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Abstract

The problem of finding the most effective set and orderingpti-o
mization phases to generate the best quality code is a fuztam
issue in compiler optimization research. Unfortunateisg, éxorbi-
tantly large phase order search spaces in current compileke
both exhaustive as well as heuristic approaches to seardhédo
ideal optimization phase combination impractical in mosses.

In this paper we show that one important reason existingchear
techniques are so expensive is because they make no atteexgt t
ploit well-known independence relationships betweennoiztion
phases to reduce the search space, and correspondingbywirthe
search time. We explore the impact of two complementary-tech
niques to prune typical phase order search spaces. Ourefitst t
nique studies the effect of implicit application of cleanpipases,
while the other partitions the set of phases into mutualtiepen-
dent groups and develops new multi-stage search algorithats
substantially reduce the search time with no effect on bekt-d
ered code performance. Together, our techniques pruneflaeis-
tive phase order search space size by 89%, on average, ¥96.75

total search space reduction) and show immense potential at mak-

ing iterative phase order searches more feasible and gahctihe
pruned search space enables us to find a small set of distiasep
sequences that reach near-optimal phase ordering perfoerfiar
all our benchmark functions as well as to improve the behlaxfio
our genetic algorithm based heuristic search.

Keywords optimization ordering, iterative compilation, search
space pruning

1. Introduction

Finding the best set and combination of optimization phésep-
ply is a fundamental, long-standing and persistent prolecom-
piler optimization research [11, 20, 25]. Each optimizatase in
a compiler applies a series of code transformations to ixgpoo-
gram quality with respect to performance, code size andiorep
Successful application of an optimization phase often dép®n
the availability of registers and the existence of speaifitriiction
and control-flow patterns in the code being optimized. Thabpr
lem of optimization phase ordering is caused by the interast
between optimization phases that create and destroy tluiticos

for the successful application of successive phases. Quesdy,
different phase orderings can generate different progepresen-
tations with distinct performances.

Researchers have also discovered that there is no single or-
dering of phases that will produce the best code for all appli
tions [6, 24, 26]. Instead, the ideal phase sequence depenitie
characteristics of the code being compiled, the compil@témen-
tation, and the target architecture. Earlier research svorfiformly
find that applying customized per-function or per-prograpti-o
mization phase sequences can significantly improve pedoce
— by up to 350% with GCC [10], up to 85% with SUIF / GCC [1],
up to 47% with their research compiler [2], and up to 33% with
VPO, compared to the fixed sequence used in their respectie ¢
pilers. It is also crucial in certain application areasel&mbedded
systems, for the compiler to generate the best possibleibctle.
Small improvements in program speed, memory (code sizdjpan
power consumption in such areas can result in huge savings fo
products with millions of units shipped.

An exhaustivesolution to the phase ordering problem attempts
to evaluate the performance of codes generated by all pesgib-
mization sequences to find tlptimal solution for each function /
program. However, current compilers implement many oami
tions, causing exhaustive phase order searches to operate i
tremely large search spaces. Researchers have shownepeandd
ing on the compiler employed, exhaustive phase orderingises
in existing compilers may need to evaluate up t&2[6], 229 [24],
or 15" [19] different phase combinations, making such an ap-
proach extremely time-consuming in most cases. In spiteidfi s
high costs, exhaustive searches are stitical to: (a) understand
the nature of the phase order search space, (b) determimethe
formance limits of the phase ordering problem for a compded
(c) evaluate the effectiveness of faster, but imprediseyisticso-
lutions to the problem.

Researchers are also developing heuristic machine-tepamd
statistical algorithms that can result in a more focusedcseand
have been shown to often provide good phase ordering soutio
Unfortunately, to be effective, even these heuristic atgors still
need to evaluate hundreds of different phase sequencessh mo
cases. All search approaches that generate and evaluaelsev
function instances are callé@rative search algorithms.

Hypothesis:In this paper we hypothesize that one reason for the
high search-time cost of existing iterative algorithmsgbase or-
der search space exploration is that they do not take intouatc
intuitive and well-known relationships between specifiougs of
optimization phases. Although the issue of phase orderxigfse
due to unpredictable phase interactions, each phase mangteot
act with every other phase in a compiler. In this work, we foon

two important categories of phase independence relatijosnshat
exist in our compiler. First, some optimization phases irom<
piler, such aglead assignment eliminaticand dead code elimi-



nation can be designated atanupphases that do not affect any
useful instructions in the program, and are thus unlikelyave
many interactions with other phases. Removing such phases f
the phase order search space and applying them implictdy es-
ery relevant phase may substantially prune the phase oedects
space. Second, it may be possible to partition the set ahigation
phases into distinct branch and non-branch sets since pheses
are most likely to interact with phases within their setd, $how
minimal interactions with phases in the other set. Such @lsas
partitioning may allow the phase order search to be conduase
a series of smaller searches, each over fewer optimizahiasgs.
Just agm! +n!), for larger values ofnandn, is much smaller than

for some small programs [2]. Another study evaluated diffeior-
derings of performing loop unrolling and tiling with diffemnt unroll
and tiling factors [16]. In this work, we employ an algorittion ex-
haustive phase order search space exploration discussedllier
works [18, 19]. However, our techniques to prune the phaderor
search space are novel and complementary to existing tpetmi
Research for addressing the phase ordering/selectioepnob
has also focused on designing and applying heuristic dlgos
during iterative compilation to find good (but, potentiadlybopti-
mal) phase sequences relatively quickly. Cooper et al. wereng
the first to apply machine-learning techniques to find gooalsph
orderings to reduce the code size of programs for embedded sy

(m+n)!, suchstagedphase order searches over smaller partitioned tems [6]. Genetic algorithms with aggressive pruning ohial

optimization sets can result in huge search space redsatithout
any loss in the performance of the best generated code.

Goal: The goal of this work is to validate and test this hypothesis
for our compiler and measure the resulting reduction in eloader
search space size and effect on best phase ordering perfcema
Suchinnocuoussearch space reductions can make exhaustive an
heuristic phase order searches much more feasible andcatant
existing and future compilers. Thus, the primary contiidmsg of
this work are:

1. This is the first work that employsdependenceharacteristics
of optimization phases to prune the phase order search.space

2. This paper presents the first exploration of the effectrgflic-

itly applying cleanup phases during the phase order search o

the size of the search space and best achieved performance.

3. This is the first investigation of the possibility and impaf
partitioning optimizations and performing phase ordercees
in multiple stages over smaller disjoint subsets of phadés.

and equivalent phase orderings was employed by Kulkarni.et a
to make searches for effective optimization phase seqsdaster
and more efficient [17]. Hoste and Eeckhout proposed a multi-
objective evolutionary technique to select a single sgttihcom-
piler optimization flags for the entire application [14].®essful

gattempts have also been made to use predictive modelingoated c

context information to focus search on the most fruitfubaref the
phase order search space for the program being compilegiddi-
tionally, researchers have used static estimation teaksitp avoid
expensive program simulations for performance evalugfip24].
Our techniques described in this paper are complementati/er-
isting approaches and can further improve the solutionseted
by heuristic search algorithms.

Several researchers have investigated the effect of tbedimt
pendence between specific pairs of optimization phaseseopeth
formance of generated code. For example, researchers hale s
ied the interactions betweamnstant folding& flow analysisand
register allocation& code generatiorin the PQCC (Production-
Quality Compiler-Compiler) project [20], betweende generation

also design and implement the first algorithm to conduct ex- g compactionfor VLIW-like machines [25], as well as between

haustive (multi-stage) phase order searches over padiisets
of phases.

register allocation& code scheduling3, 13, 22]. Many of these
studies suggested combining specific pairs of phases, filges

4. We show how to use our observation regarding phase indepen Another complementary study found that implicit applioatiof
dence to find a common set of near-optimal phase sequences/egister remappingand copy propagationduring the phase order

and to improve heuristic genetic algorithm-based phaserord
searches.

search removes phase interactions that do not contributestity
code and effectively reduces the search space [15]. Alstectto
our approach are studies that attempt to exploit phaseairtten

The rest of the paper is organized as follows. We describe re- yg|ationships to address the phase ordering problem. Thelsele

lated work in the next section. Our compiler setup and erpenial
framework are presented in Section 3. In Section 4, we desoxir
observations regarding the pair-wise independence ttters be-
tween optimization phases to validate our hypothesis. ti@e5
we explore the effect of implicit application of cleanup pha on
the search space size and best performance delivered bystixiea
phase order searches. In Section 6 we investigate the effpatti-
tioning the set of optimization phases, and develop newrilgos
for exhaustive and heuristic phase order searches. Weutistef
work in Section 7 and present our conclusions in Section 8.

2. Related Work

Compiler researchers have investigated several stratepéxplore
and address the phase ordering problem. Despite suggestian
the phase ordering problem is theoreticallydecidable[23], ex-
haustive evaluation of the compiler optimization phasepsgarch
space has been conducted in some existing compilers, but is e
tremely time consuming [19]. Researchers have devisecasgige
techniques to detect redundancies in the phase order sgch to
allow exhaustive search space enumeration for most oftleeich-
mark functions [17, 18]. Enumerations of search spaces wer
sets of available optimization phases have also been attebp-
fore. One such work exhaustively enumerated a 10-of-5 sudesp
(optimization sequences of length 10 from 5 distinct optations)

strategies to use enabling and disabling interactions dxtvop-
timization phases to automatically generate a singlecstigtiault
phase ordering [26, 27], as well as to automatically adafsutte
phase ordering at runtime for each application [18]. In @Bt
in this work we evaluate the potential of phase independeace
lationships to prune the phase order search space to ezt f
exhaustive and heuristic phase order searches.

3. Experimental Framework

In this section we describe our compiler framework, benakma
and experimental setup, and the algorithm we employ for eur d
fault exhaustive phase order searches.

3.1 Compiler Framework

The research in this paper uses the Very Portable Optimizer
(VPO) [4], which was part of the DARPA and NSF co-sponsored
National Compiler Infrastructure project. VPO is a compiback-

end that performs all its optimizations on a single low-leuger-
mediate representation called RTLs (Register Transfes).i3he

15 reorderableoptimization phases in VPO are listed in Table 1.
For each optimization listed in column 1, column 2 presehés t
code we use to identify that phase in later sections, andhuolu

3 provides a brief description of each phase. Most phaseid V
can be applied repeatedly and in an arbitrary order. Unlikeother



Optimization Phase | Code [ Description |

branch chaining b Replaces a branch/jump target with the target of the laspjumthe chain.
common subexpressiof ¢ Performs global analysis to eliminate fully redundant gkdtions, which also includes global constant and capy
elimination propagation.
dead code elimination d Removes basic blocks that cannot be reached from the furetity block.
loop unrolling g Reduces the number of comparisons and branches at run ttheédsnscheduling at the cost of code size incredse.
dead assignment elim. h Uses global analysis to remove assignments when the adsighe is never used.
block reordering i Removes a jump by reordering blocks when the target of th@ juas only a single predecessor.
loop jump minimization j Removes a jump associated with a loop by duplicating a podfdhe loop.
register allocation k Uses graph coloring to replace references to a variabléndtlive range with a register.
|

Performs loop-invariant code motion, recurrence elimamtloop strength reduction, and induction variakjle
elimination on each loop ordered by loop nesting level.

loop transformations

code abstraction n Performs cross-jumping and code-hoisting to move identiestructions from basic blocks to their commdn
predecessor or successor.

evaluation order determ. o) Reorders instructions within a single basic block in anmagteto use fewer registers.

strength reduction q Replaces an expensive instruction with one or more cheages. ¢-or this version of the compiler, this meahs
changing a multiply by a constant into a series of shift, addd subtracts.

branch reversal r Removes an unconditional jump by reversing a conditionah@in when it branches over the jump.

instruction selection s Combines pairs or triples of instructions that are are ihkg set/use dependencies. Also performs consfant
folding.

useless jump removal u Removes jumps and branches whose target is the followinigigred block.

Table 1. Candidate Optimization Phases Along with their Desigmetio

Category| Program IELIJII’?:é Description
auto bitcount | 10 18 | bit manipulation operations
gsort 1 2 | sort strings using quicksort
network | dijkstra 1 6 | Dijkstra’s shortest path algorithn
patricia 2 9 | patricia trie for IP traffic
telecomm| fft 3 7 | fast fourier transform
adpcm 2 3 | compress 16-bit PCM samples
consumel| jpeg 7 62 | image compress/decompress
tiff2bw 1 9 | convert colottiff image to b&w
security | sha 2 8 | secure hash algorithm
blowfish | 6 7 | symmetric block cipher with
variable length key
office search 4 10 | searches for words in phrases
ispell 12 | 110 | fast spelling checker

Figure 1. DAG for Hypothetical Function with Optimization
Phases, b, andc

Table 2. MiBench Benchmarks Used

(at least once) with the standasthallinput data set provided with
each benchmark.

VPO phasesloop unrollingis applied at most once in each phase . .
sequence. Our current experimental setup is tuned for gengr 52 Setup for Exhaustive Search Space Enumeration
high-performance code while managing code-size for emdx@dd Our research goal is to investigate the impact of techniqoat

systems, and hence we use a loop unroll factor of 2. In aagligg- exploit phase independence to prune the phase order sqmoh s
ister assignmentwhich is a compulsory phase that assigns pseudo size, while achieving the best phase ordering performaAse.
registers to hardware registers, is implicitly performgd\tPO such, we implemented the framework presented by Kulkarni et

before the first code-improving phase in a sequence thatremqu  al. to generate per-function exhaustive phase order sepates
it. After applying the last code-improving phase in a segeen [19]. Our exhaustive phase order searches use all of VPO's 15
VPO performs another compulsory phase that inserts irtgins reorderable optimization phases. In this section we bradkcribe

at the entry and exit of the function to manage the activatmord this algorithm.
on the run-time stack. Finally, the compiler perforistruction The algorithm to evaluate per-function exhaustive phaseror
schedulingoefore generating the final assembly code. search spaces generates all possible function instanaesah be

For our experiments in this paper, VPO is targeted to gemerat produced for that function by applying any combination ofi-op
code for the ARM processor running the Linux operating syste  mization phases of any possible sequence length (to acéount
We use a subset of the benchmarks fromMiBenchbenchmark repetitions of optimization phases in a single sequendels ih-

suite, which are C applications targeting specific areat®fem- terpretation of the phase ordering problem allows the ploader
bedded market [12]. We randomly selected two benchmarka fro search space to be viewed as a directed acyclic graph (DA®$-of
each category of applications present in MiBench. Tablen2atos tinct function instances. Each DAG is function or program specific

descriptions of these programs. More importantly, VPO dtesp For instance, the example DAG in Figure 1 represents thelsear
and optimizesndividual functionsat atime. The 12 selected bench- space for a hypothetical function and for the three optitiona
marks contain a total of 246 functions, out of which 87 arecaked phasesa, b, andc. Nodes in the DAG represent function instances,
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Figure 2. Exhaustive phase order search space size (number of distivation instances) for all enumerated benchmark funstio

and edges represent transition from one function instanaedther
on application of an optimization phase. The unoptimizettfion
instance is at the root. Each successive level of functistaices is
produced by applying all possible phases to the distincesadthe
preceding level. This algorithm uses various redundantgctien
schemes to find phase orderings that generate the &am#on
instanceas the one produced by some earlier phase sequence du
ing the search. Such detection enables this algorithm toepaway
significant portions of the phase order search space, andsaix-
haustive search space enumeration for most of the fundtiomsr
benchmark set with the default compiler configuration. Tlypa
rithm terminates when no additional phase is successfukiating
a new distinct function instance at the next level.

When restricting eacndividual search time to a maximum of
two weeksthis algorithm allows exhaustive phase ordering search
space enumeration for 236 of our 246 benchmark functiotua
ing 81 of 87 executed functions). We measuresizeof the phase
order search space in terms of the numbedisfinct function in-
stancegproduced by the exhaustive search algorithm. Figure 2 plots
the number of distinct function instances found by the eztiea
search algorithm for each of our 236 enumerated benchmark fu
tions. In this graph, and in similar later graphs, the fumtsi along
the X-axis are sorted by the size of their phase order sepates
and a horizontal line marks the average. Thus, we can seddhat
our benchmark functions, the number of distinct functicstamces
found by the exhaustive search algorithm range from onlya fe
to several millions of instances. One of the primary goalshid
work is to uncover redundancy in the phase ordering seatesp
and reduce the time for exhaustive phase order searchds,stiti
producing the original best code.

3.3 Setup for Evaluating Code Performance

Our exhaustive search framework uses function-lelyglamic in-
struction countsupplemented with whole-program simulated cy-
cle counts (using ARM-SimpleScalar [5]) and actual program
times (on ARM ‘pandaboard’ processors) to validate gerevaif
the original best codes with the pruned search spacessladhtion
we describe our setup for evaluating generated code peafaren
Each per-function exhaustive phase order search space-expe
ment requires the algorithm to evaluate the performancdl diex
(possibly, millions of) generated distinct function instas to find
the best one. It is impractical to perform these evaluatigsiag
slow cycle-accurate simulations or with our available ARKtdy
ware resources. Additionally, the validated SimpleScalale-
accurate simulator and the native program runs (withoutisinte
noise-inducing instrumentations) only provide measunes the
whole program, and not at the granularity of individual ftioas.

Therefore, our framework employs a technique that genecatiek
dynamic instruction counts for all function instances, l&tanly
requiring a program simulation on generating an instandd wi
yet unseercontrol-flow[7, 19]. Such function instances with un-
seen control-flows are instrumented and simulated to déterthe
number of times each basic block in that control-flow is regch
rduring execution. Then, the dynamic instruction count Isudated
as the sum of the products of each block’s execution coutstitme
number of static instructions in that block. Researchevs Ipaevi-
ously shown that dynamic instruction counts bear a stromgtze
tion with simulator cycles for simple embedded processkesthe
ARM SA-11xx [19]. Figure 3(a) plots the ratio of dynamic inst-
tion count of the best function instance found by exhaugihase
order search to the default (batch) VPO compiler. The defaRD
optimization sequence aggressively applies optimizatiomm loop
until there are no more code changes. In spite of this aggeess
baseline, we find that over our 81 executed benchmark fumtize
best phase ordering sequences improve performance by &sawuc
33.3%, and over 4.0% on (geometric) average. Throughoueste
of this article, we report the arithmetic mean to summarie val-
ues and the geometric mean to summarize normalized valfies [9
Next, to validate the dynamic instruction count benefit of-pe
function phase ordering customization, we compile eacttliven
mark program such that individuakecutegrogram functions are
optimized with their respective best phase ordering sezpifsund
by the exhaustive search using dynamic instruction couimhates.
We then employ the cycle-accurate SimpleScalar simulatdna-
tive execution on the ARM Cortex A9 processor to measure the
whole program performance gain of function customizatiearo
an executable compiled with the VPO batch compiler. The Sim-
pleScalar cycle-accurate simulator models the ARM SA-& toat
emulates the pipeline used in Intel's StrongARM SA-11xxqes
sors. SimpleScalar developers have validated the simmigléitaing
model against a large collection of workloads, including ame
MiBench benchmarks that we also use in this work. They fohat t
the largest measured error in performance (CPI) to be o2863.
indicating the preciseness of the simulators [12]. Our OMAGD
based pandaboard contains a 1.2GHz dual-core ARM chip imple
menting the Cortex A9 architecture. We installed a recdatse of
the Ubuntu Linux operating system (version 10.10) on therto
The VFP (Vector Floating Point) technology used by the ARM
Cortex A9 to provide hardware support for floating-point i@pe
tions is not opcode-compatible with the SA-11xx’s FPA (Floa
ing Point Accelerator) architecture that is emulated by -Sim
pleScalar.Therefore, we were only able to run the sevenofol®)
integer benchmarks on the ARM A9 hardware platforrmadpcm
dijkstra, jpeg, patricia, gsort sha andstringsearch Additionally,
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Figure 3. Performance of the default exhaustive phase order seaacke size. (a) shows the dynamic instruction count of thefhastion
instance found by exhaustive phase order search compatieel default batch VPO compiler, and (b) shows the whole progoerformance
benefit with the SimpleScalar cycle-accurate simulatont®and native execution on ARM A9 processor. The followiagdhmarks contain
floating-point instructions and do not execute on the ARM AthWPO generated codebtowfish bitcount fft, ispell, andtiff.

the Cortex A9 implements an 8-stage pipeline (as opposdu:tb-t 4. Phaselndependence

(sj@zge pitp_eli?e utg,ed/(kj)ytthe SAh-llxfoRM t(_:orest)has ‘é"gl aslnﬂilffg Our techniques to prune the phase order search space ark base
Ierent Instruction/data cache connigurations thanérmsuiate on exploiting the independence relationship between dapgition

by SimpleScalar. Therefore, it is hard to directly compaetien- phases. Phase independence measures the probabilityenfent

efit in program execution cycles provided by SimpleScalahwi : At
: . pendence between each pair of optimization phases. Twaeghas
the run-time gains on the ARM Cortex A9 hardware. However, 0u ., e considered to be independent if their applicatioeraides

techniques in this work intend to prune the size of the phaero ' atter to the final code that is produced. Thus, if an dgéim
search spaces without negatively affecting the performarfiche tion phase is detected to be completely independent of a#rot
best generated codes. Therefore, the native performasubsr@n phases, then removing it from the set of reorderable phases u

this paper are still valuable for providing such validatiohour during the phase order search space algorithm, and apptyimg

tecqﬂlquei on the latr?StAR'\él mlcro-aLchltecture. orat fingPlicitly at any point will make no difference to the final coden-
e exhaustive phase order search space exploration may findg 516, Our goal for this work is to use this observation tueae

multiple phase sequences (producing distinct functiotaimes) substantial pruning of the phase order search space.

that yield program code with the sarhestdynamic instruction While the interactions between several optimization phase
counts for each function. Therefore, for each of these wpobe hard to predict, there are some phases that seem unlikehyeo i
gram experiments, VPO generates code by randomly selemtidg 54 iith each other. For exampleleanupphases, such agead
of its best phase sequences for each executed function,simgl u e eliminationand dead assignment eliminatiponly remove

the de{/?/mt baftch siggencehfor the otjher courgiled Iprogramr/fu instructions that are either unreachable or calculateesselalues.
tions. ef per ct:rm 1OOSUC ;uns ar;] buseh tﬁyc e(zj—count_ Therefore, it seems reasonable that interchanging thécafiph
run-time from these 100 runs for each benchmark and expatime e of such cleanup phases with any other phase should-not a
Additionally, while simulator cycle counts are determtitsactual fect the final code that is produced. Similarly, interchangthe

program run-times are not due to unpredictable hardwaresrti  , qor of phases that work on distinct code regions and dohees
and_ operating system effects. Therefo_re, for_aII the anM_ ex- any resources can also be expected to produce identicas.déde
periments, we run egch %eneLated binary file 61 tlmes g;;{?‘d example, most phases (in VPO) can be partitioned into cbntro
gne startup ”fn)' anh g?t ?23}) e average run-time an €ON flow changing phasedtanchphases) and phases that do not affect
ence interval over the final 60 runs. the control-flow of the functionron-branchphases). Thus, phases

Fi_gure f3(b)dplots the rat(ijo Of_ besrt] sigwulator cyclgs znd F?gmg such asranch chainingor branch reversabnly affect the branch
run-time of code generated using the best customized pet instructions and no other computational instruction. Intcast, it

Ehas;a] seqlger;c?ﬁ_over tk;}e ba(tjc_h cpmlpllelr?eneratsd codll_en:]atrr & s uncommon for non-branch phases, sucimaguction selection
enc bmar SH n r|18 grapn, and in similar ia erfgrap S'““m% . andcommon subexpression eliminatjdo affect the function con-

most bars show the (geometric) average performance withigim ., 10,y Consequently, applying the set of branch and nameh

tor counts and native execution, respectively. Thus, wesearthat phases in either order should typically produce the same. ddate

using C:JStom(ijZEd cl))ptimizatigg Ss);quen(;:ezsé(\)l/vhole progrmne\}/sv that branch phases can still beabledby other non-branch phases
sor cycles reduce by up to 16.3%, and 2.3% on average. We em-p, roqycing code patterns that facilitate their applimatiHow-

phasize that whole-program cycles / run-time includes tréign ever, unlike the issue of phase independence, a purelyirgabt
spent in (library and OS) code that is not compiled by VPO and |4tionship between phasgs can be ngore easily regolve)éi ngrag)p
not customized using our techniques. This is likely the saasur a single ordering of the involved phases in a loop until nosgha
average whole-program processor cycle-count benefitisitvan g4 ny further code transformation opportunities.

the average per-function benefit of customizing optim@aphase To confirm our intuition regarding the independence of dlgan
orderings. We also find that native program run-time on thé"AR  hases and the mutual independence of branch and norhbranc
Cortex A9 processor improves by up to 22% (wathingsearch phases, we calculate pair-wise phase independence nelaitx|18]

and 13.9%, on average, with our custom per-function phase se ey yeen all VPO phases and over all our 236 benchmark furectio
quences over the batch VPO compiler. Thus, customizingropa Table 3 illustrates this independence relationship forl&IVPO

tion phase ordenngg results in performance gains for mang-f phases, where each row and column is labeled by an optimizati
tions and programs in our set of benchmarks.



[Phase] b [ u JdJ] r T i [ s 0o ] | h T kK T ¢ [ g [ 1 [ n 1 g9 |
b 0.99 0.86 0.95 0.99 0.96 0.98 0.94 0.08
u 0.99 0.68 0.97 0.99
d
r 0.86 0.22 0.86 0.99 0.98
i 095 | 0.68 0.22 0.60 0.98 0.99 0.98 | 0.99 | 0.46
S 0.71 0.92 0.80 0.75 0.93 0.93 0.92
o] 0.71
j 0.86 | 0.60 0.97 0.75
h 0.85 0.98 | 0.99 | 092 0.93
k 0.99 | 0.97 0.98 | 0.92 0.97 | 0.85 0.75 0.23 | 0.96 | 0.93
c 0.96 0.99 0.99 0.80 0.98 0.75 0.98 0.92 0.79 0.85
q 0.75 0.99 0.98 0.99 0.87
| 0.98 0.99 0.98 0.98 0.93 0.75 0.92 0.23 0.92 0.99 0.85 0.79
n 0.94 0.99 | 0.93 0.96 0.79 0.85 0.94
g 0.08 0.46 | 0.92 0.93 | 0.93 0.85 | 0.87 0.79 | 0.94

Table 3. Independence relationship among optimization phaseskRlells indicate an independence probability of greatan . 995.

phase code as indicated in Table 1. The relationship beteaem
pair of phasea andb is represented in Table 3 as a fraction of the
number of times application ordeesb andb—a at any function
node produced identical codes to the number of times phaaed

b were both simultaneousBctiveat any node, on average. We call
applied phases active when they produce changes to theapnogr
representation. Thus, the closer a value in this table isG0, the
greater is the independence between that pair of phases.

figuration (that applies the cleanup phases implicitly e default
exhaustive phase order search space algorithm. The fasalong
the horizontal axis in Figure 4 are sorted in ascending artigreir
original exhaustive search space size. Additionally, theziontal
line in this graph plots the overall geometric mean. Thusceme
see that the phase order search space size with our new search
figuration is less than 45% of the original exhaustive seapate
size, on average. Additionally, we find that functions wisingler

The phase independence results in Table 3 reveal some inter-search spaces witness a greater reduction in the searah sipac

esting trends. First, most phases are highly independemniost
other phases. This result is expected and is the primarpmetast
in spite of the prohibitively large phase order search spaee the
search algorithm is able to exhaustively enumerate thelsspace
in most cases. In other words, the high phase independensesa
the number of distinct function instances in the searchespmbe a
small fraction of the number of possible phase sequencesn8ge
very few phases are completely independent of all othengs,Téx-
cept fordead code eliminatiofphase ‘d’) all remaining phases at
least interact with four other phases. Third, our intuitiegarding
cleanupphases is also mostly correct. Thakead code elimina-
tion is completely independent, whitkead assignment elimination
(phase ‘h’) only has small dependencies with a few other ghas
Fourth, the table also reveals that the branch and non-biameses
mostly interact with other phases in their own groups, buhalze

small dependencies with phases in the other group. Mostiprom

nently, phases such &sp unrolling (phase ‘g’) in VPO performs
both control-flow and non-control-flow changes to the codee T
implications of such cross-group phase interactions orability
to partition the set of reorderable phases is explored iti®e6. In
the next two sections we develop various algorithms to eixplo
observations regarding phase independence in this seotioore
effectively prune the phase order search space.

5. Implicit Application of Cleanup Phases During
Exhaustive Phase Order Search

Dead code eliminationin VPO eliminates unreachable basic
blocks, whiledead assignment eliminatioremoves instructions
that generate values not used later in the program. We tezgeth
two phases asleanupphases. In this section we perform experi-
ments that exclude cleanup phases from the optimizatibngisd
during exhaustive phase order searches. Instead, thesesphge

now implicitly applied after each phase that can potentially produce

dead code or instructions. We study the search space sizgeshd
code performance delivered by these new search configasatio

Indeed, if we aggregate the search space sizes over allipanich
functions and compare thistal search space size, then we find that
our new configuration reduces the space by more than 78%lwover t
default exhaustive configuration. At the same time, our tione
level dynamic instruction count measurements reveal tiegphase
order search space generated for 79 (out of 81) functionsuby o
new search configuration includes at least one functioramst
that reaches the same best performance as achieved by dire ori
nal exhaustive search. The best dynamic instruction cathtaes
for two functions, by 9% and less than 1% respectively, with a
average performance loss of 0.1% over the 81 executed bemkhm
functions. We used our performance validation setup desdrear-
lier in Section 3.3 and confirmed that, except fBtcount cycle
counts, all our benchmark programs achieve the saes¢phase
ordering performance (both for program-wide simulatodeyand
statistical native runtime on the ARM processor) with andhwi
out this configuration of implicit application of cleanup gses.
The simulated cycle counts for the benchmaéitcount degrade
by 1.28%. Over all benchmarks, tigeometric meamf best pro-
gram performance ratios with and without implicit applioat of
cleanup phases for simulator cycles and native prograntimmsis
1.001 and 1.006 respectively. Thus, implicit applicatibcleanup
phases allows massive pruning of the exhaustive phasesedearh
space while realizing the ideal phase ordering performanoest
cases.

6. Exploiting Phase | ndependence Between Sets
of Phases

Our second strategy to make exhaustive phase order seanches
practical is to partition the set of optimization phases idisjoint
sub-groups such that phases in each sub-group interaceadttn
other, but not with any phases in the other sub-group(s) kGowl-
edge of compiler optimizations in general, and the VPO phase
particular, lead us to believe tHatanchoptimization phases should
only have minimal interactions withon-branchphases. Branch

Figure 4 compares the number of distinct function instances phases (in VPO) only affect the control-flow instructionstie

(search space size) generated with our new exhaustivenseame

program and do not require registers for successful ojpera®n
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Figure 4. Comparison of search space size (over 236 benchmark fasgtachieved by our configuration with cleanup phases iritiglic

applied to the default exhaustive phase order search space.

the other hand, most non-branch phases do not alter thedonct
control-flow structure, even when they enable more oppdiésn
for branch phases. Our intuition is also backed by the daféain

ble 3, which shows a high degree of independence between most

branch and non-branch optimization phadesop unrollingis an
anomaly since it performs control-flow changes, may requige
isters, and also updates other computation instructiomiseirpro-
gram. In this section, we present our nowallti-stageexhaustive
search algorithm that employs a partitioned phase set asutide

the impact of this algorithm on the search space size anaperf
mance of the best code. We then develop techniques that ¥mplo
partitioned sets of optimization phases to construct ammahset of
good phase orderings and to improve our genetic algorithseda
heuristic search.

6.1 Faster Exhaustive Phase Order Searches

For this study, we first partition the VPO optimization plase
into two sets, sixbranch phases lfranch chaining useless jump
removal dead code eliminatignbranch reversal block reorder-
ing and loop jumps minimization and the remaining ninenén-
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Figure5. Comparison of search space size achieved by our multi-
stage search algorithm as compared to the default exhaytase
order search space.

We further analyzed the degradation in performance wittkss
by the two functions with our multi-stage configuration. Vissodv-
ered that the degradations occur due to branch phases beiblpéd

branch phases. Then, our multi-stage exhaustive search strategyduring the second stage of our multi-stage configuratiamceSour

applies the default exhaustive search algorithm over dr@¥yptanch
phases in the first stage, and finds all function instancesptioa
duce the best code in this stage. The next stage takes theshe b
code instances generated by the preceding stage and atbgies
default search algorithm over only the non-branch phasasa®
gorithm is unaffected by the interaction between the bratases
andloop unrolling sinceloop unrollingin VPO is only activated
after register allocation, which is applied in the secorgst Since
we need to evaluate the function instances to determine éke b
instances in the first stage to input to the next stage, weumind
these experiments only on our 81 executed benchmark funsctio
We measure the search space size as the sum of the disticiibfun
instances produced by the algorithm at each stage.

Figure 5 plots the impact of our multi-stage exhaustive gear
algorithm on search space size as compared to the defaalti®xh
tive phase order search space approach. Thus, we can séeethat
multi-stage configuration reduces the search space siz&%yan
(geometric) average. Additionally, only two out of our 8ented
benchmark functions notice any degradation in the bestrgest
dynamic instruction counts (by 3.47% and 3.84%) for an ayera
degradation by less than 0.1%. Similar to our observatior&eic-
tion 5, our new configuration has a greater impact on funstiith
larger default search spaces, reducingithal search space size by
about 90%.

new configuration only applies the branch phases in the faiges
our existing algorithm is unable to resolve these additioppor-
tunities. To address this issue, we changed our multi-stagigu-
ration to perform a search over all phases in the secone-sTdg
first stage of this new algorithm still performs the searcaranly
the branch phases. Interestingly, this change remaletynamic
instruction count degradations, while achieving almoshntétal
(75% per function geometric mean, 88.4% total) search spiaee
reductions. Using our performance validation setup we dicinat,
except forbitcounts simulated cycle counts, all other benchmark
programs achieve the same best phase ordering performaotbe (
simulator cycle counts and (statistical) native ARM rurgjmvith
and without this technique of partitioning branch and noanlch
optimization phases. The simulator cycle counts for theberark
bitcountdegrade by 7%. Over all programs, tjometric meaof
best program performance ratios (both simulator cyclesnaitigie
program run-time) with and without this technique of phaadip
tioning is 1.006 in both cases.

Furthermore, combining our two complementary search space
pruning techniques (implicit application of cleanup plesed
multi-stage search over partitioned sets of phases) aehav89%
and 96.75% reduction in the average and total exhaustivelsea
space size, respectively, with the same average dynantitiérs
tion count loss of 0.1% due to the implicit application ofaiep



| Seq.#] Covered | Sequence |
1 33 buirdrosksncshg
2 11 urubriskslchlsg
3 8 urubriocsklscsh
4 5 bjdirjclcskshch
5 4 buirdrshklsklcg
6 3 urubriohskslshg
7 3 bjdirjsoschkslg
8 2 urubrisohkskcsh
9 2 buirdrsoksclslc
10 1 urubriolschkcsh
11 1 urubriocscskcsg
12 1 buirdrskslslsls
13 1 buirdrsklchkcsg
14 1 buirdrskcglhecsc
15 1 buirdrsoshskslc
16 1 buirdrsoklshlcg
17 1 buirdrcskclghecs
18 1 buirdrohlshksks
19 1 bjdirjskckslclc

Table 4. Covering Set of Phase Sequences. Optimization phases
corresponding to the codes shown here are in Table 1.

phases as seen in Section 5. Thus, we can conclude thattagloi
optimization phase independence can have a huge impactkin ma
ing exhaustive phase order searches to find the best phaséngrd
more feasible and practical in existing compilers.

6.2 Findinga Covering Set of Phase Sequences

Although earlier works have shown that no single order of op-
timization phases can achieve the best performance fouad-f
tions [6, 24, 26], it is not yet clear if amallnumber of phase or-
derings can obtain near-optimal performance for everytfancin
this section we present novel schemes that use our obs#ryag-
garding independent sets of phases to investigate thisignes

The typical phase order search space is exorbitantly |amg,
prohibits any naive attempt at evaluating all possiblénoigation
phase orderings of any length. For example, the longesitpess-
tive sequence length during the exhaustive phase order seagch ov
our benchmark functions is 37 phases. Thus, in the worst eaye
algorithm to determine the set of best phase sequences st ¢
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Figure 6. Average performance improvement over the default
compiler after applyingh of the 19 sequences listed in Table 4
to each benchmark function. The dashed line shows the averag
improvement achieved by the individual best phase ordesiag
quences (found by our exhaustive search algorithm) ovedéhe
fault compiler performance.

particular sequence’s set if that sequence achieves théiaesh-
only solutionfor that function. The set-cover problem is to find the
minimum number of branch-only phase orderings such that the
corresponding sets cover all benchmark functions. Sirisgtiob-
lem is NP-hard, we use a greedy algorithm to approximateehe s
cover. We find that only three branch sequences are needeado r
the best branch-only performance in all our 81 functionsir{gls
sequence covers 85% of the functions).

The next step is to combine these three branch-only segsience
(of length 6) with sequences consisting of the nine non-ran
phases. We generate all non-branch sequences of lengtamihe
append each to the three branch-only sequences (for at&ab8
candidate sequences$length 1. We then generate sets of bench-
mark functions that reach the best performance with eaalheseg
(similar to our approach with the branch-only sequencepplyx
ing the greedy set-cover algorithm to these sets yields d@s&es
that are needed to reach the best phase-ordering perfoenfianc
all 81 functions. It is important to note that this algoritmestricts
each sequence length to 15 phases. These 19 sequencesmare sho
in Table 4. The first column ranks the sequence, the secdsdhis
number of functions covered during the set covering algoriby
each sequence, and the third column presents the actuairssgu

sider 157 sequences. Our exhaustive search algorithm prunes away We evaluate the performance delivered by our covering se-

much of the redundancy in this search space. Every path im eac

quences by incrementally applying them in descending afigre

phase order search space DAG corresponds to a phase sequencrimber of functions they cover. We also employ the staniganee-

that produces a distinct function instance (correspontbrife fi-
nal node in the path). Unfortunately, even with this redarctithe
combined set of paths in the search space for our benchmiigk se
still too large (over 18 106 total paths) to search completely.

Interestingly, in the previous section, we show that parting
the phase order search space over sets of branch and nafbran
phases does not impact the best performance achieved by-the e
haustive phase order search. In this section, we use ouceddu
search space from Section 6.1 to develop techniques thatrach
a small set of phase sequences that achieve close-to-bpgnfar-
mance for all our functions.

The first step in our algorithm is to find the best branch-only
phase orderings over our benchmark functions. We express th
problem of finding the minimal number of the best branch-only
phase orderings as the classical set-cover problem [8].cOur-
piler includes six branch phases, so we apply every podsiatech-
only sequence of length six to each of our benchmark funstion
and evaluate the code produced. Our technique generatéofi se
functions for each branch-only sequence, where a funcsion &

one-out cross validatioacheme, which ensures that sequences that
cover only a single benchmark function are not used to etalua
that function. This experiment applies a certain numbgiof our
covering sequencesne at a timein the order shown in Table 4,
and reports the best performance of each program for anyeof th
n sequences. For each point along the X-axis, the plot in Eigur
averages and compares this best performance (over all 8litexe
functions) achieved by the covering sequences with the average
performance obtained by the default (batch) compiler. éntthtch
mode, VPO applies a fixed ordering of optimization phases in a
loop repeatedly until no phase is able to make any furthengdés

to the code. Thus, the batch compiler sequence is not restrio

a length of 15, and therefore achieves better performarareahy

of our individual 19 phase sequences. However, even withetty
gressive batch sequence, only three covering sequencablar®
improve performance (by 0.5%) over the batch compiler. 4ingl

all 19 sequences yields an average speedup of 3.1%. Adalifipn
we use our performance validation setup (described in &e8ti3)

to evaluate our covering sequences. Figure 7 comparesitipedu
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Figure 7. Whole program performance benefit of using the best Figure 8. Improvement achieved by the default and biased GA
code generated by the 19 sequences listed in Table 4 over VPOconfigurations over the batch VPO performance in each géoera
batch compiler with SimpleScalar cycle-accurate simulatants

and native execution on ARM A9 processor. . o . o
fitness criteria used by the GA searches is the dynamic oisiru

counts of the code generated by each chromosome.

Our aim here is to employ the covering sets of phase sequences
(from Section 6.2) to expedite and assist the GA-based Isearc
We develop two new configurations that use the covering sets t
bias chromosomes in the first generation. In each configumatie

gram simulation and native performance of code compiled thie
batch sequence to the best run with randomly chosen (lemee-o
out) covering sequences for each benchmark function (oi00f
such runs). Thus, the covering sequences either improvehane > et A
the same full-program simulation cycle count as the batah-co ~ @dain employ cross-validation so that the branch and auyese-
piler sequence, with a maximum improvement of 13.5¥g( and quences are only generated from the training data that Useea
an average improvement of 2.5%. The native program run-time 9rams except the one to be optimized. In kinanch biasconfigu-
on the ARM Cortex A9 improves as well by up to 16.8% (with ration, chromosomesllnthe first generation of our modlfleda@e\
stringsearch, and yields an 11.2% average improvement. Thus, the Produced by prepending one of the three set-covering bripinase
covering sequences significantly improve performance theede- orderings (of length six) to a randomly generated phaseestgu
fault compiler sequence for our benchmark programs. of lengthn - 6,_wher¢n is the length of each ch(omosome in the de-
fault GA configuration. Each of the set-covering branch seges
6.3 Better Genetic Algorithm Searches is used at least once, and the prefixes to the remaining chromo
somes are chosen depending on the ratio of benchmark faactio
each branch sequence covers. Infiiiebias configuration, chro-
mosomes are produced by prepending each of the 19 setitgveri
sequences consisting of both branch and non-branch plsimmen(
in Table 4) to randomly generated phase sequences of langth.
The last chromosome in the initial population is randomipege
ated. The rest of the GA proceeds as in the original algorithm
Figure 8 compares the improvement achieved by the best chro-
mosome in each generation over the batch VPO performance for
each of the default and modified genetic algorithms, averager
all 81 executed benchmark functions. Thus, we can see that th
branch-bias configuration is able to focus the search to thee m
useful sections of the search space sooner and allows theoGA t
converge on its final solution faster than the original aton.
The full bias GA shows clear improvements over the other genfi
urations because the set-covering sequences used to isiasnh
figuration achieve very good performance by themselveshat t
same time, it is also interesting to note that the genetioréign
is powerful enough to further improve the performance offtie
bias configuration after the first generation. Of coursegise\other
changes to the GA (and to other heuristic algorithms) thangtt
to exploit the phase independence relationship are pesaitd may
show varying improvements. However, our results show tkat e
ploiting phase interactions is a fruitful direction to inope future
heuristic algorithms for addressing the phase orderinglpro.

Finally, we explore if our observations regarding sear@tspprun-

ing by exploiting phase independence relationships carrdwep
heuristic search techniques. Machine-learning basedtigeak
gorithms (GA) [21] are a popular mechanism to develop such
heuristic search techniques. Unlike the exhaustive seardBA-
based searches do not guaranty reaching the optimal phdse or
ing performance, but often produce quite effective phaserang
sequences. Therefore, we adapt a variant of a popular Gédbas
search technique for our experiments in this section@nesin

the genetic algorithm correspond to optimization phasaschro-
mosomegorrespond to optimization phase sequences. The set of
chromosomes currently under consideration constitutespaila-
tion. The number ofjenerationds how many sets of populations
are to be evaluated. Chromosomes in the first generatioraare r
domly initialized. After evaluating the performance of bathro-
mosome in the population, they are sorted in decreasing afde
performance. During crossover, 20% of chromosomes from the
poorly performing half of the population are replaced byeaedly
selecting two chromosomes from the better half of the pdjmra
and replacing the lower half of the first chromosome with the u
per half of the second and vice-versa to produce two new obwom
somes each time. During mutation we replace a phase withanot
random phase with a small probability of 5% for chromosonnes i
the upper half of the population and 10% for the chromosomes i
the lower half. The chromosomes replaced during crossaeer a
not mutated. Our genetic algorithm uses 20 sequend@®rtio-
some} per generation, and iterates the GA for 200 generations. 7. FutureWork

The batch VPO compiler aggressively applies hundreds of opti- There are several avenues for future work. First, we planues-
mization phases to the code, a fraction of which are actisaity tigate new algorithms that will employ the independence @theér
cessful (oractive in changing the code. Thus, the number of active phase relationships tautomatically partition the phase set into
batch phases can vary for every function. We use 1.25 tiniss th smaller subsets. Second, we will explore the impact of ocin-te
active batch sequence length as the number of phases inle@eh ¢ niques on reducing the search time for heuristic algoritbesdes
mosome of the GA with a minimum chromosome length of 20. The GAs. We also plan to study the benefits of combining our tech-



niques with the strategy of using function characteristicfocus

heuristic searches. Third, we wish to implement our teaesgn

other compilers to validate their broader applicabilitydamder-

stand the effect of phase implementation on the resultirgcke
space size and performance benefits. Finally, we will attéonge-

vise algorithms to find the minimal set of optimization seues,

one of which will achieve optimal phase ordering perforneafar

all functions.

8. Conclusions

The long-standing problem of optimization phase orderixigte
due to hard-to-predict interactions between phases. Tineapy
contribution of this work is suggesting and validating tlypdthe-
sis that not all optimization phases interact with eachotred that

it is possible to develop mechanisms that exploit this olzém

to substantially improve the exhaustive and heuristic ptasler
search times, while almost always delivering the same Heest
ordering solutions. Our first technique employs the inddpane

of cleanup phases to reduce the exhaustive search spacetay a t

of 78% and over 55%, on average. Only 2 of 81 benchmark func-

tions do not generate the same best code instance, and tlagave
performance loss is 0.1%. Our second technique developset no
multi-stage exhaustive search strategy over independbrgi®ups

of branch and non-branch phases. This technique prunesdhehs
space size by about 75%, on average, (88.4% total) with rsaios
best phase ordering performangegether, our techniques achieve
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We also develop new algorithms that employ our phase inde-

pendence observations to find a small set of near-optimaigbe:
guences and to improve genetic algorithm performance. €lr-t
niques presented in this paper are simple and general ertough
be applicable and effective in several other compiler fraoré&s.
Most compilers are likely to have at least a few “cleanup” gg®
Similarly, we also expect branch and non-branch phases/arae
other compilers to display similar independence relatigs as
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