
Towards a Flexible and Realistic
Hardware Performance Monitor

Infrastructure

Philip J. Mucci

Innovative Computing Laboratory,
University of Tennessee, Knoxville, TN

Parallel Center for Computers,
Royal Institute of Technology, Stockholm, Sweden

http://icl.cs.utk.edu/~mucci

Maintain A User-Centric Focus

● This is not the Grid.
– This work does not exist to maintain a funding

pipeline.

● Our goal is to empower the users to improve
the efficiency of these systems.

● The audience for this work is already small, so
we must maintain focus.
– Smaller factions, like power consumption/monitoring

will have even a harder time.

Next Generation Design

● While highly advanced functionality may be
desired, we must strive to produce realistic
recommendations that stand a chance of being
heard.

● This means that the recommendations should:
– Be implementable without Alien intervention.

– Require reasonably low architectural complexity.

– Tolerant routing requirements.

– etc...

Delivering Functionality

● Performance monitor functionality was never
asked for.
– These counters were discovered “under a rock”, and

then exercised and exposed.

– Slowly led to usage by the people that really needed
them who never knew they even existed (and couldn't
ask for them.)

● Features that exist in the hardware but not in
software, do not exist.

● You can lead or you can follow.

Brinkley's Killer App

● Stop trying to 'figure out' what to do. Measure it!
– Numerical kernels. (Atlas)

– Aggressive source transformations. (Rose)

– Compilers. (PGO)

– Schedulers. (HT-aware)

– Page placement/migration. (SunFire)

– Network collectives. (consider binomial vs. binary
broadcast on IB/Myrinet)

● As software engineers we must push for the
availability of this functionality. (prefetching)

What # of Counters?

● Our scope of the understanding of usage is too
narrow.
– System Monitoring

– System/Kernel Dynamic Adaptation

– Application Monitoring

– Application Performance Analysis

System Monitoring

● Evaluate the performance of a system as a whole.
● Snapshot, high-level views.
● Continuous collection, aggregation.
● No support for HT/CMT/SMT needed.

System Monitoring Applications
● PerfMiner
● Ganglia
● NWPerf
● SuperMon
● CluMon
● Nagios
● PCP

System Optimization

● Adaptive Kernel Subsystems
– Dynamic page migration

– TLB coalescing

– Advanced HT/SMT scheduling.

● System throughput optimization
– Profile samples that cross user/kernel domain.

System Optimization Mechanisms

● Oprofile
● Perfmon
● DCPI/ProfileMe
● KernInst
● DTrace

Application Monitoring

● Measure actual application performance via batch
system. (or BSD like collection mechanisms.)
– Workload characterization

● Per thread/per application metrics.
● Isolate deficits in throughput, efficiency and

productivity.
● Dedicated CMT/SMT/HT counters.

Application Monitoring Systems

● PerfMiner (+ Easy)
● NWPerf
● Work at NCSA (+ OpenPBS)

Application Compilation, Analysis,
Modeling and Optimization

● Focused on items code that the user has direct
control over.

● Non-SUID/non-root/exclusive thread scope
access and virtualization

● This is the focus of most user tools.
● Dedicated CMT/SMT/HT counters.

Compilers and Tools

● HPCToolkit
● PerfSuite
● SvPablo
● TAU
● Vampir
● Lots of vendor tools, compilers and modeling

systems.

What Number of Counters?

● At least 2, possibly 3 of these systems must exist
simultaneously.

● 1 needs replicated hardware for CMT/SMT/HT.
● Hardware measurements are never singletons.
● When measuring performance, the set of usable

registers should be able to measure:
– At least 2 ratios. (TLB miss-rate, BP corr. predicted)

– Total cycles.

● Consider 2-3 blocks of 6 counters.

Consider 2 Blocks of 6 Counters

● Supports system monitoring/profiling and
application tuning and analysis.

● Each block is it's own domain and must be
protected and be able to be used independently!

● Symmetric design is ideal but not required.

2 Blocks of 6 Counters

● 1 control register per group, with individual event
select/mask fields.
– Keeps counter set up cost/code very low.

● High speed counter 'kill bit'.
– Allows user code to quickly pause/enable the counters

without syscalls. (IA64)

– Counter control operations are always privileged.

2 Blocks of 6 Counters

● Guess what? >= 32 bits is enough.
– Current software assumes counter will not overflow

during a time-slice.

– Software always has to handle overflow regardless of
size for statistical profiling.

– Counters be part of the process/thread struct for the for
the application domain.

● Saved/restored on context switch.
● Lazy evaluation like FP registers.

What method of access?

● Always READABLE by regular user mode
programs.
– Syscall is almost 1000 cycles on IA64.

● Shame on you guys!
– Less than a dozen cycles would be awfully nice.

● Opteron 1.4: 14 cycles
● Athlon64: 20 cycles
● Pentium IV (model 3/2): 226/146 cycles
● PentiumPro: 33 cycles
● PPC750: 2 cycles (Whew...)

What method of access?

● Precise interrupt information.
– Hardware should identify which counter.

– Hardware should assist instruction and data address
attribution. Either through:

● Deterministic wait
● Precise interrupt mode. (Like FP exceptions...)
● Deposit of instruction virtual address either to a buffer or

just a mailbox.
● Provide virtual address of last data access prior to event.

Which events?

● A big question. We must stay focused on what
the counters are used for.

● The goal of our work should not initially be to
service the needs of a small research community.

● Only the 'simplest' events are of meaning to the
average application engineers.
– Rudimentary knowledge of processor

microarchitecture.

– Can easily be abstracted from detailed processor
metrics by the right software. (Shameless PAPI plug.)

● Remember the average user?
– LD/ST/Prefetch

– I/D Cache Miss/Accesses at every level

– Conditional Branches (TK,NTK,CRP,MPR)

– Work (Integer, FP, Vector)

– SMP protocol events.

– FP exceptions/traps.

Which events? (cont.)

Example

– Stall metrics that relate to:
● Processor stalls. (Implies the latter)
● Functional unit/queue stalls. (Does not imply the former.)

– Functional unit/queue activity.
● Power monitoring.

– Event thresholding.

– Edge detect for actual costs.

– Does not care about issued counts. (Can I do anything
to really change it?)

Which events? (cont.)

Which events? (cont.)

● Non aggregate functionality
– Precise interrupt functionality.

– Hardware support for randomization.

– Hardware support for event tracing/sampling.
● Locality, Latency (DA and PC)
● Branch behavior (From, to PC)
● SMP/Numa traffic (From, to, VA)

– A good/fast virtual to physical mapping mechanism.

General Suggestions...

● Stop ADDING events. Delete them!
● Remember the R10K?

– 32 reasonably well documented and almost verified
registers.

– Pentium IV space is about 30,000 (legal and non-legal)
configurations.

● Counter groups make usage and programming
hard.

General Suggestions...

● Don't think of an operation in a particular
functional unit as always executing work.
– Don't include register moves in floating point counts.

(you know who you are...)

– I want to count FP events. Don't make me pick
between single, double, packed, unpacked vector or
standard floating point operations.

● Giving me ½ of an important ratio gives me
nothing.

A Standardized Linux Interface

● IMHO, not quite bad as Stephane makes it out to
be. There are only 2 interfaces. (Oprofile doesn't
have one.)

● Numerous tools have been developed or ported
support hardware performance counters with an
interface that hides the complexity.
– PerfSuite, HPCToolkit, SvPablo, Tau, lots of others...

– Portland Group Prof, Allinea's Opt Tool, Vampir,
Paraver

● Many tools run cross platform out of the box
today with native event support.

The PerfCtr Linux Interface
● PerfCtr is x86/x86_64/PPC/PPC64 and I have

personally ported to MIPS and PPC440 in < 2
weeks.

● Perfmon got the grandfather treatment. No fair!
● PerfCtr integration is in the Andrew Morton

kernels.
● Consider that one can perform 100 measurements

of the Opteron in the time one can do 1 on the
IA64 from the lowest level API.

Mandatory Software Functionality
(Kernel)

● Virtualized, memory mapped access to counters.
– User level instruction to read the counter.

– Accumulation of hardware counter with 64 bit quantity
mmap'ed from the kernel's thread struct.

● Virtualized TSC. (provides a simple and high
resolution virtual timer. getrusage() runs at HZ.)

● Interrupt dispatch to user level.
– At a minimum, this is a signal delivered to the process

or thread who's counter overflowed. (AIX!)

– Multiple counter overflow.

Additional Kernel Functionality

● Kernel level counter multiplexing
● Better handling of PMC interrupts:

– Buffered interrupts. Save a bunch and their contexts in
a memory mapped buffer.

– Double buffer for lossless operation.

● Trace/profile buffers for address/branch/event
sampling/tracing.

● Lightweight event dispatch mechanism. (This is a
Unix problem solvable by kernel mechanism.)

● Randomization? Show me the money.

PerfCtr + PerfMon

● This merge could provide everything we need
and almost what we want.

● Perfmon exceptions:
– Virtual TSC

– High speed mmap()'d counter access through user
library.

– Multiplex implementation can be improved like that in
PAPI.

● Working with Stephane and Mikael to make this
happen. Redhat/Suse waiting...

