
Leveraging MPST in Linux with
Application Guidance to Achieve
Power and Performance Goals

Michael R. Jantz1, Kshitij A. Doshi2, Prasad A. Kulkarni1, and Heechul Yun1

1 University of Kansas, Lawrence, Kansas
2 Intel Corporation, Chandler, Arizona

1

Introduction

• Memory has become a significant player in power and performance

• Memory power management is challenging

• Propose a collaborative approach between applications, operating
system, and hardware:

– Applications – insert instructions to communicate to OS
memory usage intent

– OS – re-architect memory management to interpret application
intent and manage memory over hardware units

– Hardware – communicate hardware layout to the OS to guide
memory management decisions

• Implemented framework by re-architecting recent Linux kernel

• Experimental evaluation with industrial-grade JVM
2

Why

• CPU and Memory are most significant players for power and performance

– In servers, memory power == 40% of total power [1]

• Applications can direct CPU usage

– threads may be affinitized to individual cores or migrated b/w cores

– prioritize threads for task deadlines (with nice)

– individual cores may be turned off when unused

• Surprisingly, much of this flexibility does not exist for controlling memory

3

Example Scenario

• System with database workload with
512GB DRAM

– All memory in use, but only 2% of pages
are accessed frequently

– CPU utilization is low

• How to reduce power
consumption?

4

Challenges in Managing Memory Power

• Memory refs. have temporal and spatial variation

• At least two levels of virtualization:

– Virtual memory abstracts away application-level info

– Physical memory viewed as single, contiguous array of
storage

• No way for agents to cooperate with the OS and with
each other

• Lack of a tuning methodology

5

A Collaborative Approach

• Our approach: enable applications to guide mem. mgmt.

• Requires collaboration between the application, OS, and
hardware:

– Interface for communicating application intent to OS

– Ability to keep track of which memory hardware units host
which physical pages during memory mgmt.

• To achieve this, we propose the following abstractions:

– Colors

– Trays

6

Communicating Application Intent with Colors

• Color = a hint for how pages will be used

– Colors applied to sets of virtual pages that are alike

– Attributes associated with each color

• Attributes express different types of distinctions:

– Hot and cold pages (frequency of access)

– Pages belonging to data structures with different
usage patterns

• Allow applications to remain agnostic to lower level
details of mem. mgmt.

7

Software
Intent

Color

Tray

Memory
Allocation

and Freeing

Power-Manageable Units Represented as Trays

• Tray = software structure containing sets of pages
that constitute a power-manageable unit

• Requires mapping from physical addresses to
power-manageable units

• ACPI 5.0 memory power state table (MPST):

– Phys. address ranges --> mem. hardware units

Software
Intent

Color

Tray

Memory
Allocation

and Freeing

8

Coloring Example

• Application with two distinct sets of memory
– Large set of infrequently accessed (cold) memory

– Small set of frequently accessed (hot) memory

• Specify guidance as a set of standard intents
– MEM-INTENSITY (hot or cold)

– MEM-CAPACITY (% of dynamic RSS)

• Intents enable OS to manage mem. more efficiently
– Save power by co-locating hot / cold memory

– Recycle large span of cold pages more aggressively

9

Configuration File to Specify Intents

10

Specification for frequency of reference:
INTENT MEM-INTENSITY

Specification for containing total spread:
INTENT MEM-CAPACITY

Mapping to a set of colors:
MEM-INTENSITY RED 0 // hot pages
MEM-CAPACITY RED 5 // hint - 5% of RSS
MEM-INTENSITY BLUE 1 // cold pages
MEM-CAPACITY BLUE 3 // hint - 3% of RSS

• Associate colors with intents in configuration files

• Parses config file to create and structure data passed to
the OS

Memory Coloring System Calls

System Call Arguments Description

mcolor addr, size, color Applies color to a virtual address range
of length size starting at addr

get_addr_mcolor addr, *color Returns the current color of the virtual
address addr

set_mcolor_attr color, *attr Associates the attribute pointed to by
attr with color

get_mcolor_attr color, *attr Returns the attribute currently
associated with color

11

• Specify colors / intents using system calls

• Use mcolor, set_mcolor_attr to color application pages

Memory Management in Linux

12

• Default Linux kernel organizes physical memory hierarchically

– Nodes --> zones --> lists of physical pages (free lists, LRU lists)

• Distinction for pages on different nodes, but not different ranks

Memory management in the default Linux kernel

Tray Implementation

13

• Trays exist as a division between zones and physical pages

• Each tray corresponds to a rank, maintains its own lists of pages

• Kernel memory mgmt. routines modified to operate over trays

Memory management with tray structures in our modified Linux kernel

Node 0

Zone NormalZone DMA

Tray 1
free LRU

Tray 0
free LRU

Tray 1
free LRU

Tray 2
free LRU

Tray 3
free LRU

Node 1

Zone Normal

Tray 5
free LRU

Tray 6
free LRU

Tray 7
free LRU

Tray 4
free LRU

R
a
n
k

0

R
a
n
k

1

Memory controller

Channel 0

R
a
n
k

2

R
a
n
k

3

Memory controller

Channel 1

R
an

k
0

R
an

k
1

Memory controller

Channel 0

R
an

k
2

R
an

k
3

Memory controller

Channel 1

NUMA Node 0 NUMA Node 1

Memory

Hardware

Operating System

Evaluation

• Emulating NUMA API’s

• Enabling power consumption proportional to
the active footprint

14

Emulating NUMA API’s

• Modern server systems include API for managing memory
over NUMA nodes

• Our goal: demonstrate that framework is flexible and efficient
enough to emulate NUMA API functionality

• Experimental Setup

– Oracle’s HotSpot JVM includes optimization to improve DRAM access
locality (implemented w/ NUMA API’s)

– Modified HotSpot to control memory placement using mem. coloring

– Compare performance with the default configuration and with
optimization implemented w/ NUMA API’s and w/ memory coloring

15

Memory Coloring Emulates the NUMA API

0

0.2

0.4

0.6

0.8

1

1.2
P

e
rf

o
rm

an
ce

 o
f

N
U

M
A

 o
p

ti
m

.
re

la
ti

ve
 t

o
 d

ef
au

lt

Benchmarks

NUMA API mem. color API

16

• Performance of SciMark 2.0 benchmarks with “NUMA-optimized” HotSpot
implemented with (1) NUMA API’s and (2) memory coloring framework

• Performance is similar for both implementations

Memory Coloring Emulates the NUMA API

0

10

20

30

40

50

60

70

80

90

100
%

 m
e

m
o

ry
 r

e
ad

s
sa

ti
sf

ie
d

b

y
lo

ca
l D

R
A

M

Benchmarks

default NUMA API mem. color API

17

• % of memory reads satisfied by NUMA-local DRAM for SciMark 2.0
benchmarks with each HotSpot configuration.

• Performance with each implementation is (again) roughly the same

• Our goal: demonstrate potential of our custom
kernel to reduce power in memory

• Experimental setup:

– Custom workload that incrementally increases memory
usage in 2GB steps

– Compare three configurations on single node of server
machine with 16GB of RAM

• Default kernel with physical address interleaving

• Default kernel with no interleaving

• Custom kernel with tray-based allocation

18

Enabling Power Consumption Proportional to
the Active Footprint

Enabling Power Consumption Proportional to
the Active Footprint

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

A
vg

. D
R

A
M

 p
o

w
e

r
co

n
su

m
p

ti
o

n
 (

in
 W

)

Memory activated by scale_mem (in GB)

Default kernel (interleaving enabled)

Default kernel (interleaving disabled)

Power efficient custom kernel

19

• Default kernel yields high power consumption even with small footprint

• Custom kernel – tray-based allocation enables power consumption
proportional to the active footprint

Future Improvements

• Problems:

– Little understanding of which colors or coloring hints will be
most useful for existing workloads

– All colors and hints must be manually inserted

• Developing a set of tools to profile, analyze and control
memory usage for applications

• Capabilities we are working on:

– Detailed memory usage feedback over colored regions

– On-line techniques to adapt guidance to feedback

– Compiler / runtime integration to automatically partition and
color address space based on profiles of memory usage activity

20

Conclusion

• A critical first step in meeting the need for a fine-grained,
power-aware flexible provisioning of memory.

• Initial implementation demonstrates value
– But there is much more to be done

• Questions?

21

References

1. C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller. Energy
management for commercial servers. Computer ,36 (12):39–48, Dec. 2003

22

Backup

23

Default Linux Kernel

Pages of different types Frequently
referenced

Infrequently
referenced

Application

Problem
Operating system does not see a distinction between:
• different types of pages from the application
• different units of memory that can be independently power managed

ranks

Node’s
Memory

24

Custom Kernel with Memory Containerization

Pages of different types

Node’s
Memory

Frequently
referenced

Infrequently
referenced

Application

Note: not drawn to scale- 106 4kB pages can be contained in a 4GB DIMM

Self refresh (idle)
state

More power
management

Less power
management

25

Analysis to Automatically Generate
Memory Coloring Hints

26

• Advantages to memory coloring:
– Broad spectrum of hints can be overlapped

– Hints can adapt to changes in the system

• Specific tasks
– Build post-processing to search profiling data for

regions to color

– Construct analysis to relate objects that should be
colored to source code

– Manually insert coloring hints into application to
apply ideal guidance and evaluate its impact

Novel System Tools

• Memory usage statistics over colored regions

– Similar to /proc tools that enable users to query system-
wide or per-application memory usage

– Example: monitor page faults over a particular data
structure

– Will further improve memory usage guidance

• Monitoring memory usage over trays

– Benefits applications such as whole-system virtualization

– Provide user-level access to trays through /proc

27

More Workloads and Usage Scenarios

• Evaluate approach with complex, multi-tier
workloads at the realistic scale of server systems

– Potential applications: open source database, web server,
J2EE software packages

• Explore maximizing performance by distributing
high-value data widely across memory channels

• Hints for expected access patterns

– Application guided read ahead or fault ahead with
structures with expected sequential access

• Different page recycling policies for trays

28

