Performance Optimization

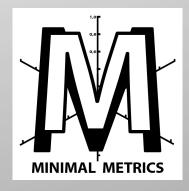
Philip J. Mucci Minimal Metrics

phil@minimalmetrics.com

04/17/2012

Overview

- Background
- Customers
- Observations
 - Expertise
 - o Programming models
 - Cloud, Virtualization and HPC
 - o Tooling
 - o I/O
 - Challenges for modeling


About Me

- Consulting since 1997
 - Software and hardware performance in HPC
 - HPC system software design
 - o Parallel algo. opt.
- MS from UTK at ICL under Jack Dongarra
 - o PVM, PAPI
- Research Consultant since 1998.

- Software architect, BD and app. Engineering at SiCortex.
- Founded Samara
 Technology Group in 2008.
 - Application and hardware performance experts for hire.
- Founded Minimal Metrics in 2012.

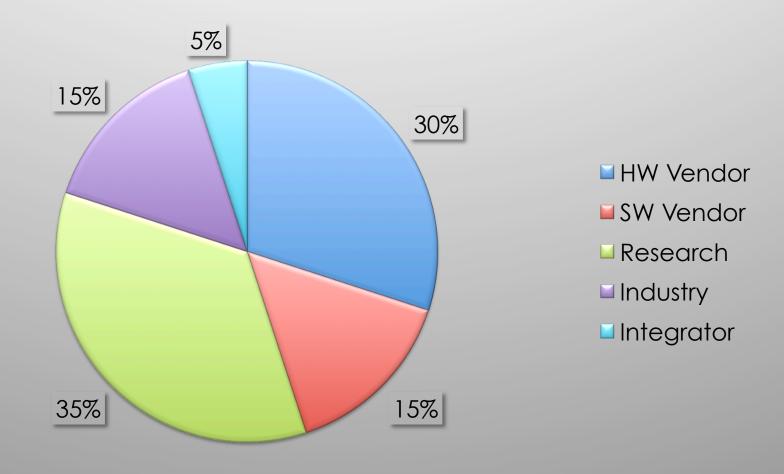
About Minimal Metrics

- A deep network of the experts.
- Evaluation, optimization and software engineering.
- Architectural evaluation.
- Moving into small-scale strategic consulting.
 - Logistic and process optimization.
 - Data collection and analytics and forecasting.
- Cofounded with Tushar Mohan

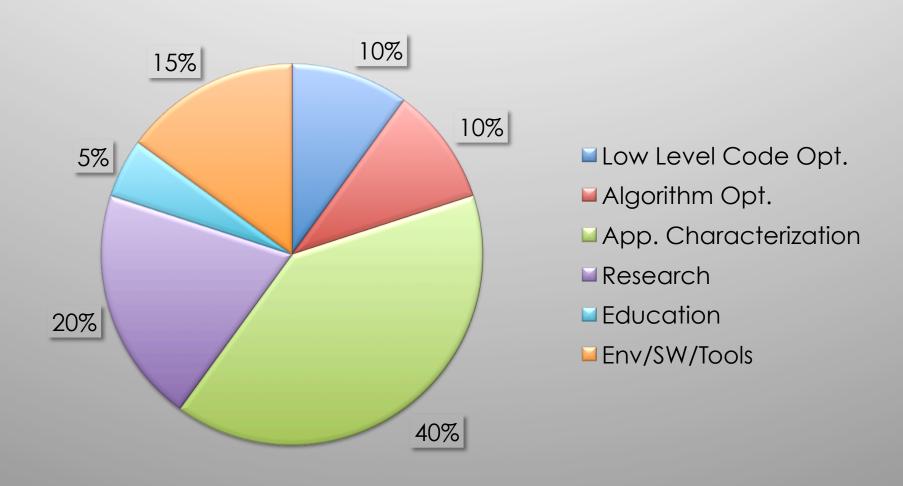
Reasons For Services

Our favorites:

- We want to understand the performance of ______.
 - o "Predictive vs. Reactive"
- We want to implement _____ using the most experienced talent [that we can't hire].



"The Cleaner" – La Femme Nikita, 1990


Some are preventable:

- We implemented our own _____solver.
- We wrote this using _____ for ease of maintenance.
- We decided that _____ was the right technology to use.

Services by Customer

Services by Type

Expertise

- Lack throughout industry
 - Concentrated in specific verticals, with technology vendors and in research.
- Hiring for a critical task can be impossible.
 - Outsourcing is viable and cost effective.
- Educational curriculum catching up, but latency is long.

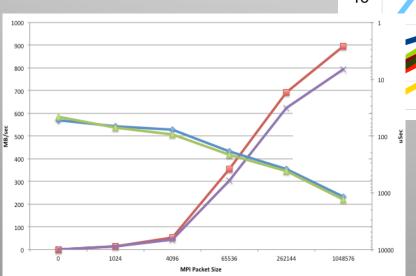
Sample qualifications from a job posting:

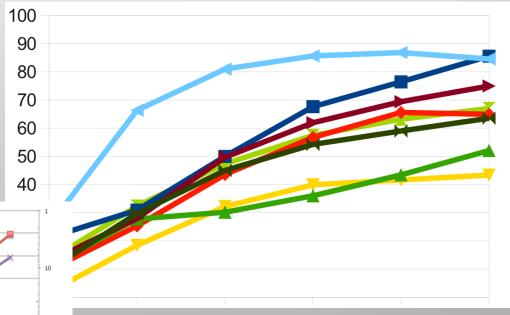
- Minimum 10 years related experience in a large scale R&D HPC environment.
- Expert knowledge using parallel programming techniques (e.g. MPI, OpenMP, pthreads), parallel programming languages (e.g., C, C++, F90) and scientific simulation and/or data analysis.
- Experience with parallel file systems, common data formats like NetCDF and HDF5, high-performance networking and storage systems.

Parallel Programming Models

- We often propose (limited) library and directivebased programming.
 - Code can be easily reduced, verified and retargeted.
- Low-level technology adopted relatively quickly.
 - A bit of buyers remorse.
- Many abstractions come at a cost:
 - But good compute is available through native methods.
 - o Robust data movement remains a bottleneck.
 - Between SW and HW components.
 - Limited tooling support
 - Analysis pipeline can require code transformation.

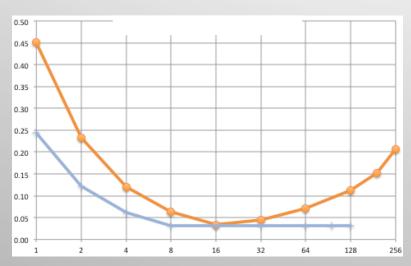
Cloud Technology, HPC & Grid Reflux

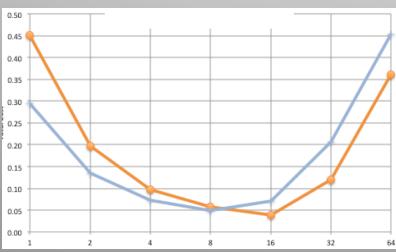

- Options exist for turnkey HPC cloudbased environments.
 - Yet plenty of integration work remains for HPC.
- Single node performance near parity, including decent I/O.
- Communication's (and thus parallel) performance getting there:
 - o Per-core network bandwidth is limited.
 - Lack of low-latency, high-bandwidth comm. capability through the VM.



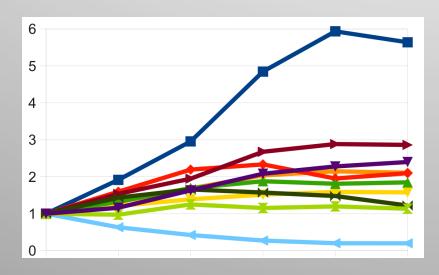
% MPI Time

Optimization and Virtualization

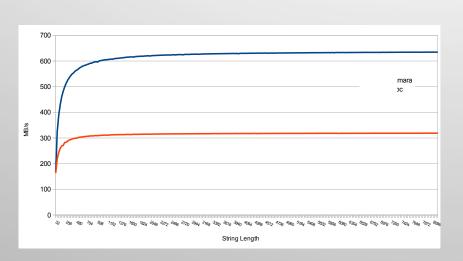

- Largely environmental.
 - OS and software stack
 - o I/O and MPI
- Intra-node MPI still quite good.
- Not so with off-node

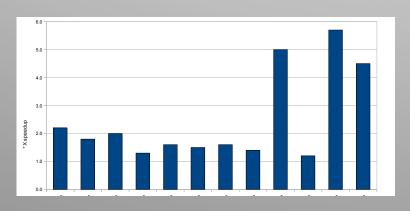


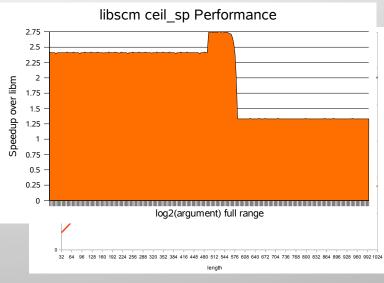
 Scaling is lost due to high MPI latencies for un-accelerated comm. in VM's for MPI

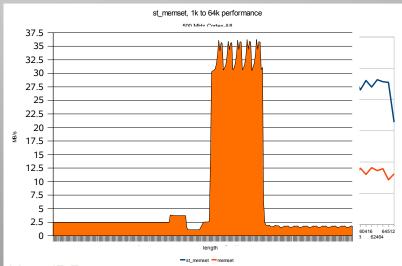

Economics of HPC in the Cloud

- Pricing requires very good scaling to be cost effective.
- Scaling's worth is related to the importance of the problem.

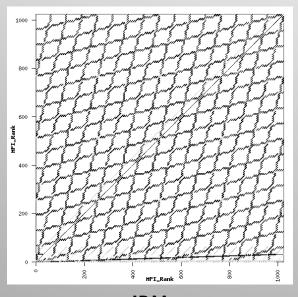

Optimizing ISV Applications

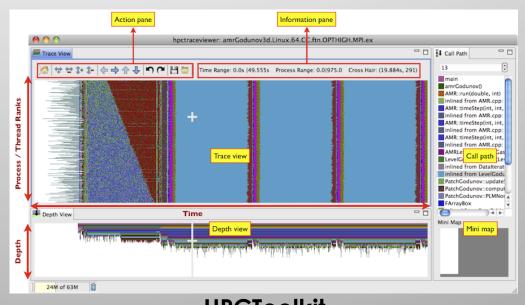

ISV scaling well below state-ofthe-art


- · Code is immutable.
 - And rarely changes.
- System optimization.
 - Uptime
 - System configuration
 - Libraries*
 - Parallel run-time
 - Storage
 - CPU availability
- 80/20 rule.


Performance of GNU/Linux

 Ain't what you think it is for emerging architectures.

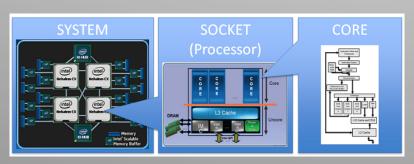


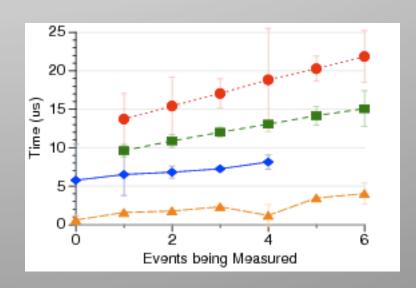

Optimization Tools

- Some excellent commercial and open source tools now available.
 - Some require far more knowledge than others to be effective.
 - Tools for MPI, OpenMP, I/O, GPUs and processors down to the instruction level.
 - Many now include time as a dimension of measurement.
 - Focus is on bottom-up view: explain global performance through local observations.
 - Much more robust collection, visualization (and some prediction) capabilities.
- Still lacking full job performance accounting.

Advanced Performance Visualization

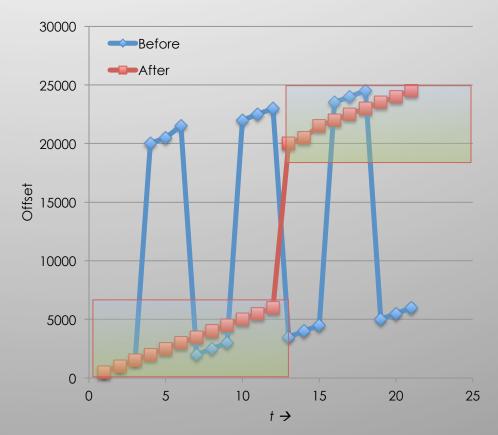
IPM
Point to point data flow


HPCToolkit
Metric vs. Task vs. Function (and Depth)


Tools Workflow

- o Naïve methods:
 - o Instrument and recompile.
 - But changes characteristics of original code.
 - Measure time only.
 - o But answers "where", but not "why" and "by how much"
- Methods now are largely passive and in-situ.
 - Instrumentation is inserted in binary form at run-time.
 - o Or by the compiler with knowledge that this code is special.
 - Measure application, operating system and hardware performance events that are relevant and actionable.
 - o Do so with minimal intrusion.

Performance Monitoring


- Hardware PMU's
 - Logic capable of counting and sampling events of interest.
 - Now both on and off-core and in many devices.
- Software
 - System events with significant performance penalties.
- OS support maturing slowly, often regressing.
 - Low-latency, non-privileged access.
- Access often accomplished through PAPI.
 - Only as good as OS support.

Tools for I/O

- o I/O bounds abound.
- Lack of bottom-up tooling.
 - System-level tools provide device level statistics.
 - Good for capacity & fault diagnosis, not tuning.

Access reordering and caching

Challenges Related to Modeling

- o How will my application run on a new platform?
- Anything other than a kernel is non-trivial.
 - HW monitoring and tools allow us to precisely analyze and predict execution traces, not arbitrary code segments.
- Application performance is now largely data-set dependent.
 - Problems are often irregular and/or sparse.
 - Algorithms may be highly configurable.
 - Convergence criteria may be different.
- The data-set needs to be part of the input vector for any model.
- PMaC @ SDSC reflects the state of the art.

Software Systems

- Software and knowledge are well behind exploiting what the hardware is capable of.
- Quotes from this morning:
 - "Software hurdles are rising to the top for most users"
 - "Software leadership will become the new battleground"
 - "HPC experts often have a narrow view of a new applied user world"
 - "We require ease of everything and just want it to work"
 - "[Engineers become] too hyped about the tools and not about the problem being solved."

Thanks Dad.

- John Francis Mucci
 - o 5/19/1942 2/7/2010
- o From Ridgway, PA
 - PhD in High Energy Physics from Carnegie Mellon.
- Career
 - o Director GSG @ Digital
 - VP of Sales, Marketing and Technical Research at Thinking Machines
 - Cofounder and CEO of Topical Net, Links2Go, Continuum Software and SiCortex
- Married Patricia A. Mucci in 1967. Two sons, Philip and David.

Thank You

phil@minimalmetrics.com