. Tight bounds seem to be beyond current proof techniques in most

situations. Thus it is natural to ask whether the information (ii) is really needed for obstruction set

computations.

The basic computational machinery that we develop here shows how we can improve on the ideas

of Theorem A and e�ectively compute O without having to know a prior bound on the maximum

obstruction width. In this approach we use a second order congruence for a graph family | a

�nite-index equivalence relation de�ned on �nite sets of boundaried graphs. Instead of having to

prove a prior bound on obstruction width, it is necessary that this second-order congruence have an

\eventual termination" property. Since termination can be established computationally, we believe

this may be a signi�cant breakthrough for implementations of obstruction set theorem-provers.

The Basic Approach

In [FL89b] (our Theorem A) the computation procedure uses (i) and (ii) to compute, for suc-

cessive width bounds t, the set Ot of obstructions for F that have width (pathwidth or treewidth,

either of these can be used) at most t. The main argument shows that for each �xed t this is a �nite

procedure. The role of hypothesis (iii) is simply to supply a bound on the maximum width t that

needs to be considered.

Here we extend this procedure by computing Ot for successively larger t, and tackle the question:

\Is O = Ot ?" (i.e., Can we stop now?) computationally. We consider two di�erent reasons for

which the answer to the question \Can we stop now?" might be, \No":

(1) A small counterexample (to O = Ot) is an element of O � Ot of width less than some known

recursive function f(t).

(2) A large counterexample is one whose width is more than f(t).

Our computational strategy is based on the fact that large counterexamples can be easier to

detect. For a particular recursive f(t), we can determine whether there is a small counterexample to
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O = Ot by simply computing Ot0 for t0 = t + 1; :::; f(t), and checking that no new obstructions are

found in these widths. To determine whether there is a large counterexample we compute an alarm

function � : N ! f0; 1g. We interpret � = 1 as a signal that we cannot stop at width t because

there is (or may be) a counterexample. What we would like to have is an alarm function that simply

determines whether there is a counterexample of width more than f(t). But even this might not be

possible, and so we relax our requirements. The hypothesis we employ instead of (iii) is that we can

compute an alarm function � that is:

(a) reliable: if there is a counterexample of width more than f(t) then �(f(t)) = 1, and

(b) eventually quiescent: there is constant t0 depending only on F such that 8t � t0, �(t) = 0.

These weaker requirements allow for one-sided errors in answering the \t-stopping question" (with

errors on the side of continuing the search), while insuring that only �nitely many stages of such

\false alarms" will be possible. This method is codi�ed in Theorem B.

Theorem C provides a second general computational engine based on an alarm provided by

a terminating second-order congruence (explained in the next section). This is in some sense a

specialization of Theorem B. The naturality of the notion of a terminating second-order congruence

is established by our Theorem D: If we have access to an oracle for the canonical second-order

recognizability congruence for an ideal F and an oracle for membership in F , then we can compute

the obstruction set for F .

We describe a natural second order congruence for the problem of computing the obstruction

set for a union of ideals for which the obstructions are known, and show that this is a terminating

congruence if at least one of the constituent ideals excludes a tree. As a corollary, we show that it is

possible to e�ectively compute the topological intertwines of an arbitrary graph and a tree.

The main signi�cance of Theorems B and C is in the new general techniques for obstruction

set computation that we introduce. In particular, the notion of a width stopping signal seems to

be of importance not only in the study of recursive aspects of the GMT, but also for practical

implementations of obstruction set theorem provers.

This area of algorithmic graph theory has reached a depth where it is no longer possible for a

paper to be entirely self-contained. We assume that the reader is familiar with the results of [Co90]

and [AF93] and the basics of the theory of graph minors and well-quasiordering [RS85, NW63, FL88].

The plan of the paper is as follows. In the next section we deal with most of the preliminaries. In

x3 we prove Theorem A. In x4 we prove Theorems B and C. In x5 we prove that the canonical second-

order recognizability congruence terminates, Theorem D. In x6 we address the problem of computing

the obstructions for unions and intertwines. In the �nal section we summarize and discuss some open

problems.

2 Preliminaries

All of our discussion concerns �nite simple graphs. A graph H is a minor of a graph G if a graph

isomorphic to H can be obtained from G by a sequence of operations chosen from (i) delete a vertex,

(ii) delete an edge, (iii) contract an edge, removing any multiple edges or loops that form. We write

G �m H to denote the minor order.

The topological order is de�ned G �top H if and only if G contains a subgraph H 0 that is

isomorphic to a subdivision of H, where a subdivision of a graph H is any graph that can be obtained

from H by replacing edges by vertex disjoint paths. The topological order can be equivalently de�ned
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by using the de�nition of the minor order, only restricting operation (iii) to edges where at least one

vertex has degree 2.

We may use the notation � for simplicity where it is clear which order is under discussion. An

ideal J in a partial order (U ;�) is a subset of U such that if X 2 J and X � Y then Y 2 J . The

obstruction set for J is the set of minimal elements of U � J .

If � and � are equivalence relations on a set U , we say that � re�nes � if

8x; y 2 U : x � y =) x � y

We say that � has �nite index on U if there are a �nite number of equivalence classes. The

equivalence class of x with respect to � is denoted [x]
�
, or perhaps just [x] where the equivalence

relation is clear.

De�nition. A tree-decomposition of a graph G = (V;E) is a tree T together with a collection of

subsets Tx of V indexed by the vertices x of T that satis�es:

1. (Covering) For every edge uv of G there is some x such that fu; vg � Tx.

2. (Interpolation) If y is a vertex on the unique path in T from x to z then Tx \ Tz � Ty.

The width of a tree decomposition is the maximum of jTxj � 1 taken over the vertices x of the tree

T of the decomposition. A graph G has treewidth at most k if there is a tree decomposition of G

of width at most k. Path-decompositions and pathwidth are de�ned by restricting the tree T to be

simply a path. The pathwidth of a graph G will be denoted pw(G).

There are several universes of boundaried graphs that we work with in this theory. The large

universe has been de�ned in x1.

De�nition. The small treewidth universe U ttree is the set of all t-boundaried graphs having a tree-

decomposition of width t� 1 for which the set of boundary vertices is the set of vertices indexed by

the root of the tree. The small pathwidth universe U tpath is the set of all t-boundaried graphs having

a path-decomposition of width t � 1 for which the set of boundary vertices is the last set of the

decomposition.

We will write U tsmall if it is a matter of indi�erence whether we mean U ttree or U
t
path.

The following easy lemma is left to the reader.

Lemma 2.1 If A and B are t-boundaried graphs in U tsmall then A�B has width less than or equal

to t.

We extend the minor and topological orders to t-boundaried graphs by requiring that the bound-

ary be held �xed in the operations de�ning the orders, and use the notation �m and �top to denote

the boundaried orders (the context will make clear whether the graphs have boundaries or not). If

A 2 U tlarge, int(A) denotes the subgraph of A induced by the non-boundary vertices of A.

De�nition. The small canonical congruence for F is de�ned for t-boundaried graphs X;Y 2 U tsmall

by X �
F
Y if and only if

8Z 2 U tsmall : (X � Z 2 F)() (Y � Z 2 F)

(Note that there are two 
avors, one for pathwidth and one for treewidth.)

Note that both �
F
and �

F
are de�ned on U t

small. Trivially, �F re�nes �
F
on the small universe,

but the two equivalence relations might not coincide. Courcelle and Lagergren have shown that on

U ttree the large canonical congruence has �nite index if and only if the small canonical congruence

has �nite index [CL94].
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We will make essential use of yet another kind of �niteness property that is exhibited by graph

ideals. To put this notion in a familiar context, suppose that L � �� is a formal language. Then

the canonical (Myhill-Nerode) congruence for L is de�ned: x �L y if and only if 8z 2 �� : [(xz 2

L)() (yz 2 L)]. A test set for L is a set of words T � �� such that if we de�ne x �T y if and only

if 8t 2 T : [(xt 2 L)() (yt 2 L)] then we get x �T y if and only if x �L y. A language is regular if

and only if it has a �nite test set.

Now suppose F is an arbitrary family of graphs. A t-concrete test set for F is a set T t � U tlarge
such that 8X;Y 2 U tlarge we have X �F Y if and only if

8T 2 T t : [(X � T 2 F)() (Y � T 2 F)]

Note that each concrete test graph T is used to de�ne a predicate.

A t-abstract test set for F is a set of predicates Pt such that the equivalence relation de�ned on

U tlarge by:

X � Y if and only if: 8P 2 Pt P (X)$ P (Y )

is a re�nement of the canonical second-order congruence.

De�nition. The canonical second order congruence for an ideal F (for convenience also denoted

�
F
) is de�ned on �nite sets of t-boundaried graphs in U tlarge by: if S1; S2 � U

t
large then S1 �F S2 if

and only if

8Z 2 U tlarge : (9X1 2 S1 : X1 � Z =2 F)() (9X2 2 S2 : X2 � Z =2 F)

De�nition. A (non-canonical) second-order congruence for F is an equivalence relation � de�ned

on �nite subsets of U tlarge for which S1 � S2 implies S1 �F S2.

Let A 2 U tlarge. We will use the notation S(A) to denote all the t-boundaried graphs properly

below A in the boundaried minor order.

De�nition. A second-order congruence � for an ideal F is called terminating if it satis�es the

condition: 9t0 such that 8t � t0, if A 2 U
t
path such that: (1) pw(A) � t0, and (2) jint(A)j � t0, then

fAg � S(A).

In the x5 we will show that the canonical second-order congruence for a lower ideal F is termi-

nating.

3 The Basic Computational Engine

In this section we prove the basic positive result on obstruction set computation for a �xed bound

on the width of the search space. The proof was sketched in the extended abstract [FL89b].

Theorem A. Suppose that F is an ideal in the minor order of �nite graphs and that we have the

following three pieces of information about F :

(1) An algorithm to decide membership in F (of any time complexity).

(2) A bound B on the maximum treewidth of the obstructions for for F .

(3) For t = 1; :::; B + 1 a decision algorithm for a �nite index right congruence � on t-boundaried

graphs that re�nes the small canonical congruence for F .

Then we can e�ectively compute the obstruction set O for F .

Proof. The algorithm is outlined as follows. For t = 1; :::; B + 1 we generate in a systematic way

the t-boundaried graphs of U ttree until a certain stop signal is detected. At this point, for a given t,
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we will have generated a �nite set of graphs Gt. Of particular interest among these are the graphs

Mt � Gt that are minimal with respect to a certain partial order � on t-boundaried graphs. We will

prove that O is a subset of

M =
B+1[

t=1

Mt

considering the graphs ofM with the boundaries forgotten.

There are three things to be clari�ed:

(1) how the graphs of the small universe are generated,

(2) the search ordering �, and

(3) the nature of the stop signal for width t.

(1) The order of generation of U ttree.

Suppose X is a t-boundaried graph, X 2 U ttree. By the size of X we refer to the number of

nodes in a smallest possible indexing tree for a tree decomposition of X. For a given t, we generate

the t-boundaried graphs of U ttree in order of increasing size. By the jth generation we refer to all of

those graphs of size j in this process.

(2) The search ordering �.

To de�ne �, we �rst extend the minor ordering of ordinary graphs to t-boundaried graphs in the

natural way by holding the boundary �xed. In other words, the boundaried minor order is de�ned

by the same local operations as the minor order, except that we are not allowed to delete boundary

vertices or to contract edges between two boundary vertices. This can be easily shown to be a wqo

on U tlarge by using the Graph Minor Theorem for edge-colored graphs. Let �m denote the minor

order on ordinary graphs and let �@m denote the boundaried minor order.

For X;Y 2 U ttree de�ne X � Y if and only if X �@m Y and X � Y . This is a wqo since there

are only �nitely many equivalence classes of � on U ttree.

(3) The Stop Signal.

The graphs of U ttree are generated by size, one generation at a time (where the jth generation

consists of all those of size j). We say that there is nothing new at time j if none of the t-boundaried

graphs of the jth generation are minimal with respect to the search order �.

A stop signal is detected at time 2j if there is nothing new at time i for i = j; :::; 2j � 1.

We have now completely described the algorithm. For t = 1; :::; B + 1 we generate the t-

boundaried graphs in the manner described until a stop signal is detected. We form the set M

and output the list of elements ofM (with boundaries forgotten) that are obstructions for F . Note

that having a decision algorithm for F is su�cient to determine if any particular graph H is an

obstruction, just by checking that H =2 F while each minor of H is in F . This same procedure and

the decision algorithm for � allow us to compute whether it is time to stop.

The correctness of the algorithm is established by the following claims.

Claim 1. For each value of t a stop signal is eventually detected.

This follows immediately from the fact that � is a wqo on U ttree and therefore there are only a

�nite number of minimal elements.

Claim 2. Suppose that for a given t a stop signal is detected at time 2j. Then no obstruction for F

that can be parsed with the t-boundaried set of operators has size greater than 2j.

If T is rooted tree, then by a rooted subtree T 0 of T we mean a subtree that is generated by
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some vertex r of T (the root of T 0), together with all of the vertices descended from r in T . For

t-boundaried graphs X and Y , we say that X is a pre�x of Y if, in a parse tree T for Y , X is parsed

by a rooted subtree T 0 of T . To denote that X is a pre�x of Y we write X � Y .

Now suppose that T is a parse tree of minimum size for a counterexample H to Claim 2. Since

all of the operators in the standard set are either binary or unary, there must be a pre�x H 0 of H

of size at least j. Since there is nothing new during the times when H 0 would have been generated,

Claim 2 follows from:

Claim 3. A pre�x of a graph that is minimal with respect to � must also be minimal.

If X is a pre�x of Y and X is not minimal then X �@m X 0 with X 6= X 0 and X � X 0. Since

� is a right congruence Y � Y 0 where Y 0 is obtained from Y by substituting a parse tree for X 0 for

the subtree that parses X in a parse tree for Y . Since X 0 is a proper boundaried minor of X, Y 0 is

a proper boundaried minor of Y . This implies that Y is not minimal with respect to �.

Claim 4. If X 2 O then for some t � B + 1, X 2Mt.

Since the treewidth of X is at most B, X 2 U ttree for some t � B+1. It remains to argue that X

is � minimal. But this is obvious, since any proper minor is in F and since � re�nes the canonical

F-congruence. 2

A pathwidth version of Theorem A can be proved in essentially the same way.

Jens Lagergren has shown that the use of the GMT in proving that the algorithm of Theorem

A terminates can be replaced by an explicit calculation of a \stopping time" computable from the

index of the congruence � [Lag93].

Perhaps surprisingly, Theorem A can be implemented and a number of previously unknown

obstruction sets have been mechanically computed [CD94, CDF95]. The \Holy Grail" of such e�orts

would be a computation of the obstruction set for torus embedding, which probably contains about

2,000 graphs.

Theorem A can also be adapted to other partial orders, including those such as the topological

order, that are not a wqo. It can be shown in this case that the (adapted) algorithm will correctly

terminate if and only if the ideal F has a �nite obstruction set | thus providing a potentially

interesting way to mechanically prove the existence of a �nite basis for particular ideals in non-wqos.

4 Computational Engines That Stop on Width

In this section, we extend the basic ideas of Theorem A in a couple of di�erent ways.

Let Ot denote the F obstructions of pathwidth at most t.

De�nition. An alarm for a lower ideal F is a pair of computable functions:

(1) f� : N ! N , and

(2) � : N ! f0; 1g, satisfying:

(a) (reliability) �(t) = 1 if there is an obstruction H 2 O �Ot of pathwidth more than f�(t)

(b) (eventual quiescence) 9t0 such that 8t � t0, �(t) = 0.

Theorem B. Suppose the following are known for a minor order lower ideal F :

(1) A decision algorithm for membership in F .

(2) A decision algorithm for a �nite-index congruence for F . (The congruence can be either large or

small.)

(3) Algorithms for computing � and f� for an alarm for F .
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Then the obstruction set O for F can be computed.

Proof. For any �xed t, Ot can be computed using subroutines (1) and (2) by the methods of

Theorem A adapted to pathwidth computations.

De�ne the t-Stop Signal to be that:

Oi = Ot for i = t; ::::; f�(t)

and

�(t) = 0

This forms the basis of the procedure that establishes the theorem.

Obstruction Set Computation

(1) t 0

(2) Repeat until a t-Stop Signal is detected:

t t+ 1

Compute Ot and �(t).

Check for Stop Signals based on everything computed so far.

(3) Output O = Ot.

To see that this works correctly, it su�ces to argue: (1) if O 6= Ot then there will be no t-Stop

Signal, and (2) eventually there will be a Stop Signal. If O 6= Ot then we consider two cases: (i)

There is an obstruction H 2 O � Ot with pw(H) � f�(t). In this case, the �rst condition for a

t-Stop Signal will fail. (ii) There is an obstruction H 2 O�Ot with pw(H) > f�(t). In this case, the

reliability of the alarm implies that �(t) = 1 and so the second condition for a t-Stop Signal fails.

If t1 is the maximum pathwidth of an F obstruction, then for all t � t1, we have O = Ot = Ot1 .

Thus the �rst condition for a t-Stop Signal will be satis�ed for all t � t1. Let t2 = maxft0; t1g. The

eventual quiescence of the alarm insures that the second condition for a t2-Stop Signal will be met.

2

We next prove an obstruction set computation algorithm that employs a terminating second-

order congruence as the alarm.

Let Bh denote the complete binary tree of height h. Thus B1 consists of a root and two children.

Bh has 2h � 1 vertices, each vertex that is not a leaf has two children and each leaf is at distance h

from the root. Let h(t) be the least value of h such that Bh(t) has pathwidth more than t, and let

f(t) be the number of vertices of Bh(t). It can be shown that f(t) = O(22t). We will use the notation

f�1(y) to denote the largest positive integer x such that f(x) � y. The following structural lemma

is crucial to the approach. The proof has appeared in [CDF96].

Lemma 4.1 (Wide Factor Lemma) Let H be an arbitrary undirected graph, and let t be a

positive integer. One of the following two statements must hold:

(a) The pathwidth of H is at most f(t)� 1.

(b) H can be factored: H = A�B, where A;B are boundaried graphs with boundary size f(t), the

pathwidth of A is greater than t, and A 2 U
f(t)
path.

Furthermore, if f(t+ 1) > t0 > f(t), then one of the following must hold:

(c) The pathwidth of H is at most t0 � 1.

(d) H = A�B, A 2 U t
0

path, B 2 U
t0

large, and pw (A) > t. 2

Proof Sketch. We suppose that we have a set of 2h(t) � 1 tokens corresponding to the vertices

of Bh(t). By a procedure for pebbling the graph with these tokens, we can either: (1) completely
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pebble the graph, in which case the sets of vertices occupied by pebbles at times t = 0; 1; 2; ::: yields

a path-decomposition of width at most 2h(t) � 2, or (2) we get stuck (by running out of pebbles). In

this case, at the stuck point, all of the pebbles are on the graph, and are linked in such a way that

they provide a proof that the graph contains Bh(t) topologically. We remark that the proof of this

Lemma (which we use here only structurally) is signi�cant for providing the �rst simple linear-time

algorithm for obtaining an approximate path-decomposition of a graph. 2

We remark that the Wide Factor Lemma appears to be a bit \thin" in the sense that a \best

possible" lower bound on the pathwidth of the t-factor should probably be closer to t=4 than log t.

No analog for treewidth is currently known.

The Wide Factor Lemma is part of our method of recursively detecting large counterexamples to

the hypothesis: O = Ot. The form proved above is the most natural, in some sense, since it is allied

with an e�cient approximate path decomposition algorithm. The factor A that it produces has the

weakness, however, that all of the vertices of A may be boundary vertices. We next prove a form

that is probably better suited to establishing termination properties of second-order congruences.

We give this variation a similar name.

Lemma 4.2 (Fat Factor Lemma) There is a (known) recursive function f(t) = O(22t) such that

if H is an arbitrary undirected graph then one of the following three statements must hold:

(1) The pathwidth of H is at most f(t)� 1.

(2) H can be factored: H = A�B, where A and B are f(t)-boundaried graphs, the pathwidth of A

is greater than t, A has at least t internal vertices, and A 2 U
f(t)
path.

(3) H topologically contains the complete graph on t vertices.

Proof. We make use of a theorem of Mader [Mad72] that constructively identi�es a function

g(t) = O(2t) such that any graph with minimum degree g(t) contains topologically the complete

graph on t vertices. We use the same proof technique as for the Wide Factor Lemma, except that we

preface the pebbling procedure of that proof with an attempt at the following pebbling moves that

require at most t � g(t) + 1 additional pebbles:

Repeat t times:

If there is a vertex v of H of degree at most g(t) (possibly pebbled) then:

Pebble N [v].

Remove the pebble from v.

If we are unable to complete this preface, then H has a subgraph of minimum degree g(t), and

therefore H topologically contains the complete graph Kt. If we complete the preface, then the

argument for the Wide Factor Lemma shows that one of the other two alternatives must hold. 2

Theorem C. Suppose the following are known for a minor order lower ideal F :

(1) A decision algorithm for membership in F .

(2) A decision algorithm for a terminating second-order congruence � for F .

Then the obstruction set O for F can be computed by an algorithm that uses (1) and (2) as subrou-

tines.

Proof. We may assume that F is nontrivial (i.e., has at least one obstruction) because this can

be easily determined using the subroutine for (2) with t = 2. (Note that the algorithm (2) allows

us to decide a large (�rst-order) congruence for F for elements of U tlarge by considering singleton
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sets, and that this congruence necessarily re�nes the canonical �rst-order congruence for F .) Let Ot

denote the F obstructions of pathwidth at most t. LetMt denote the minimal elements of U tpath in

the partial order that is the intersection of the large (�rst-order) congruence available from (2) and

the boundaried minor order. Since the congruence has �nite index, Mt is �nite by the GMT. For

any �xed t, the sets Ot andMt can be computed using subroutines (1) and (2) by the methods of

Theorem A adapted to pathwidth computations.

Let m(t) denote the maximum order of an obstruction of pathwidth at most t. Let f be the

function in the Fat Factor Lemma. Let t0 > f(m(t)). We say that the t-Stop Signal is witnessed at

t0 if: (1) Oi = Ot for i = t; ::::; t0, and

(2) 8A 2Mt0 with pw(A) > f�1(t0) �m(t) and jint(A)j > f�1(t0) � m(t) : fAg � S(A).

A t-Stop Signal occurs if there is a t0 > t as above at which it is witnessed.

Obstruction Set Computation

(1) t 0

(2) Repeat until a t-Stop Signal occurs:

t t+ 1

Compute Ot and M t.

Check for Stop Signals based on everything computed so far.

(3) Output O = Ot.

We argue that if O 6= Ot then there will be no t-Stop Signal. Let H 2 O � Ot, and suppose

that the t-Stop Signal is witnessed at t0. If pw(H) � t0 then clearly there will be no Stop Signal. So

suppose pw(H) > t0 where t0 > f(m(t)). By Lemma 4.2, one of two cases must hold:

Case 1: There is a factorization H = A � B where A 2 U t
0

path, B 2 U
t0

large, pw(A) > m(t) and

jint(A)j > m(t). Since A is a factor of an obstruction, we have that for every A0 properly below A

in the boundaried minor order, A0 � B 2 F and therefore A 6�
F
A0. Consequently for each such A0

we have A 6� A0 and thus A 2 Mt0 . We also have that fAg 6�
F
S(A) and therefore fAg 6� S(A), a

contradiction.

Case 2: A topologically contains the complete graph onm(t) vertices. But in this case A topologically

contains any obstruction in Ot, which contradicts that it is a factor of an obstruction in O �Ot.

If O = Ot (this must eventually hold, since O is �nite), then a t-Stop Signal will be witnessed

at t0 = maxff(t0); f(m(t))g, where t0 is the termination constant. 2

Some Remarks on Implementations

A proof that an obstruction set can be computed that uses Theorem C (or Theorem B) leaves

us in an interesting situation. For a concrete example, suppose we believe (and are correct) that all

of the obstructions have been found for t = 4. We know by Theorem B that if we are wrong, either

we will �nd a new obstruction at t0 = 5, or a factor of a large obstruction will cause the second part

of the t = 4 Stop Signal not to occur at t0 = 5. However, there is no converse implication for the

second part of the Stop Signal; it may fail at t0 = 5 even if O = O4. All that we are guaranteed is

that there exists a t0 at which the t = 4 Stop Signal will be witnessed. Whether in practice much

\waiting" is required for a particular obstruction set computation is an interesting question (which

of course will depend on the particular congruence employed).

Furthermore, suppose that the procedure of Theorem C is applied using a second-order congru-

ence for F that is not known to be terminating. If a t-Stop Signal is observed at at some t0 then the

proof of the theorem shows that O = Ot. For implementations, this is likely to be a valuable su�-

cient condition for obstruction set identi�cation. We conjecture that many \natural" second-order
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congruences terminate rapidly, while our ability to prove termination appears to be much weaker. A

natural second-order congruence for the union of ideals is described in x6.

The implementation of an obstruction set computation engine at the University of Victoria and

Los Alamos National Laboratories (described in [CD94, CDF95]) is based, for a �xed pathwidth

bound t, on the exploration of a tree whose root is the empty t-boundaried graph, and whose

nodes correspond to the elements ofMt, the minimal elements with respect to a known (�rst-order)

congruence � for F . An element of Mt is characterized by the property: 8A0 2 S(A) : A 6� A0.

In the proof of Theorem C we use the stronger property satis�ed by a factor A of an obstruction

relative to a second-order congruence � for F : A 6� S(A). This can provide the basis for an improved

search strategy that explores only the subtree generated by that subset ofMt that satis�es this more

stringent minimality criterion. Based on some computational experiments with the implementation

package described in [CD94, CDF95], it appears that (for a �xed width) the search trees that result

from this approach can be very much smaller than the search trees based on �rst-order congruences.

5 The Canonical Second-Order Congruence

In this section, we show that Theorem C is natural, by establishing that the canonical second-order

congruence for an ideal necessarily terminates.

Lemma 5.1 Let G = (V;E) be an ordinary graph. If pw(G) = w then any subdivision of G has

pathwidth at most w + 2.

Proof. Let H = be a subdivision of G. Thus for each edge uv of G we have a (possibly empty) set

of vertices of H that subdivide uv. Let Suv denote this set of vertices and suppose that the vertices

of Suv are indexed in the order in which they occur between between u and v, starting from either

end (this is not important)

Suv = fs[u; v; i] : 1 � i � muvg

Let (P1; :::; Pm) be a path decomposition for G of width w. Thus each set of vertices Pi has at most

w�1 members. For each edge uv of G choose a set Piuv of the decomposition such that fu; vg � Piuv .

We may assume that the choices are all distinct, just by assuming that any set of the decomposition

of G is repeated su�ciently many times. We can obtain a path decomposition of H of the width

required by replacing each set Piuv in the decomposition of G by the sequence of sets:

(Piuv ; Piuv [ fs[u; v; 1]g; Piuv [ fs[u; v; 1]; s[u; v; 2]g; Piuv [ fs[u; v; 2]; s[u; v; 3]g; � � �

Piuv [ fs[u; v;muv � 1]; s[u; v;muv ]g; Piuv [ fs[u; v;muv ]g; Piuv )

That this satis�es the de�nition of a path decomposition for H is easily checked. 2

De�nition. A t-boundaried graph A 2 U tlarge is a minimal topological factor of an ordinary graph

H with respect to a �xed t-boundaried graph B 2 U tlarge if:

(1) A�B �top H, and

(2) For every A0 properly below A in the boundaried topological order, A�B is not above H in the

topological order.

Lemma 5.2 Suppose A;B and B are t-boundaried graphs with A a minimal topological factor of

H with respect to B and B a minimal topological factor of H with respect to A. Then A� B is a

subdivision of H where the only subdivisions are boundary vertices. 2
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De�nition. Given an ordinary graph H, de�ne partst(H) to be the set of all t-boundaried graphs

A 2 U tlarge for which there is a t-boundaried graph B 2 U tlarge such that A is a minimal topological

factor of H with respect to B.

Lemma 5.3 partst(H) is computable from H.

Proof. Let H(t) denote the graph obtained from H by subdividing each edge t times, or equivalently,

replacing each edge with a path having t internal vertices. Let P (H) denote the set of t-boundaried

graphs obtained from H(t) by the following procedure:

(1) In all possible ways: specify a boundary set V 0 of size t.

(2) In all possible ways: partition the edge components of H � V 0 into two sets and thus obtain two

factors A and B of H(t).

(3) For each such factorization A � B = H(t) compute the minimal factors of H with respect to B

that are below A in the boundaried topological order.

(4) Let P (H) be the union of the sets computed in Step (3).

Clearly P (H) � partst(H) by de�nition. To prove the inclusion in the other direction, suppose

A is a minimal topological factor of H with respect to B, where A;B 2 U tlarge. Let B
0 be a minimal

topological factor of H with respect to A. From the de�nition, A is also a minimal topological factor

of H with respect to B0. By Lemma 5.3, A�B0 is a subdivision of H in which the only subdividing

vertices are boundary vertices. The lemma follows. 2

The next lemma follows easily from the de�nitions.

Lemma 5.4 Let X and Y be t-boundaried graphs. Then X � Y �top H if and only if there are

X 0; Y 0 2 partst(H) for which: X �top X 0, Y �top Y 0, X � Y 0 �top H, X 0 � Y �top H, and

X 0 � Y 0 �top H. 2

Theorem D. The canonical second-order congruence �
F
for a lower ideal F terminates.

Proof. By the GMT, F has a �nite set of obstructions in the minor order, and therefore also a �nite

set of obstructions O = fH1; :::;Hsg in the topological order. Let m be the maximum pathwidth of

the Hi. Take t0 = m+ 3. Suppose A 2 U tsmall for t � t0, and suppose pw(A) � t0. If fAg 6�F S(A)

then there is a t-boundaried graph B 2 U tlarge such that A�B =2 F but for every A0 2 S(A) we have

A0 � B 2 F . Thus A � B �top Hi for some i, 1 � i � m. Suppose that B is a minimal element

in the t-boundaried topological order on U tlarge for which this is so. By Lemma 5.4, it must be the

case that A 2 partst(Hi). By Lemma 5.2, A � B is a subdivision of Hi. By Lemma 5.1, we have

pw(A�B) � m+ 2. But this contradicts that pw(A) � m+ 3. 2

Note that the property of termination for a second-order congruence is a �niteness property,

and thus is amenable to powerful tools such as the GMT. The GMT is used implicitly in the above

proof of termination.

6 A Second-Order Congruence for the Union Problem

A consequence of Theorem A is that the obstructions for a union F = F1 [ F2 of lower ideals is

computable from O1 and O2 if O1 and O2 each contain a planar graph, since in this case it is possible

to e�ectively calculate a bound on the maximum treewidth of an F-obstruction, and since knowledge

of O1 and O2 allow us to compute a re�nement of the canonical recognizability congruence for F

(see Lemma 6.1 below). Alternatively, using the results of Lagergren and Arnborg [LA91], we have

enough information to compute a bound on the maximum number of vertices in an F-obstruction,

and can then compute O by exhaustive search. If we are only interested in planar graphs, then such
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a bound on the maximum size of an obstruction can also be computed by the di�erent method of

Gupta and Impagliazzo [GI91] which may give a better bound.

In this section, we show how to use Theorem C to compute the obstruction set for a union

F = F1 [ F2 of ideals with known obstruction sets O1 and O2, in the case where one of these

contains a tree.

Clearly, knowing O1 and O2 allows us to decide membership in F , and thus we have the �rst

ingredient for applying Theorem C. We next describe a decision algorithm for a second order con-

gruence for F based on a set of abstract tests.

For each positive integer t, the set of predicates (abstract tests) is indexed and de�ned as follows,

where X is the t-boundaried graph to which the predicate is applied:

Index: (B1; B2) where B1 2 parts
t(H1), B2 2 partst(H2), H1 2 O1 and H2 2 O2.

Question: Is there a choice of i 2 f1; 2g such that X �Bi 2 F ?

We say that X fails the test � = (B1; B2) if the answer to the question is \no".

De�nition. If T = fT tg is a collection of sets of tests on t-boundaried graphs, we de�ne the

second-order congruence induced by T by S1 � S2 if and only if

8� 2 T t : (9A1 2 S1 : A1 fails �)() (9A2 2 S2 : A2 fails �)

Note that if the sets of tests are �nite, then the induced congruence has �nite index on subsets

of U tlarge.

Lemma 6.1 The second-order congruence � induced by the set of tests described above is a re�ne-

ment of the canonical second-order congruence for F = F1 [ F2.

Proof. Suppose S1 and S2 are sets of t-boundaried graphs with S1 6�F S2. Then (w.l.o.g.) 9Z 2

U tlarge and 9X 2 S1 with X � Z =2 F but 8Y 2 S2, Y � Z 2 F .

So we have X �Z =2 F1 and X �Z =2 F2. Let Z �top Z1 where Z1 is minimal in the boundaried

topological order, such that X � Z1 =2 F1 and similarly, suppose X � Z2 =2 F2 where Z �top Z2 and

Z2 is minimal. Then for some H1 2 O1 and for some H2 2 O2, we have Zi 2 partst(Hi) for i = 1; 2.

So � = (Z1; Z2) is a test failed by X.

For all Y 2 S2, either Y � Z 2 F1 or Y � Z 2 F2, and therefore, either Y � Z1 2 F1 or

Y � Z2 2 F2, so Y passes � . Thus S1 6� S2. 2

We conjecture that the above congruence always terminates, but for now we have only the

following weaker result.

Theorem E. Suppose that F is a union of ideals in the minor order

F = F1 [ F2

where the obstruction sets O1 and O2 for F1 and F2 are known and suppose that O1 contains at

least one tree T . Then the obstruction set O for F can be e�ectively computed.

Proof. Let O0i be the set of topological obstructions for Fi, i = 1; 2. These are easily computed from

the sets Oi. Choose t0 to be larger than the maximum number of vertices of any graph in O1 [ O2,

and large enough so that any graph of pathwidth greater than or equal to t0 contains topologically

a complete binary tree T1 of su�cient size so that any forest T 01 obtained from T1 by contracting or

deleting a single edge still has the obstruction tree T as a minor.

Now suppose t � t0 and A 2 U
t
path such that:

(1) pw(A) � t0, and
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(2) jint(A)j � t0
and suppose that A fails the test � = (B1; B2). Thus A�B1 =2 F1 and A�B2 =2 F2. Choose H 2 O

0

2

so that A�B2 �top H, and �x attention on:

� A subgraph S1 of A that is a subdivision of T1.

� A subgraph S2 of A�B2 that is a subdivision of H.

The vertices of S2 are of two di�erent kinds: (i) those that correspond to vertices of H, and (ii)

those that correspond to subdivisions of edges of H. Let u 2 int(A) be a vertex in the interior of A

that is not of the kind (i). If u has degree 0, then A0 = A � u fails � and we are done. Otherwise,

there is an edge uv in A. Let A0 be obtained from A by contracting uv. We have A0 �m T , so

A0 � B1 =2 F1, and we have A0 � B2 �top H, so A0 �B2 =2 F2. Thus A
0 2 S(A) fails � , which shows

that � terminates. 2

As intertwine of two graphs G and H is a graph that contains both G and H topologically,

and that is minimal for this in the topological ordering. As a corollary of Theorem E, we have the

following concerning the computation of the (necessarily �nite, by the GMT) set of intertwines of

two graphs.

Corollary. The set of intertwines of an arbitrary graph G and a tree T can be e�ectively computed.

Proof. Let O1 be the set of graphs that are minimal in the minor order (equivalently, the topological

order) on the universe U of graphs of maximum degree, among those graphs that have G as a minor.

Let O2 similarly be the set of graphs that are minimal in the minor order (equivalently, the topological

order) on U , among those graphs (i.e., trees) that have T as a minor. These sets can be computed

by considering all possible ways of splitting vertices of degree greater than 3.

The procedures of Theorems A, B and C can be restricted to recursive subsets of the set of all

graphs (in the manner of Consequence 2 of [FL88]). Using Theorem C restricted in this way to U ,

compute the U -intertwines of each pair of graphs (H1;H2) with H1 2 O1 and H2 2 O2, and let O

denote the union of all of these sets of U -intertwines. It is easy to show that if H is an intertwine

of G and T , then H is a minor of some H 0 2 O. The set of intertwines of G and T can therefore be

computed by searching exhaustively among the minors of the graphs in O. 2

7 Summary and Open Problems

To what extent can the Graph Minor Theorem be made e�ective? It seems to us that much further

progress on this general question should be possible, in part because powerful results (such as the

GMT itself), can be brought to bear on such questions. It is sometimes assumed that anything

having to do with well-quasiordering is hopelessly impractical, but the successful implementation of

obstruction set theorem-provers belie this and must be regarded as a notable development, given the

important role of forbidden substructure theorems in graph theory.

The main contribution of this paper has been to establish methods for computing obstruction

sets that do not require a prior bound on maximum obstruction width. The notion of a second-order

congruence is also of practical signi�cance for implementations of obstruction set theorem-provers.

The following three basic questions stand out for attention.

(1) Is it possible to compute the obstruction set for a minor ideal F from an oracle for F membership

and an oracle for the canonical recognizability congruence for F ?

(2) Is it possible to compute the obstruction set for a minor ideal F from a MSO description of F ?
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(3) Is it possible to compute the obstructions for a union of ideals F = F1 [F2 from the obstruction

sets for F1 and F2 ?

By standard arguments, it is not hard to show that an answer of \yes" to question (i) implies

\yes" to question (i + 1) for i = 1; 2. Our limited positive result on (3) could be extended to the

case where one of the ideals excludes a planar graph if there is a positive resolution of the following

question.

(4) Is there a treewidth analog of the Fat Factor Lemma?
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