& World Scientific

www.waorldseientific.com

Parallel Processing Letters, Vol. 17, No. 1 (2007) 103-123
© World Scientific Publishing Company \

AN EXPLORATION OF NON-ASYMPTOTIC LOW-DENSITY, PARITY CHECK
ERASURE CODES FOR WIDE-AREA STORAGE APPLICATIONS

JAMES S. PLANK

Department of Computer Science, University of Tennessee
Knozville, Tennessee 37996, United States

and

MICHAEL G. THOMASON

Department of Computer Science, University of Tennessee
Knozville, Tennessee 37996, United States

Received November 2006
Revised January 2007
Communicated by Guest Editors

ABSTRACT

As peer-to-peer and widely distributed storage systems proliferate, the need to per-
form efficient erasure coding, instead of replication, is crucial to performance and effi-
ciency. Low-Density Parity-Check (LDPC) codes have arisen as alternatives to standard
erasure codes, such as Reed-Solomon codes, trading off vastly improved decoding perfor-
mance for inefficiencies in the amount of data that must be acquired to perform decod-
ing. The scores of papers written on LDPC codes typically analyze their collective and
asymptotic behavior. Unfortunately, their practical application requires the generation
and analysis of individual codes for finite systems.

This paper attempts to illuminate the practical considerations of LDPC codes for
peer-to-peer and distributed storage systems. The three main types of LDPC codes are
detailed, and a huge variety of codes are generated, then analyzed using simulation.
This analysis focuses on the performance of individual codes for finite systems, and
addresses several important heretofore unanswered questions about employing LDPC
codes in real-world systems.

Keywords: FErasure codes, storage systems, fault-tolerance, peer-to-peer, low-density
parity (LDPC) codes, Tornado codes

1. Introduction

Wide-area file systems typically employ replication to improve both the perfor-
mance and fault-tolerance of file access. Specifically, consider a file system composed
of storage nodes distributed across the wide area, and consider multiple clients, also
distributed across the wide area, who desire to access a large file. The standard
strategy that file systems employ is one where the file is partitioned into &k blocks of
a fixed size, and these blocks are replicated and distributed throughout the system.
Such a scenario is depicted in Fig. 1, where a single file is partitioned into eight

103

104 J. S. Plank & M. G. Thomason

blocks numbered one through eight, and each block is replicated on four of eight
storage servers. Three separate clients are shown accessing the file in its entirety
by attempting to download each of the eight blocks from a nearby server.

Fig. 1. A widely distributed file system hosting a file partitioned into eight blocks, each block
replicated four times. Three clients are depicted accessing the file from different network locations.

Replicated systems such as these provide both fault-tolerance and improved
performance over non-replicated storage systems. However, the costs are high.
First, each block must be replicated m times to tolerate the failure of any m — 1
servers. Second, clients must find close copies of each of the file’s blocks, which can
be difficult, and the failure or slow access of any particular block can hold up the
performance of the entire file’s access [1].

Erasure encoding schemes improve both the fault-tolerance and downloading
performance of replicated systems [31,33,7]. For example, with Reed-Solomon era-
sure encoding, instead of storing the blocks of the files themselves, k+ m encodings
of the blocks are calculated, and these are stored instead. Now the clients need only
download any k blocks, and from these, the k blocks of the file may be calculated.
Such a scenario is depicted in Fig. 2, where 32 encoding blocks, labeled A through
Z and a through f are stored, and the clients need only access the eight closest
blocks to compute the file.

Reed-Solomon coding has been employed effectively in distributed storage sys-
tems [12,22], and in related functionalities such as fault-tolerant data structures [13],
disk arrays [3] and checkpointing systems [18]. However, it is not without costs.
Specifically, encoding involves breaking each block into words, and each word is
calculated as the dot product of two length-k vectors under Galois Field arithmetic,
which is more expensive than regular arithmetic. Decoding involves the inversion of
an k X k matrix, and then each of the file’s blocks is calculated with dot products as
in encoding. Thus, as k grows, the costs of Reed-Solomon coding induce too much
overhead [4].

In 1997, Luby et al published a landmark paper detailing a coding technique that
thrives where Reed-Solomon coding fails [16]. Their codes, later termed “Tornado
Codes,” calculate m coding blocks from the k file blocks in linear time using only
cheap exclusive-or (parity) operations. Decoding is also performed in linear time

Ezploration of Non-Asymptotic Low-Density, Parity Check Erasure Codes 105

Fig. 2. The same system as Fig. 1, employing Reed-Solomon coding instead of replication. Again
the file is partitioned into eight blocks, but now 32 encoding blocks are stored so that clients may
employ any eight blocks to calculate the file.

using parity; however, rather than requiring any k blocks for decoding as in Reed-
Solomon coding, they require fk blocks, where f is an overhead factor that is greater
than one, but approaches one as k approaches infinity. A content-distribution sys-
tem called “Digital Fountain” was built on Tornado Code technology, and in 1998
its authors formed a company of the same name [9)].

Tornado Codes are instances of a class of codes called Low-Density Parity-Check
(LDPC) codes, which have a long history dating back to the 60’s [10], but have re-
ceived renewed attention since the 1997 paper. Since 1998, the research on LDPC
codes has taken two paths — Academic research has resulted in many publica-
tions about LDPC codes {24,32,28,23], and Digital Fountain has both published
papers [5,14,25] and received patents on various aspects of coding techniques.”

LDPC codes are based on bipartite graphs, which are employed to define codes
based solely on parity operations. Nearly all published research on LDPC codes has
had the same mission — to define codes that approach “channel capacity” asymptot-
ically. In other words, they define codes where the overhead factor, f, approaches
one as k approaches infinity. It has been shown [16] that codes based on regular
graphs — those where each node has a constant incoming and outgoing cardinality
— do not have this property. Instead, the “best” codes are based on randomly gen-
erated irregular graphs. A class of irregular graphs is defined, based on probability
distributions of node cardinalities, and then properties are proven about the ensem-
ble characteristics of this class. The challenge then becomes to design probability
distributions that generate classes of graphs that approach channel capacity. Hun-
dreds of such distributions have been published in the literature and on the web
(see Table 1 for 80 examples).

Although the probabilistic method [2] with random graphs leads to powerful
characterizations of LDPC ensembles, generating individual graphs from these prob-
ability distributions is a non-asymptotic, non-ensemble activity. In other words,
while the properties of infinite collections of infinitely sized graphs is known, and

*U.S. Patents #6,073,250, #6,081,009, #6,163,870, #6,195,777, 6,320,520 and #6,373,406.

106 J. S. Plank & M. G. Thomason

while there has been some work in finite-length analysis [8,19], the properties of in-
dividual, finite-sized graphs, especially for small values of k, have not been explored
to date. Moreover, these properties have profound practical consequences.

Addressing aspects of these practical consequences is the goal of this paper.
Specifically, we detail how three types of LDPC graphs are generated from given
probability distributions and describe a method of simulation to analyze individual
LDPC graphs. Then we generate a wide variety of LDPC graphs and analyze their
performance in order to answer the following five practical questions:

(i) What kind of overhead factors (f) can we expect for LDPC codes for small

and large values of k7

(ii) Are the three types of codes equivalent, or do they perform differently?

(iii) How do the published distributions fare in producing good codes for finite
values of k7

(iv) Is there a great deal of random variation in code generation from a given
probability distribution?

(v) What effect does cascading have on the Simple codes?

In answering each question, we pose a challenge to the community to perform
research that helps systems researchers make use of these codes. It is our hope
that this paper will spur researchers on LDPC codes to include analyses of the
non-asymptotic properties of individual graphs based on their research.

2. Three Types of LDPC Codes

Three distinct types of LDPC codes have been described in the academic lit-
erature. All are based on bipartite graphs that are randomly generated from
probability distributions. We describe them briefly here. For detailed presenta-
tions on these codes, and standard encoding/decoding algorithms, please see other
sources [16,11,27,23,32].

The graphs have L+ R nodes, partitioned into two sets — the left nodes, [y, ..., [,
and the right nodes, 71,...,7r. Edges only connect left nodes to right nodes. A
class of graphs G is defined by two probability distributions, A and P. These are
vectors composed of elements A1, Ag,... and Py, P, ... such that Y ,A; = 1 and
> P =1. Let g be a graph in G. A; is the probability that a left node in g has
exactly ¢ outgoing edges, and similarly, P; is the probability that a right node in g
has exactly ¢ incoming edges.!

Given L, R, A and P, generating a graph g is in theory a straightforward
task [16], We describe our generation algorithm in section below. For this section,
it suffices that given these four inputs, we can generate bipartite graphs from them.

To describe the codes below, we assume that we have k equal-sized blocks of
data, which we wish to encode into k+m equal-sized blocks, which we will distribute
on the network. The nodes of LDPC graphs hold such blocks of data, and therefore
we will use the term “node” and “block” interchangeably. Nodes can either initialize

T An alternate and more popular definition is to define probability distributions of the edges rather
than the nodes using two vectors A and p. The definitions are interchangeable since (A, P) may
be converted easily to (), p) and vice versa.

Exploration of Non-Asymptotic Low-Density, Parity Check Erasure Codes 107

their block’s values from data, or they may calculate them from other blocks. The
only operation used for these calculations is parity, as is common in RAID Level 5
disk arrays [6]. Each code generation method uses its graph to define an encoding
of the k data blocks into k + m blocks that are distributed on the network.

To decode, we assume that we download the blocks in order of proximity. Each
time we download a block, we perform the standard decoding operation of removing
the block’s node and edges from the code’s graph. If decoding yields the value of an
undownloaded block, then that is equivalent to that node being downloaded, and
we continue removing nodes and edges from the graph. If a block is downloaded and
its node has already been removed from the graph, it is discarded (even though this
useless download has affected performance). When all nodes of the graph are gone,
the data has been recovered, and we do not need to download any more blocks.

2.1. Simple Codes

With Simple codes, L = k and R = m. Each left node [; holds the ¢-th data
block, and each right node r; is calculated to be the exclusive-or of all the left nodes
that are connected to it. A very simple example is depicted in Fig. 3(a).

Simple codes can cascade, by employing d > 1 levels of bipartite graphs, g1, ..., ga,
where the right nodes of g; are also the left nodes of g;+31. The graph of level 1
has L = k, and those nodes contain the k data blocks. The remaining blocks of
the encoding are right-hand nodes of the d graphs. Thus, m = Z?:l R;. A simple
three-level cascaded Simple code is depicted in Fig. 3(b).

Fig. 3. (a) Example 1-level Simple code for & = 4, m = 3. (b) Example 3-level Simple code
for k=8, m=28.

Encoding and decoding of both regular and cascading Simple codes are straight-
forward operations and are both linear time operations in the number of edges in
the graph.

2.2. Gallager Codes

Gallager codes were introduced in the early 1960’s [10] and are unsystematic,

108 J. S. Plank & M. G. Thomason

as the k + m blocks stored do not have to include the original k data blocks. The
other two codes in this paper are systematic. Gallager codes employ a different
kind of graph called a Tanner graph, where L = k+m, and R = m. The first
step of creating a Gallager code is to use g to generate a (k + m) X n matrix M.
This is employed to calculate the k -+ m encoding blocks from the original k data
blocks. These blocks are stored in the left nodes of g. The right nodes of g do not
hold data, but instead are constraint nodes — each r; has the property (guaranteed
by the generation of M) that the exclusive-or of all nodes incident to it is zero. A
simple Gallager code is depicted in Fig. 4(a).

rl I

Y R+l4+15+17=0 e Q @

‘ r2
\ H+2+13+17=0 @ (e ?
E)@

DR+13+14+16=0 Q @

(2) (b)

Fig. 4. (a) Example Gallager code for &k = 4, k = 3. Note that the right nodes define constraints
between the left nodes, and do not store encoding blocks. (b) Example IRA code for k =4, k = 3.
The left and accumulator nodes are stored as the encoding blocks. The right nodes are just used
for calculations.

Encoding is an expensive operation, involving the generation of M, and calcu-
lation of the encoding blocks. Fortunately, if the graph is low density (i.e. the
average cardinality of the nodes is small), M is a sparse matrix, and its generation
and use for encoding and decoding is not as expensive as a dense matrix (as is the
case with Reed-Solomon coding). Decoding is linear in the number of edges in the
graph. Fortunately, M only needs to be generated once per graph, and then it may
be used for all encoding/decoding operations.

2.83. IRA Codes

Irreqular Repeat-Accumulate (IRA) Codes are systematic codes, as L = k and
R = m, and the information blocks are stored in the left nodes. However, an extra
set of m nodes, z1, .. ., zm, are added to the graph in the following way. Each node r;
has an edge to z;. Additionally, each node z; has an edge to z;y1, for i < m. These
extra nodes are called accumulator nodes. For encoding, only blocks in the left and
accumulator nodes are stored — the nodes in R are simply used to calculate the
encodings and decodings, and these calculations proceed exactly as in the Simple
codes. An example IRA graph is depicted in Fig. 4(b).

Ezxploration of Non-Asymptotic Low-Density, Parity Check Erasure Codes 109

3. Asymptotic Properties of Codes

All three classes of LDPC codes have undergone asymptotic analyses that pro-
ceed as follows. A rate R = k——{:ﬁ is selected, and then A and P vectors are designed.
From these, it may be proven that graphs generated from the distributions in A
and P can asymptotically achieve capacity. In other words, they may be success-
fully decoded with fk downloaded blocks, where f approaches 1 from above as k
approaches oco.

Unfortunately, in the real world, developers of wide-area storage systems cannot
break up their data into infinitely many pieces. Limitations on the number of
physical devices, plus the fact that small blocks of data do not transmit as efficiently
as large blocks, dictate that k£ may range from single digits into the thousands.
Therefore, a major question about LDPC codes (addressed by Question 1 above)

is how well they perform when k is in this range.

4. Assessing Performance

Our experimental methodology is as follows. For each of the three LDPC codes,
we have written a program to randomly generate a bipartite graph g that defines an
instance of the code, given k,m, A, P, and a seed for a random number generator.
The generation follows the methodology sketched in [16]:

Table 1. The 80 published probability distributions (A and P) used to generate codes.

Name | Source # of Amaz Ppaz | Developed | Rate: [%, %, ﬁ]
Codes for
T97A | [16] 2 1,048,577 | 30,050 | Simple 0.1,1]
L97B | [16] 8 8-47 16-28 | Simple 0,4,4]
599 [26] 19 23208 | 613 | Gallager 4,7,8]
SS00 [28] 3 9-12 7-16 Gallager [0,3,0]
Moo | [17] 14 2-20 3-8 IRA [0,6,8]
WKO3 | [32] 6 11-50 811 | Gallager* [0,6,0]
RUO03 | [23] 2 8-13 6-7 Gallager [0,2,0]
RO3 [24] 8 100 8 IRA* [0,8,0]
U03 30] 22 6-100 6-19 | Gallager (6,9,7]

For each left node [;, its number of outgoing edges &; is chosen randomly from A,
and for each right node r;, its number of incoming edges ¢; is chosen randomly
from P. This yields two total numbers of edges, Tr = Zle & and T = Zfil Li
which may well differ by D > 0. Suppose 17, > Tr. To rectify this difference,
we select a “shift” factor s such that 0 < s < 1. Then we subtract sD edges
randomly from the left nodes (modifying each &; accordingly), and add (1 — s)D
edges randomly to the right nodes {modifying each ¢; accordingly). This yields a
total of T' total edges coming from the left nodes and going to the right nodes.

Now, we define a new graph ¢’ with T left nodes, T right nodes and a random
matching of T' edges between them. We use ¢’ to define g, by having the first &;
edges of ¢’ define the edges in ¢ coming from {;. The next & edges in ¢’ define the
edges coming from Iy, and so on. The right edges of g are defined similarly by the
right edges of ¢’ and «;.

At the end of this process, there is one potential problem with g — there may
be duplicate edges between two nodes, which serve no useful purpose in coding or

110 J. S. Plank & M. G. Thomason

decoding. We deal with this problem by deleting duplicate edges. An alternative
method is to swap edges between nodes until no duplicate edges exist. We compared
these two methods and found that neither outperformed the other, so we selected
the edge deletion method since it is more efficient.

We evaluate each random graph by performing a Monte Carlo simulation of over
1000 random downloads, and calculating the average number of blocks required to
successfully reconstruct the data. This is reported as the overhead factor f above.
In other words, if & = 100, m = 100, and our simulation reports that f = 1.10, then
on average, 110 random blocks of the 200 total blocks are required to reconstruct
the 100 original blocks of data from the graph in question.

Theoretical work on LDPC codes typically calculates the percentage of capacity
of the code, which is %100%. We believe that for storage applications, the overhead
factor is a better metric, since it quantifies how many block downloads are needed
on average to acquire a file.

5. Experiments

5.1. Code Generation

The theoretical work on LDPC codes gives little insight into how the A and P
vectors that they design will perform for smaller values of k. Therefore we have
performed a rather wide exploration of LDPC code generation. First, we have
employed 80 different sets of A and P from published papers on asymptotic codes.
We call the codes so generated published codes. These are listed in Table 1, along
with the codes and rates for which they were designed. The WKO03 distributions
are for Gallager codes on AWGN (Additive White Gaussian Noise) channels, and
the R0O3 distributions are for IRA codes on AWGN and binary symmetric channels.
In other words, neither is designed for the type of storage applications for which
we employ them. We included the former as a curiosity and discovered that they
performed very well. We included the latter because distributions for IRA codes
are scarce.

Second, we have written a program that generates random A and P vectors,
determines the ten best pairs that minimize f, and then goes through a process of
picking random A’s for the ten best P’s and picking random P’s for the ten best A’s.
This process is repeated, and the ten best A/P pairs are retained for subsequent
iterations. Such a methodology is suggested by Luby et al [15]. We call the codes
generated from this technique Monte Carlo codes.

Third, we observed that picking codes from some probability distributions re-
sulted in codes with an extremely wide range of overhead factors (see section
below). Thus, our third mode of attack was to take the best performing instances
of the published and Monte Carlo codes, and use their left and right node cardi-
nalities to define new A’s and P’s. For example, the Simple code in Fig. 3(a) can
be generated from any number of probability distributions. However, it defines a
probability distribution where A =< 0,0.75,0.25 > and P =< 0,0,1 >. These
new A’s and P’s may then be employed to generate new codes. We call the codes
so generated derived codes.

Ezxploration of Non-Asymptotic Low-Density, Parity Check FErasure Codes 111

5.2. Tests
The range of potential tests to conduct is colossal. As such, we limited it in the
following way. We focus on three rates: R € {%, %, %} In other words, m = 2k,

m = k, and m = % These are the rates most studied in the literature. For each
of these rates, we generated the three types of codes from each of the 80 published
distributions for all even k between 2 and 150, and for k£ € {250, 500, 1250, 2500,
5000, 12500, 25000, 50000, 125000} For Simple codes, we tested cascading levels from
one to six.

For Monte Carlo codes, we tested all three codes with all three rates for even k <
50. As shown in section below, this code generation method is only useful for
small k.

Finally, for each value of &, we used distributions derived the best current codes
for all three coding methods (and all six cascading levels of Simple codes) to generate
codes for the ten nearest values of k with the same rate. The hope is that good
codes for one value of k& can be employed to generate good codes for nearby values
of k.

In sum, this makes for over 100,000 different data points, each of which was
repeated with over 100 different random number seeds. The optimal code and
overhead factor for each data point was recorded and the data is digested in the
following section.

6. Results

Our computational engine is composed of 160 machines (Sun workstations run-
ning Solaris, Dell Pentium workstations running Linux, and a Macintosh Power-
Book running OSX) which ran tests continuously for many months. We organize
our results by answering each of the questions presented in Section above.

6.1. Question 1

What kind of overhead factors can we expect for LDPC codes for small and large
values of k?

All of our data is summarized in Fig. 5. For each value of £ and m, the coding
and generation method that produces the smallest overhead factor is plotted.

All three curves of Fig. 5 follow the same pattern. The overhead factor starts
at 1 when m = 1 or k = 1, and the Simple codes become replication/parity codes
with perfect performance. Then the factor increases with k until & reaches roughly
twenty at which point it levels out until k increases to roughly 100. At that point,
the factor starts to decreases as k increases, and it appears that it indeed goes to
one as k gets infinitely large.

Although we only test three rates, it certainly appears that the overhead factor
grows as the rate approaches zero. This is intuitive. At one end, any code with a
rate of one will have an overhead factor of one. At the other, consider a one-level
Simple code with k¥ = 3 and m = oo. There are only seven combinations of the left

fOne exception is k = 125000 for R = %, due to the fact that these graphs often exceeded the
physical memory of our machines.

112 J. S. Plank & M. G. Thomason

—Rate=1/3
»»»»»»»»»» Rate = 1/2
Rate =2/3
120 \
§ 115 et \
8 A \
s LA
o
] S
5 A \
3 110
g1
s o\
. \
£y
NN
\,
8 \.\
1.05 : \\
100 : . ; , v
10 100 1000 10000 100000

k

Wi

Fig. 5. The best codes for all generation methods for 1 < k£ < 125,000, and R = %,

nodes to which a right node may be connected. Therefore, the right nodes will be
partitioned into at most % groups, where each node in the group is equivalent. In
other words, any download sequence that contains more than one block from a node
group will result in overhead. Clearly, this argues for a higher overhead factor.

Challenge for the Community: The shape of the curves in Fig. 5 suggests
that there is a lower bound for overhead factor as a function of k and m (or alter-
natively as a function of k and R). It is a challenge to the theoretical community
to quantify this lower bound for finite values of k and m, and then to specify exact
methods for generating optimal or near optimal codes.

6.2. Question 2

Are the three types of codes equivalent, or do they perform differently?

They perform differently. Fig.s 6 - 8 show the best performing of the three
different codes for the three rates. All three show a similar pattern — for small
values of k, Simple codes perform the best. However, when k roughly equals 100,
the IRA codes start to outperform the others, and the Gallager codes start to
outperform the Simple codes. This trend continues to the maximum values of k.

Unfortunately, since the theoretical work on LDPC codes describes only asymp-
totic properties, little insight can be given as to why this pattern occurs. One cu-
rious point is the relationship between one-level Simple codes and Gallager codes.
It is a trivial matter to convert a one-level Simple code into an equivalent Gallager
code by adding m left nodes, lg11,. - ., g+m to the Simple graph, and m edges of
the form (lgys,7:) for 1 < i < m. An example is the Simple code in Fig. 9(a),

Ezxploration of Non-Asymptotic Low-Density, Parity Check FErasure Codes 113

130
o, — Simple
1.25 Fi e - Gallager
5 ’ /f\\,\\\:}% IRA
g 120 i =
S i
LY/
g 115 7 3
£ i . \
g 1.10
=] - S,
1.05 b
1.004 T T T T T
10 100 1000 10000 100000
k

Fig. 6. Comparing methods, R = %

A — Simple
7 : .
115 A I B Gallager
15 s R o IRA
° 7 / i
=] / N
&= v//
g 1.10 +/
=
§ 7 g
© 105 e
100 i : : : ‘
10 100 1000 10000 100000

(S

Fig. 7. Comparing methods, R =

which is equivalent to the Gallager code in Fig. 9(b). Both have overhead factors
of 1.11. This fact would seem to imply that overhead factors for one-level Simple
codes would be similar to, or worse than Gallager codes. However, when k& < 50,
the one-level Simple codes vastly outperform the others; the Gallager codes perform
the worst. A clue to this behavior can be seen in Fig. 9(c). This is a Gallager code
whose nodes have the same cardinalities as the code in Fig. 9(b), and thus would
be generated by the same values of A and P. However, its overhead factor is 1.21!

To hammer this point home further, we performed the same conversion on a
Simple graph where k& = m = 20, and the overhead factor is 1.16. The node
cardinalities of the equivalent Gallager graph were then used to generate values
of A and P, which in turn were used to generate 500 new Gallager graphs with the
exact same node cardinalities. The minimum overhead factor of these graphs was
1.31 (the average was 1.45, and the maximum was 1.58). What this suggests is that
for smaller graphs, perhaps A and P need to be augmented with some other metric
so that optimal codes can be generated easily.

Challenge to the community: A rigorous comparison of the practical utility
of the three coding methods needs to be performed. In particular, a computation-

114 J. S. Plank & M. G. Thomason

e —— Simple
1.104 / (T Gallager
= —“*,» IRA
g - RN
g ;
=
g
= 1.054
Bt
o
e
@] g >
LOO A T T T T T
10 100 1000 10000 100000

Fig. 8. Comparing methods, R = %

(a) (b) (c)

Fig. 9. (a) Example 1-level Simple code for k = 4, m = 4. (b) Equivalent Gallager code. (c)
Gallager code generated from the same A and P as (b).

ally attractive method that yields (near) optimal codes for finite k£ would be excep-
tionally useful. This is highlighted by the fact that one-level Simple codes vastly
outperform Gallager codes for small k, even though equivalent Gallager codes may
be constructed from the Simple codes.

6.3. Question 3

How do the published distributions fare in producing good codes for finite values
of k?

In the next two graphs, we limit our scope to R = %, as the results for the
other two rates are similar. First, we present the performance of the three code
generation methods for the three coding methods for small & in Fig. 10. As in the
other graphs, the best performing instance for each value of k is plotted.

In all coding methods, the Monte Carlo generation method produces better

Ezxploration of Non-Asymptotic Low-Density, Parity Check FErasure Codes 115

------ Monte Carlo —— Published ===-Derived
1.25 i
5 3
o 1.204- %
8 :' I)
5] . s, .5,
£ 1154y il B A
Q :
= 1104 :
- H
I .
>
C 105
1-00 T T 1 T T 1 T T 1
S L = =0 N = =0 W = =
< (] wn o (=] w o (o) W
S oS S S S &
k k k
Simple Gallager IRA

Fig. 10. Performance of various codes for £ < 150 when R = %

codes than the published distributions when k is roughly less than 15. At that
point, the exponential number of possible A/P combinations drastically reduces
the effectiveness of Monte Carlo code generation. From that point until k is in
the high double-digits, the performance of the published codes is worse than the
derived codes. As k grows past 100, the derived and published codes perform
roughly equally. Thus, for small k(< 100), the answer to Question 3 is clearly
inadequately.

Fig. 11 addresses which published distributions perform well in generating small
codes. Each graph plots four curves — the best codes generated from distributions
designed for the particular code and rate, the best codes generated from distribu-
tions designed for the particular code, but not for the rate, the best codes generated
from distributions designed for other codes, and a reference curve showing the best

codes from Fig. 10.

Table 2. Distributions that generated the best Simple codes for & < 150
Source Designed for Rate Percentage

7] TRA 573 46.6%
[23] Gallager 1/2 24.0%
[30] Gallager 1/3 12.3%
[26] Gallager 2/3 11.0%
[26] Gallager 1/2 4.1%
[30] Gallager 1/2 2.0%

In all three graphs, the worst codes were generated from distributions designed
for the particular code, but for a different rate. In both the Gallager and IRA
codes, the best codes were generated from distributions designed for the code and
rate; and in the Simple codes, the best codes were clearly derived from distributions
designed for other codes. Probing further, Table 2 shows the breakdown of which

116 J. S. Plank & M. G. Thomason

------ Same Code, Same Rate - == Different Code
—— Same Code, Different Rate we Best instance

St
=
ia
&
=
=
*
&
=
S
%]
>
Q© 1.05
1.00 44—+ 1
< wn —_ —_— W —_ —_— i — b
o < W (o] (] h o o W
< < (] < [se) [a)
k k k
Simple Gallager IRA

(I

Fig. 11. Performance of published distributions for & < 150 when R =

distributions produced the best Simple codes. The significance of this is none other
than the fact that the derivation of good Simple codes for small k is clearly not well
understood at this point.

For large k, we plot the best published and derived codes for all rates and coding
methods in Fig. 12. Note that in each graph, the y-axis has a different scale. There
are several interesting features of these graphs. In the middle graph, where R = %,
the published distributions perform best relative to the derived distributions. This
is not surprising, since the bulk of the published distributions (46 of the 80) are
for R = 2. For R = £, all three coding methods perform similarly in their best
instances. For R = %, it is not surprising that the published distributions fare
poorly in relation to the derived distributions, since only 10 of the 80 published
distributions are for R = %, and these are only for Gallager codes. It is interesting
that given this fact, the derived IRA codes significantly outperform the others. It
is also interesting that the published IRA codes for R = % perform so poorly in
comparison to the derived codes.

As in the results on small k£, (Fig. 2), in analyzing which distributions produce
good graphs for large k, we find that for IRA and Gallager codes, the best codes are
produced by distributions designed specifically for the code and rate. For Simple
codes, the best codes are produced by distributions for other codes. We omit the
data here for brevity. It may be obtained in [20].

In summary, for large k, our answer to Question 3 has to be that the published
distributions perform poorly in relation to the derived codes. To explore this point
further, we decided to experiment with deriving IRA codes without any basis in the
published codes. Fig. 13 displays the results. In this graph, the dashed lines show
our original best IRA codes, derived from the published distributions. The solid
lines show the performance of codes derived solely from the Monte Carlo codes for

Ezploration of Non-Asymptotic Low-Density, Parity Check Erasure Codes 117

Simple Published =~~~ Gallager Publishcd IRA Published
-==-Simple Derived -« Gallager Derived - IRA Derived
1.25 1.15 1.10
w 1.204-
=]
B]
a
B 115
-] 1
g
= 1104
o 1
o
>
© 1054
I.OO i T T I‘OO ™ T T 100 T i T
S 2 2 2 2 2 2 2 29 g 3 2
S S & S S & & @ S S S @
S @ 2 S @8 S @ 2
S & S & S &
IS S S
k k k
Rate = 1/3 Rate = 1/2 Rate =2/3

Fig. 12. Performance of all codes and rates for large k.

120 —
----Rate = 1/3: Original

—— Rate = 1/3: From Monte Carlo
- Rate = 1/2: Original

o . - - Rate = 1/2: From Monte Carlo
Y - Rate = 2/3: Original
1.10 - - Rate = 2/3: From Monte Carlo

1.05

.

Overhead Factor

L0 y T T
100 1000 10000 100000

Fig. 13. Derived IRA Codes.

even k < 26. This is just 13 starting points for each rate. To help in the derivation,
we generate codes for the following values of k:

e Even values less than 150

e Multiples of 10 less than 1000

e Multiples of 50 less than 5000

e 7500, 12500, 25000, 50000, 75000 and 125000

The generations proceeded on 90 of our machines for 11 days. For all rates,
when k < 1000, the codes derived from published distributions perform no better
than the ones derived from the 13 starting points. As k progresses higher, the codes
derived from published distributions outperform the others, although by less than

0.01 for R = % and %

118 J. 8. Plank & M. G. Thomason
6.4. Question 4

Is there a great deal of random wvariation in code generation from o given
probability distribution?

Obviously, this depends on the distribution, and how the distribution is utilized.
In Table 3, we select six probability distributions in order to test their variation in
code generation. For each of the distributions, we generated over 1000 random
codes for k = 125,000, and present a digest of the results in Fig. 14. For each
distribution we draw a Tukey plot [29], which shows the quartiles for the data and
its mean.

Table 3. Range of code generation for given probability distributions.

Source Code Rate Rate A P
Designed | Used | range range
599 Gallager 2/3 2/3 2 6
S99* Gallager 2/3 1/2 2 6
RU03 [Gallager 1/2 1/2 2-13 7
Uo03 Gallager 1/2 1/2 2-100 10-11
R0O3 IRA 1/2 1/2 2-100 8
LI97A Simple 1/2 2/3 3-1IM | 11-30K
2.0+
— Max —
1.94
3rd Quartile —»
1.8+ i Mean -—»
B 174 Median —
° [st Quartilc —
< 1.6 - -
B Maux ~———
T 1.5
IR .
@ .
£ 141
4
& 13
—+
1.24 -~
1.1 T [JJ
R
» @« ~ c ~ =
$ & ¢ 8§ & 3
e >

Fig. 14. The variation in code generation for six selected distributions, k& = 125, 000.

The first distribution, S99, from [26], is for a regular graph, where the left nodes
each have two outgoing edges, and the right nodes have six incoming edges. As
such, we expect little random deviation, which is borne out by the experiments.
(We do expect some, because of the random nature of graph generation and of the
downloading simulation).

S99* uses the same distribution, but for a different rate. As described in Section ,
when the total number of edges generated by the left and right nodes do not match,
edges are added to or subtracted from random nodes until they do match. Thus,
even a regular distribution such as this one, when employed for the wrong rate
as in this instance, can generate a wide variety of graphs. It is interesting that
this distribution produces better codes for the wrong rate, both in the best and

Ezxploration of Non-Asymptotic Low-Density, Parity Check FErasure Codes 119

median case, than the rate for which it is developed. It is also interesting that this
regular graph, which theoretically should achieve an asymptotic overhead factor of
Tsg7ar = 145 for R = 2 [26], in actuality achieves a far better one for both rates.

The next two distributions, RU03 and U03, are for Gallager graphs with rate %
RUO3 is right regular, meaning all right-hand nodes have the same number of in-
coming edges, which is a desirable property, because it simplifies code analysis and
distribution generation [26,23]. U03 is nearly right regular. Both distributions gen-
erate codes with a large spread in performance; however, both have the desirable
quality that their medians are very close to their minimum values. In other words,
one does not have to generate many codes to get one that performs optimally or
near optimally.

The next distribution, for IRA graphs, is also right regular, but has far less
desirable generation properties, as it has a very large range of overhead factors, and
its median is extremely high. The last distribution, for two-level Simple codes, is
one whose nodes have an exceptionally large range of cardinalities — over a million
for left nodes (although with k£ = 125, 000, the range is reduced to 32,769), and over
30,000 for right nodes. Interestingly, though, its range of overhead factors is less
than RO3, although it is still a large range.

While more distributions can be displayed, the bottom line remains the same —
some distributions yield good codes with only a few iterations of code generation.
Others require a longer time to generate good codes. Clearly, one must generate
multiple instances of codes to find one that performs well for given values of k
and m.

Challenge To The Community: Besides asymptotic performance, some mea-
sure of how quickly a distribution yields good codes in practice should be developed.
While distributions such as R03 for IRA graphs and L97A for Simple graphs do pro-
duce excellent codes, they only do so in relatively rare cases, and thus are difficult
to utilize.

6.5. Question 5

What effect does cascading have on Simple codes?

We tested up to six levels of cascading for each value of k£ and m. Fig. 15 plots
the best level for each data point. Drawing general conclusions from Fig. 15 is
difficult, but it appears that the optimal number of levels increases as £ — oco. This
increase is very gradual, and appears to be slower for R = % than forR = % The
plot for R = % does not exhibit this trend — instead, for 14 < k < 80, there are
times when 2-Level codes outperform 1-Level codes. This is the point where the
codes perform the worst (see Fig. 6}, which may be significant. The failure of the
codes for R = % to follow the trend of the others may also be due to the fact that
we have no published probability distributions designed for this rate.

Finally, we suspect that to generate better multi-level Simple codes, each level
may need its own distinct probability distribution. We did not test this hypothesis
due to time constraints.

Challenge to the Community: Since the major researchers on Simple codes

are focusing on corporate research, there is less theoretical research on them than the

120 J. S. Plank & M. G. Thomason

l I Level

2 Levels D 3 Levels [| 4 Levels

Rate = 1/3

Rate = 1/2

10 100 1000 16000 100000

Fig. 15. Best performing Simple graphs, broken down by number of levels.

others. Regardless, understanding the properties of these codes and the implications
of cascading behavior would be a welcome addition to the body of knowledge of these
codes.

7. Conclusion

This paper has performed a practical exploration of the utility of LDPC codes for
wide-area network storage applications. While the asymptotic properties of these
codes have been well studied, we have attempted to illuminate their performance
for finite systems by addressing five questions, whose answers we summarize below:

Question 1: The overhead factor of LDPC codes, while asymptotically ap-
proaching 1, reaches its maximum value when k is in the range of 10 to 100. This
maximum value increases as the rate decreases, and may be roughly summarized as
1.20 for R =4, 1.15for R =3 and 1.10 for R = 2.

Question 2: The three types of codes perform differently. Simple codes perform
the best for k < 100. IRA codes perform the best for k£ > 100.

Question 3: Codes derived adaptively from other codes perform better than
those derived from published distributions. Simple codes in particular do not per-
form well from the distributions designed for them.

Question 4: Some distributions produce codes that vary widely in performance.
Others produce codes that are more consistent with one another. Concepts like
right-regularity do not appear to make a difference.

Question 5: Cascading has an increasing effect on Simple codes as k grows.
The different levels may require different probability distributions.

Bottom Line: From these questions, we can draw the following bottom line
conclusions:

e While A and P suffice for deriving codes with asymptotically good perfor-
mance, their use as generators of finite codes and indicators of finite code per-
formance is lacking. In the course of this research, we have compiled a mass
of codes which perform well, but these have come about by brute force Monte

Ezxploration of Non-Asymptotic Low-Density, Parity Check Erasure Codes 121

Carlo techniques. The theoretical community is challenged to derive more ef-
fective techniques for generating finite codes, and the experimenal community
is challenged to explore other heuristics such as pseudo-codewords, stopping
sets, trapping sets and girth as guideposts to generating good finite-length
codes.

o Clearly, LDPC codes, even suboptimal ones, are very important alternatives
to Reed-Solomon codes. A more thorough analysis comparing the perfor-
mance of these two types of codes needs to be performed, with the goal of
providing storage system users with recommendations for the optimal coding
technique, value of k, and value of m, given their system’s performance and
failure parameters.

One limitation of the LDPC codes in this paper is that they have not been
designed to adjust to different rates. It is easy to envision a situation where a file
already broken into & blocks is spread among k+m storage servers, and then m’ new
servers are added to the system. If the coding method that stores the original k+m
blocks can adapt efficiently to a rate of ZW»’}}W’ then adding new coding blocks
to the system is a straightforward and efficient operation. However, if the coding
technique must be altered to accommodate the new rate, then old coding blocks
must be discarded, and new ones calculated in their place, which will be inefficient.
Reed-Solomon codes have the feature that they adapt to any rate, although they are
very slow compared to LDPC, especially when k is large [21,7]. apply. New codes
called LT codes and Raptor codes, that adapt to any rate with optimal asymptotic
performance have been developed by Luby and Shokrollahi {14,25]. It is a subject
of future work to perform a practical analysis of these codes.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under grants CNS-0615221, ACI-0204007 and ANI-0222945 and the Department of
Energy under grant DE-FC02-01ER25465.

References

[1] M. S. Allen and R. Wolski. The Livny and Plank-Beck Problems: Studies in data
movement on the computational grid. In SC2003, Phoenix, November 2003.

[2] N. Alon, J. W. Spencer, and P. Erdos. The Probabilistic Method. John Wiley & Sons,
New York, 1992.

[3] W. A. Burkhard and J. Menon. Disk array storage system reliability. In 28rd Inter-
national Symposium on Fault-Tolerant Computing, pages 432-441, Toulouse, France,
June 1993.

[4] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to
reliable distribution of bulk data. In ACM SIGCOMM ’98, pages 56-67, Vancouver,
August 1998.

[5] J. W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel:
Using tornado codes to speed up downloads. In IEEE INFOCOM, pages 275-283, New
York, NY, March 1999.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM Computing Surveys, 26(2):145-185, June

122 J. S. Plank & M. G. Thomason

[20]

[21]

(23]

1994.

R. L. Collins and J. S. Plank. Assessing the performance of erasure codes in the wide-
area. In DSN-05: International Conference on Dependable Systems and Networks,
Yokohama, Japan, 2005. IEEE.

C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke. Finite-length
analysis of low-density parity-check codes on the binary erasure channel. /JEEE Trans-
actions on Information Theory, 48:1570-1579, June 2002.

Digital Fountain, Inc. Next generation data transfer: the meta-content revolution. A
Digital Fountain White Paper, www.digitalfountain.com, 2002.

R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.
H. Jin, A. Khandekar, and R. McEliece. Irregular repeat-accumulate codes. In 2nd
International Symposium on Turbo codes and Related Topics,, Brest, France, September
2000.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proceedings of ACM ASPLOS, pages 190-201,
Cambridge, MA, November 2000. ACM.

W. Litwin and T. Schwarz. Lh*rs: a high-availability scalable distributed data structure
using Reed Solomon codes. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 237-248, 2000.

M. Luby. LT codes. In IEEE Symposium on Foundations of Computer Science, 2002.
M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis of random processes via
and-or tree evaluation. In 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 364-373, San Francisco, CA, January 1998. ACM.

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical
loss-resilient codes. In 29th Annual ACM Symposium on Theory of Computing, pages
150-159, El Paso, TX, 1997. ACM.

R. J. McEliece. Achieving the Shannon Limit: A progress report. Plenary Talk, 38th
Allerton Conference, October 2000.

J. S. Plank. Improving the performance of coordinated checkpointers on networks
of workstations using RAID techniques. In 15th Symposium on Reliable Distributed
Systems, pages 76-85, October 1996.

J. 8. Plank, A. L. Buchsbaum, R. L. Collins, and M. G. Thomason. Small parity-check
erasure codes - exploration and observations. In DSN-05: International Conference on
Dependable Systems and Networks, Yokohama, Japan, 2005. IEEE.

J. 8. Plank and M. G. Thomason. On the practical use of LDPC erasure codes for
distributed storage applications. Technical Report CS-03-510, University of Tennessee,
September 2003.

J. S. Plank and M. G. Thomason. A practical analysis of low-density parity-check era-
sure codes for wide-area storage applications. In DSN-200/4: The International Confer-
ence on Dependable Systems and Networks, pages 115-124, Florence, Italy, June 2004.
IEEE.

S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz.
Maintenance-free global data storage. JIEEE Internet Computing, 5(5):40-49, 2001.

T. Richardson and R. Urbanke. Modern coding theory. Draft from 1thcwww.epfl.ch/
papers/ics.ps, August 2003.

A. Roumy, S. Guemghar, G. Caire, and S. Verdu. Design methods for irregular re-
peat accumulate codes. In IEEE International Symposium on Information Theory,
Yokohoma, Japan, 2003.

A. Shokrollahi. Raptor codes. Technical Report DR2003-06-001, Digital Fountain,

29]
[30]

(31]

[32]

[33]

Ezxploration of Non-Asymptotic Low-Density, Parity Check Erasure Codes 123

2003.

M. A. Shokrollahi. New sequences of linear time erasure codes approaching the channel
capacity. In Proceedings of AAECC-13, Lecture Notes in CS 1719, pages 65-76, New
York, 1999. Springer-Verlag.

M. A. Shokrollahi. Codes and graphs. Lecture Notes in Computer Science, 1770, 2000.
M. A. Shokrollahi and R. Storn. Design of efficient erasure codes with differential
evolution. In IEEFE International Symposium on Information Theory, Sorrento, Italy,
2000.

E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
Connecticut, 1983.

R. Urbanke et al. LdcpOpt - a fast and accurate degree distribution optimizer for
LPDC ensembles. http://lthcwwy.epfl.ch/research/ldpcopt/index.php, 2003.

H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative
comparison. In First International Workshop on Peer-to-Peer Systems (IPTPS), March
2002.

S. B. Wicker and S. Kim. Fundamentals of Codes, Graphs, and Iterative Decoding.
Kluwer Academic Publishers, Norwell, MA, 2003.

Z. Zhang and Q. Lian. Reperasure: Replication protocol using erasure-code in peer-
to-peer storage network. In 21st IEEE Symposium on Reliable Distributed Systems
(SRDS’02), pages 330-339, October 2002.

