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Introduction

Memory has become a significant player in power and performance
Memory power management is challenging

Propose a collaborative approach between applications, operating
system, and hardware:

— Applications — insert instructions to communicate to OS
memory usage intent

— OS —re-architect memory management to interpret application
intent and manage memory over hardware units

— Hardware — communicate hardware layout to the OS to guide
memory management decisions

Implemented framework by re-architecting recent Linux kernel

Experimental evaluation with industrial-grade JVM



 CPU and Memory are most significant players for power and performance
— In servers, memory power == 40% of total power [1]

* Applications can direct CPU usage
— threads may be affinitized to individual cores or migrated b/w cores
— prioritize threads for task deadlines (with nice)
— individual cores may be turned off when unused

* Surprisingly, much of this flexibility does not exist for controlling memory



Example Scenario

» System with database workload with
512GB DRAM

— All memory in use, but only 2% of pages
are accessed frequently

— CPU utilization is low
* How to reduce power
consumption?



Challenges in Managing Memory Power

Memory refs. have temporal and spatial variation
At least two levels of virtualization:

— Virtual memory abstracts away application-level info

— Physical memory viewed as single, contiguous array of
storage

No way for agents to cooperate with the OS and with
each other

Lack of a tuning methodology L

rs



A Collaborative Approach @

* Our approach: enable applications to guide mem. mgmt.

* Requires collaboration between the application, OS, and
hardware:

— Interface for communicating application intent to OS

— Ability to keep track of which memory hardware units host
which physical pages during memory mgmt.

* To achieve this, we propose the following abstractions:
— Colors
— Trays



Communicating Application Intent with Colors
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e Color =a hint for how pages will be used
— Colors applied to sets of virtual pages that are alike
— Attributes associated with each color

» Attributes express different types of distinctions:
— Hot and cold pages (frequency of access)

— Pages belonging to data structures with different
usage patterns

* Allow applications to remain agnostic to lower level
details of mem. mgmt.




Power-Manageable Units Represented as Trays
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 ACPI 5.0 memory power state table (MPST):
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Coloring Example 5 2

* Application with two distinct sets of memory

— Large set of infrequently accessed (cold) memory
— Small set of frequently accessed (hot) memory

e Specify guidance as a set of standard intents
— MEM-INTENSITY (hot or cold)
— MEM-CAPACITY (% of dynamic RSS)

* Intents enable OS to manage mem. more efficiently
— Save power by co-locating hot / cold memory
— Recycle large span of cold pages more aggressively



Configuration File to Specify Intents

# Specification for frequency of reference:
INTENT MEM-INTENSITY

# Specification for containing total spread:
INTENT MEM-CAPACITY

# Mapping to a set of colors:

MEM-INTENSITY RED 0 // hot pages
MEM-CAPACITY RED 5 // hint - 5% of RSS
MEM-INTENSITY BLUE 1 // cold pages
MEM-CAPACITY BLUE 3 // hint - 3% of RSS

* Associate colors with intents in configuration files

* Parses config file to create and structure data passed to
the OS



Memory Coloring System Calls

mcolor addr, size, color  Applies color to a virtual address range
of length size starting at addr

get_addr_mcolor addr, *color Returns the current color of the virtual
address addr
set_mcolor_attr color, *attr Associates the attribute pointed to by

attr with color

get_mcolor_attr color, *attr Returns the attribute currently
associated with color

» Specify colors / intents using system calls
* Use mcolor, set_mcolor _attr to color application pages



Memory Management in Linux
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Memory management in the default Linux kernel

Default Linux kernel organizes physical memory hierarchically

— Nodes --> zones --> lists of physical pages (free lists, LRU lists)

Distinction for pages on different nodes, but not different ranks



Tray Implementation
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Memory management with tray structures in our modified Linux kernel

* Trays exist as a division between zones and physical pages
e Each tray corresponds to a rank, maintains its own lists of pages
* Kernel memory mgmt. routines modified to operate over trays



Evaluation

e Emulating NUMA API’s

* Enabling power consumption proportional to
the active footprint



Emulating NUMA API’s

Modern server systems include APl for managing memory
over NUMA nodes

Our goal: demonstrate that framework is flexible and efficient
enough to emulate NUMA API functionality

Experimental Setup

— Oracle’s HotSpot JVM includes optimization to improve DRAM access
locality (implemented w/ NUMA API’s)

— Modified HotSpot to control memory placement using mem. coloring

— Compare performance with the default configuration and with
optimization implemented w/ NUMA API’s and w/ memory coloring



Memory Coloring Emulates the NUMA API
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* Performance of SciMark 2.0 benchmarks with “NUMA-optimized” HotSpot
implemented with (1) NUMA API’s and (2) memory coloring framework

* Performance is similar for both implementations
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Memory Coloring Emulates the NUMA API
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* % of memory reads satisfied by NUMA-local DRAM for SciMark 2.0
benchmarks with each HotSpot configuration.

* Performance with each implementation is (again) roughly the same



Enabling Power Consumption Proportional to
the Active Footprint

* Our goal: demonstrate potential of our custom
kernel to reduce power in memory

e Experimental setup:

— Custom workload that incrementally increases memory
usage in 2GB steps

— Compare three configurations on single node of server
machine with 16GB of RAM

» Default kernel with physical address interleaving
e Default kernel with no interleaving
e Custom kernel with tray-based allocation



Enabling Power Consumption Proportional to
the Active Footprint
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Default kernel yields high power consumption even with small footprint

Custom kernel — tray-based allocation enables power consumption
proportional to the active footprint
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Future Improvements

Problems:

— Little understanding of which colors or coloring hints will be
most useful for existing workloads

— All colors and hints must be manually inserted

Developing a set of tools to profile, analyze and control
memory usage for applications

Capabilities we are working on:
— Detailed memory usage feedback over colored regions
— On-line techniques to adapt guidance to feedback

— Compiler / runtime integration to automatically partition and
color address space based on profiles of memory usage activity



Conclusion

e Acritical first step in meeting the need for a fine-grained,
power-aware flexible provisioning of memory.

* Initial implementation demonstrates value

— But there is much more to be done

e (Questions?
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Default Linux Kernel
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Operating system does not see a distinction between:

* different types of pages from the application

* different units of memory that can be independently power managed
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Custom Kernel with Memory Containerization
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Note: not drawn to scale- 10° 4kB pages can be contained in a 4GB DIMM



Analysis to Automatically Generate

Memory Coloring Hints Qﬁ

* Advantages to memory coloring:
— Broad spectrum of hints can be overlapped
— Hints can adapt to changes in the system

* Specific tasks

— Build post-processing to search profiling data for
regions to color

— Construct analysis to relate objects that should be
colored to source code

— Manually insert coloring hints into application to
apply ideal guidance and evaluate its impact



Novel System Tools

* Memory usage statistics over colored regions

— Similar to /proc tools that enable users to query system-
wide or per-application memory usage

— Example: monitor page faults over a particular data
structure

— Will further improve memory usage guidance
* Monitoring memory usage over trays

— Benefits applications such as whole-system virtualization
— Provide user-level access to trays through /proc



More Workloads and Usage Scenarios

Evaluate approach with complex, multi-tier
workloads at the realistic scale of server systems

— Potential applications: open source database, web server,
J2EE software packages

Explore maximizing performance by distributing
high-value data widely across memory channels

Hints for expected access patterns

— Application guided read ahead or fault ahead with
structures with expected sequential access

Different page recycling policies for trays



