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Introduction

• Memory has become a significant player in power and performance

• Memory power management is challenging

• Propose a collaborative approach between applications, operating 
system, and hardware:

– Applications – insert instructions to communicate to OS 
memory usage intent

– OS – re-architect memory management to interpret application 
intent and manage memory over hardware units

– Hardware – communicate hardware layout to the OS to guide 
memory management decisions

• Implemented framework by re-architecting recent Linux kernel

• Experimental evaluation with industrial-grade JVM
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Why

• CPU and Memory are most significant players for power and performance

– In servers, memory power == 40% of total power [1]

• Applications can direct CPU usage

– threads may be affinitized to individual cores or migrated b/w cores

– prioritize threads for task deadlines (with nice)

– individual cores may be turned off when unused

• Surprisingly, much of this flexibility does not exist for controlling memory
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Example Scenario

• System with database workload with 
512GB DRAM

– All memory in use, but only 2% of pages 
are accessed frequently

– CPU utilization is low

• How to reduce power 
consumption?
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Challenges in Managing Memory Power

• Memory refs. have temporal and spatial variation

• At least two levels of virtualization:

– Virtual memory abstracts away application-level info

– Physical memory viewed as single, contiguous array of 
storage

• No way for agents to cooperate with the OS and with 
each other

• Lack of a tuning methodology
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A Collaborative Approach

• Our approach: enable applications to guide mem. mgmt.

• Requires collaboration between the application, OS, and 
hardware:

– Interface for communicating application intent to OS

– Ability to keep track of which memory hardware units host 
which physical pages during memory mgmt.

• To achieve this, we propose the following abstractions:

– Colors

– Trays
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Communicating Application Intent with Colors

• Color = a hint for how pages will be used

– Colors applied to sets of virtual pages that are alike

– Attributes associated with each color

• Attributes express different types of distinctions:

– Hot and cold pages (frequency of access)

– Pages belonging to data structures with different 
usage patterns

• Allow applications to remain agnostic to lower level 
details of mem. mgmt.
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Power-Manageable Units Represented as Trays

• Tray = software structure containing sets of pages 
that constitute a power-manageable unit

• Requires mapping from physical addresses to 
power-manageable units

• ACPI 5.0 memory power state table (MPST):

– Phys. address ranges --> mem. hardware units
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Coloring Example

• Application with two distinct sets of memory
– Large set of infrequently accessed (cold) memory

– Small set of frequently accessed (hot) memory

• Specify guidance as a set of standard intents
– MEM-INTENSITY (hot or cold)

– MEM-CAPACITY (% of dynamic RSS)

• Intents enable OS to manage mem. more efficiently
– Save power by co-locating hot / cold memory

– Recycle large span of cold pages more aggressively
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Configuration File to Specify Intents
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# Specification for frequency of reference:
INTENT MEM-INTENSITY

# Specification for containing total spread:
INTENT MEM-CAPACITY

# Mapping to a set of colors:
MEM-INTENSITY RED 0 // hot pages
MEM-CAPACITY RED 5 // hint - 5% of RSS
MEM-INTENSITY BLUE 1 // cold pages
MEM-CAPACITY BLUE 3 // hint - 3% of RSS

• Associate colors with intents in configuration files

• Parses config file to create and structure data passed to 
the OS



Memory Coloring System Calls

System Call Arguments Description

mcolor addr, size, color Applies color to a virtual address range 
of length size starting at addr

get_addr_mcolor addr, *color Returns the current color of the virtual 
address addr

set_mcolor_attr color, *attr Associates the attribute pointed to by 
attr with color

get_mcolor_attr color, *attr Returns the attribute currently 
associated with color
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• Specify colors / intents using system calls

• Use mcolor, set_mcolor_attr to color application pages



Memory Management in Linux
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• Default Linux kernel organizes physical memory hierarchically

– Nodes --> zones --> lists of physical pages (free lists, LRU lists)

• Distinction for pages on different nodes, but not different ranks

Memory management in the default Linux kernel



Tray Implementation
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• Trays exist as a division between zones and physical pages

• Each tray corresponds to a rank, maintains its own lists of pages

• Kernel memory mgmt. routines modified to operate over trays

Memory management with tray structures in our modified Linux kernel
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Evaluation

• Emulating NUMA API’s

• Enabling power consumption proportional to 
the active footprint
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Emulating NUMA API’s

• Modern server systems include API for managing memory 
over NUMA nodes

• Our goal: demonstrate that framework is flexible and efficient 
enough to emulate NUMA API functionality

• Experimental Setup

– Oracle’s HotSpot JVM includes optimization to improve DRAM access 
locality (implemented w/ NUMA API’s)

– Modified HotSpot to control memory placement using mem. coloring

– Compare performance with the default configuration and with 
optimization implemented w/ NUMA API’s and w/ memory coloring
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Memory Coloring Emulates the NUMA API
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• Performance of SciMark 2.0 benchmarks with “NUMA-optimized” HotSpot
implemented with (1) NUMA API’s and (2) memory coloring framework

• Performance is similar for both implementations



Memory Coloring Emulates the NUMA API
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• % of memory reads satisfied by NUMA-local DRAM for SciMark 2.0 
benchmarks with each HotSpot configuration.

• Performance with each implementation is (again) roughly the same



• Our goal: demonstrate potential of our custom 
kernel to reduce power in memory

• Experimental setup:

– Custom workload that incrementally increases memory 
usage in 2GB steps

– Compare three configurations on single node of server 
machine with 16GB of RAM

• Default kernel with physical address interleaving

• Default kernel with no interleaving

• Custom kernel with tray-based allocation
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Enabling Power Consumption Proportional to 
the Active Footprint



Enabling Power Consumption Proportional to 
the Active Footprint
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• Default kernel yields high power consumption even with small footprint

• Custom kernel – tray-based allocation enables power consumption 
proportional to the active footprint



Future Improvements

• Problems:

– Little understanding of which colors or coloring hints will be 
most useful for existing workloads

– All colors and hints must be manually inserted 

• Developing a set of tools to profile, analyze and control 
memory usage for applications

• Capabilities we are working on:

– Detailed memory usage feedback over colored regions

– On-line techniques to adapt guidance to feedback

– Compiler / runtime integration to automatically partition and 
color address space based on profiles of memory usage activity
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Conclusion

• A critical first step in meeting the need for a fine-grained, 
power-aware flexible provisioning of memory.

• Initial implementation demonstrates value 
– But there is much more to be done

• Questions?
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Backup
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Default Linux Kernel
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Custom Kernel with Memory Containerization
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Analysis to Automatically Generate 
Memory Coloring Hints
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• Advantages to memory coloring:
– Broad spectrum of hints can be overlapped

– Hints can adapt to changes in the system

• Specific tasks
– Build post-processing to search profiling data for 

regions to color

– Construct analysis to relate objects that should be 
colored to source code

– Manually insert coloring hints into application to 
apply ideal guidance and evaluate its impact



Novel System Tools

• Memory usage statistics over colored regions

– Similar to /proc tools that enable users to query system-
wide or per-application memory usage

– Example: monitor page faults over a particular data 
structure

– Will further improve memory usage guidance

• Monitoring memory usage over trays

– Benefits applications such as whole-system virtualization

– Provide user-level access to trays through /proc
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More Workloads and Usage Scenarios

• Evaluate approach with complex, multi-tier 
workloads at the realistic scale of server systems

– Potential applications: open source database, web server, 
J2EE software packages

• Explore maximizing performance by distributing 
high-value data widely across memory channels

• Hints for expected access patterns

– Application guided read ahead or fault ahead with 
structures with expected sequential access

• Different page recycling policies for trays
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