
An Open Source Performance Tool
Suite for Scientific Computing

Philip J. Mucci

June 26th, 2007
International Supercomputing Conference

2

Evolution of HPC Hardware/Software
Design

®

Linux Era Neo-Linux EraPre-Linux Era

Linux
®

One System, One OS
New software stack for every new

system design and workload

One OS, Many Systems
Stack adaptable to many

different system designs and
workloads

Targeted system design
HPC workload on industry standard OS

drives the system design

3

Guiding Principles

• Hardware
– Run existing HPC applications faster

• Per dollar, per watt, per square foot

– Simplify: If apps don’t need it, leave it out!
• CPU should run fast enough to keep memory busy.
• Put nodes as close together as possible.
• Minimize power per node through SOC design.

• Software
– Everything is Open Source

• Offer a choice of support models, binary, custom.
• Fully integrated operating environment

– Modern version of Linux operating system and utilities.
– Fast communication interface from MPI on down.
– POSIX compliant parallel file system.
– Compilers, libraries, debuggers, performance tools
– Monitoring, configuration, resource management, updates

4

Single Chip Cluster Node

4

Single Chip Cluster Node

Compute

4

Single Chip Cluster Node

Compute

Communication

4

Single Chip Cluster Node

I/O

Compute

Communication

Single Chip Cluster Node

5

6

SiCortex CPU Module

PCI Express I/O

Cluster Node

Memory

Compute: 162 GF/sec
Memory b/w: 345 GB/sec
Fabric b/w: 162 GB/sec
I/O b/w: 7.5 GB/sec
Power: 500 Watts

Fabric
Interconnect

7

SC5832

5.8 Teraflops

7.7 Terabytes

500 GByte/s bisection
bandwidth

1 µs MPI latency

108 8-lane PCI Express

18 KW (208v 3Ø 60A)

1 Cabinet

Pervasive Monitoring across the Chip

• In-core
– Instructions, cache hits/misses, …
– Stalls due to resources and conflicts (both for program

tuning, and for next-generation architectural data)

• Off-core
– L2 cache
– DMA

• Packets, memory transactions, mi
– DDR

• Transactions, bank hits, power downs, …
– Fabric Switch

• Packets, stalls due to congestion, microcode activity, …
– PCI

• Transactions

SiCortex Performance Monitoring
Hardware

• MIPS64 architected PMU
– 2 32-bit counters per core, 1 32-bit RTC

• 4 counting domains (user, kernel, supervisor, interrupt)
• Interrupt on overflow
• 4 supplemental registers that get incremented by the

SCB: 2 program counter, 2 effective address

• Off core: Serial Control Bus
– 256 32-bit counters organized into 128 buckets of 2

counters.
• Round-robin sampling of all buckets or direct

measurement of 2.
• Interrupt on overflow
• Thresholding (true > n cycles, increment)
• Pairwise conditional counting (IF-AND, IF-AND-NOT)
9

State of Linux Performance Tools

• Linux kernel does not contain any code to
support profiling in production environments.*
– Despite highly stable kernel patches being available

for > 10 years on some platforms.

• No major commercial Linux distribution
contains anything beyond OProfile and Gprof.*

• Vendors have developed some tools, but kept
the code private.
– Will the N.I.H. disease ever die?
– Installation is complicated by support agreement with

Linux distribution vendor regarding running an
unpatched kernel.

* except IA64, which has kernel support and pfmon

10

‘Productizing’ Open Source

• What is the model really good at?
– Innovation
– Evolution
– Distribution
– Support*
– Standardization*

• The bad news?
– Specialization
– Documentation
– Verification
– Integration

• Focus resources where needed, drive that ‘last
mile’.

11

Tools Strategy

• Leverage best-of-breed Open Source tools.
– Foster relationships with original authors.
– Propagate changes back to public source trees.

• Provide a ‘drill-down’ hierarchy
– Follow a Unix-like philosophy. (Needs drive tools)

• Uniform user interface and semantics.
– Observe linux standards. (LSB and beyond)

• Develop value added extensions and test
engines.

• Guarantee full interoperability.
• Contract expertise where appropriate.

12

Evaluation of Workloads

• Characterization
– Overall evaluation of performance
– Isolate specific components for focus.

• Analysis and Optimization
– Establish baseline performance data
– Focus experimentation and optimization passes.

• Performance Development
– Integration of robust performance evaluation
– Regular performance regression testing

13

Selection Criteria for the Tools Suite

• Work on unmodified codes
• Quick and easy characterization of:

– Hardware utilization (on and off-core)
– Memory
– I/O
– Communication
– Thread/Task load balance

• Detailed analysis using sampling
• Simple instrumentation
• Adv. instrumentation and tracing
• Trace-based visualization
• Expert access to PMU and perfmon2

14

The Perfmon2 Kernel Subsystem

• Lightweight:
– Efficient code structure.
– Lazy updates.
– Buffered interrupts with sampling.

• Feature-rich:
– System wide and per-thread counting.
– First-person and third-person (attach) operation.
– Kernel mode PMU multiplexing.
– Flexible event sampling interface.

• Being considered for adoption (see LKML).
• Vendor supported.

15

Libpfm

• Portable, low-level library to perform counter
setup.
– Enforces register and event dependencies
– Performs register allocation
– Result is set of PMU control values that can be passed

to the kernel.

• Not tied to Perfmon2
• Interface is only appropriate for tool designers,

too low level for use in applications.
• PAPI uses this for counter setup where

possible.

16

PAPI

• Ad-hoc standard library for the implementation
of application performance analysis tools.

• 2 level API, high-level (apps) and low-level
(tools)

• Provides first and third person semantics for
‘thread-centric’ counting and sampling based
on PMU events.

• Handles the ‘gory details’ and allows one to
focus on tool development.

• Portable: write once, run anywhere.

17

Monitor

• Library infrastructure to insert instrumentation
at runtime on unmodified executables.
– Uses library preloading and function overloading, does

not edit the object on disk or in memory.
– Provides callbacks to tools for relevant events, thread

creation, destruction, library loading, fork/exec, etc...

• Code based on that originally developed by
Rice University as part of HPCToolkit.

• Used in all the Experiment tools
– Command line tools that require no modifications to

the source code

18

Performance Experiment Tools

• Set of commands that provide the interface to
the underlying performance monitoring tools.
– All are based on Monitor and PAPI

• papiex, mpipex, ioex, hpcex, gptlex, tauex
– Easy to use as /bin/time
– Generate concise text output where appropriate.
– Take the same arguments, except for tool-specific

options.
– Provide standard and HTML man pages and

documentation.

19

Papiex

• Used to obtain summary information about an
application using PAPI and other metrics.

• Represents the first pass of application
performance evaluation.

• It provides:
– Memory footprint
– Percent of time in I/O
– Percent of time in MPI
– PAPI, native and derived metrics
– Provides per-thread, per-task and per-job summaries
– Very basic instrumentation API.

20

Papiex: Workload Characterization

21

MFLIPS 66.51
IPC .. 0.40
CPU Utilization 0.96
% Memory Instructions 39.02
% FP Instructions 33.38
% Branch Instructions 18.87
% Integer Instructions 66.62
Loads/Stores Ratio 18.14
L1 D-cache Hit % 97.22
L1 I-cache Hit % 100.00
D-TLB Hit % 87.43
I-TLB Hit % 99.97
FP ins. per D-cache Miss 30.72
Computational Intensity 0.86
Branch Misprediction % 14.47
Dual Issue % 11.41
Est. Stall % 17.06
Est. L1 D-cache Miss Stall % 7.79
Est. L1 I-cache Miss Stall % 0.02
Est. D-TLB Miss Stall % 3.91
Est. I-TLB Miss Stall % 0.03
Est. TLB Trap Stall % 0.00
Est. Mispred. Branch Stall % 1.09
Dependency Stall % 4.22
T: Actual/Ideal Cycles 3.77
T: Ideal (max dual) MFLIPS 250.55
P: Actual/Ideal Cycles 2.83
P: Ideal (curr dual) MFLIPS 188.41
% MPI Cycles 18.49
% I/O Cycles 0.02

Mpipex

• Used to characterize the MPI performance of an
application.
– Uses mpiP from LLNL.

• It provides:
– MPI load balance
– MPI function profile
– Message size distribution
– Call site information: file, function and line

22

MPIPEX: Aggregate MPI Profile

23

--
@--- Aggregate Time (top twenty, descending, milliseconds) -
--
Call Site Time App% MPI% COV
Barrier 29 9.65e+05 4.96 30.20 0.00
Barrier 18 6.1e+05 3.14 19.10 0.21
Allgather 12 3.68e+05 1.89 11.51 0.47
Barrier 43 3.25e+05 1.67 10.18 0.43
Sendrecv 78 2.2e+05 1.13 6.88 2.19
Sendrecv 21 1.57e+05 0.81 4.92 0.51

MPIPEX: Load Balance

24

@--- MPI Time (seconds) ---------------

Task AppTime MPITime MPI%
 0 1.06e+03 79.8 7.53
 1 1.06e+03 89.9 8.47
 2 1.06e+03 85.2 8.03
 3 1.06e+03 85.8 8.09
 4 1.06e+03 85.1 8.03
 5 1.06e+03 111 10.42
 6 1.06e+03 144 13.54
 7 1.06e+03 142 13.37
 8 1.06e+03 139 13.12
 9 1.06e+03 147 13.85
 10 1.06e+03 140 13.16
 11 1.06e+03 141 13.33
 12 1.06e+03 143 13.47
 13 1.06e+03 138 13.03
 14 1.06e+03 144 13.55
 15 1.06e+03 182 17.19
 * 1.7e+04 2e+03 11.76

Ioex

• Used to characterize the I/O performance of an
application.
– Based on concepts from IOtrack written at PDC/KTH.

• Per-file statistics:
– Flags
– Access type
– Bandwidth
– Chunk size
– Time spent

25

Ioex: Per-file profile

26

File: /dev/zero
 open64
 calls : 1
 read
 calls : 10
 usecs : 587
 usecs/call : 58
 bytes : 10485760
 bytes/call : 1048576
 MB/s : 17863
File: /home/out
 open64
 calls : 1
 flags : O_WRONLY|O_CREAT|O_TRUNC
 write
 calls : 10
 usecs : 157444
 usecs/call : 15744
 bytes : 10485760
 bytes/call : 1048576
 MB/s : 66

Hpcex

• Used to produce statistical profiles without
instrumentation.
– Based on HPCToolkit from Rice University.

• Take interrupts when a counter overflows a
certain threshold.
– i.e. every 10000 cache misses, interrupt/sample the PC.
– Supports multiple simultaneous profiles

• Data is viewed with hpcprof (text) and hpcviewer
(Java GUI)
– Advanced source code correlation and visualization

through bloop (a binary analyzer) and hpcviewer.

• Profile by load module, file, function, line and
even instruction.

27

Hpcprof: Hotspot analyses

28

Columns correspond to the following events [event:period (events/sample)]
 PAPI_TOT_CYC:999999 - Total cycles (2553 samples)

Load Module Summary:
 65.5% testconv2d
 34.5% /lib64/libc-2.5.so

File Summary:
 36.9% <<testconv2d>>/home/phil/ISC/new/convolution/simplest_conv.c
 34.5% <</lib64/libc-2.5.so>><unknown>
 10.0% <<testconv2d>>/home/phil/ISC/new/convolution/support.c
 9.8% <<testconv2d>>/home/phil/ISC/new/convolution/testconv2d.c
 8.8% <<testconv2d>>/home/phil/ISC/new/convolution/convCore.c

Function Summary:
 36.9% <<testconv2d>>conv2d_simple
 17.0% <</lib64/libc-2.5.so>>random
 12.9% <</lib64/libc-2.5.so>>random_r
 10.0% <<testconv2d>>makeRandomDouble
 9.8% <<testconv2d>>main
 8.8% <<testconv2d>>conv2dBy3TileZero
 4.6% <</lib64/libc-2.5.so>>rand

Line Summary:
 34.5% <</lib64/libc-2.5.so>><unknown>:0
 26.1% <<testconv2d>>/home/phil/ISC/new/convolution/simplest_conv.c:27
 6.5% <<testconv2d>>/home/phil/ISC/new/convolution/simplest_conv.c:24

Hpcprof: Source code annotation

29

 19 0.8% for (j = coff; j < nca-coff; j++)
 20 {
 21 0.1% out = 0.0;
 22 2.5% for (ki = 0; ki < nrk; ki++)
 23 {
 24 6.5% for (kj = 0; kj < nck; kj++)
 25 {
 26 // out += a[i+ki][j+kj] * k[ki][kj];
 27 26.1% out += *(a+(i+ki-roff)*nca + j+kj-coff) * *(k+(ki*nck)+kj);
 28 }
 29 }
 30 // c[i+roff][j+coff] = out;
 31 1.0% *(c+(i)*nca + j) = out;
 32 }
 33 }

Hpcprof: Assembly annotation

30

0x1200068c0: 0.01% move v0,v1
0x1200068c4: 0.06% daddu a0,a2,v0
0x1200068c8: 0.60% dsll a1,a0,0x3
0x1200068cc: 5.48% ld v0,48(s8)
0x1200068d0: 0.01% daddu v1,a1,v0
0x1200068d4: 4.18% ldc1 $f0,0(v1)
0x1200068d8: mul.d $f2,$f3,$f0
0x1200068dc: 0.03% ldc1 $f1,8(s8)
0x1200068e0: add.d $f0,$f1,$f2
0x1200068e4: 0.04% sdc1 $f0,8(s8)
0x1200068e8: 5.04% lw v0,16(s8)
0x1200068ec: 0.01% addiu v1,v0,1
0x1200068f0: 6.60% sw v1,16(s8)
0x1200068f4: 7.80% lw v0,16(s8)
0x1200068f8: 0.02% lw v1,60(s8)
0x1200068fc: 0.03% slt a0,v0,v1
0x120006900: 0.02% bnez a0,0x12000683c

Hpcviewer: Loop-level profiling

31

Pfmon

• Used to perform highly focused instrumentation
and/or advanced sampling.
– Uses libpfm and the Perfmon2 kernel subsystem

directly.

• Per-thread, per-CPU, system-wide sampling
and counting.

• Allows one to attach to a running code.
• Limited but highly accurate instrumentation

with software breakpoints.
– Works with static binaries.

32

Gptlex

• Used to control the behavior of GPTL
performance system on instrumented and
uninstrumented executables.

• Previously, GPTL options were hard-coded in
the instrumentation.
– Now, all options can be changed at run-time.

• Adds support for automatic compiler
instrumentation using hooks in the GCC and
Pathscale compilers.

33

GPTL

• Used to easily instrument applications for the
generation of performance data.
– Developed at NCAR for inclusion into their

applications.

• Optimized for usability.
• Provides access to timers as well as PAPI

events.
• Thread-safe and per-thread statistics.
• Provides estimates of overhead.
• Call-tree generation.
• Preserves parent/child relationships.

34

35

TAU Parallel Performance System

• Parallel Performance Evaluation Tool for
Fortran, C, C++, Python and Java

• Used for in-depth performance studies of an
application throughout its lifecycle.

• Supports Parallel Profiling
– Flat, callpath, and phase based profiling
– PerfDMF performance database and PerfExplorer cross

experiment analysis tool
– PAPI counters (one or more), wallclock time, CPU time

• Supports Event Tracing
– Generates TAU binary traces in OTF (Open Trace

Format, VampirTrace) or Epilog(KOJAK).
– Supports Memory and PAPI counters in trace files with

synchronized time stamps.

36

TAU Parallel Performance System

• Multi-level instrumentation
– Source code (manual), pre-processor (Program

Database Toolkit, PDT), MPI library
– Memory, I/O instrumentation in Fortran and C/C++
– Supports runtime throttling, selective instrumentation

at routine and loop level.

• Widely-ported parallel performance profiling
system.
– All HPC systems, compilers, MPI-1 and 2

implementations, OpenMP and pthreads .

Tauex

• Used to control the behavior of the TAU
performance system on instrumented and
uninstrumented executables.

• Previously, TAU required extensive setup and
relinking when options changed.
– Now, all TAU options can be changed at run-time.

37

TAUEX: Paraprof Function Profile

38

TAUEX: ParaProf 3D Profile

39

40

Visualizing TAU Traces with VampirNG

Vampir

• Used to visualize temporal performance data
(traces)

• 3 Components
– VampirTrace, can be invoked from TAU or directly
– VampirServer
– VampirServer Browser

41

VampirTrace

• Recorded events
– Function entry/exit if compiler instrumentation is

used.
– MPI and OpenMP events
– Hardware/software performance counters (e.g. PAPI)
– OS events: Process creation, resource management

• Collected event properties
– Time stamp
– Location (process / thread / MPI)
– MPI specifics like message size etc.

• Generates data in Open Trace Format (OTF)
– Human readable
– Fast searching and indexing
– On-the-fly compression

42

VampirServer

• VampirServer: Distributed high-end performance
visualization
– Client/server architecture
– Parallel event processing
– Runs on a (part of a) production environment
– No need to transfer huge traces, uses parallel I/O

• VampirServer Browser: Lightweight client on local
workstation
– Outer appearance identical to Vampir
– Highly scalable display engine
– Statistics, profiles and summary charts
– Message traffic and timelines
– Receives visual content only
– Already adapted to display resolution (but no images)
– Moderate network bandwidth and latency requirements
– Scales to trace data volumes > 40GB

43

Vampir Timeline

44

Vampir Message Statistics

45

Vampir Summary Chart

46

Vampir Process Timeline

47

Vampir Call Tree

48

Vampir Message Profile

49

Additional Software

• EPILOG
– Trace library from the KOJAK suite

• OProfile
– Ported to use the Perfmon2 kernel infrastructure

• Other quality software not included:
– OpenSpeedShop: LANL
– PerfSuite: NCSA
– ParaVer: BSC
– EXPERT/CUBE from KOJAK: Juelich
– DynInstAPI: Wisconsin

50

Summary

• ~1.5 man-years of effort has produced a
leading tool suite where none existed.
– Open Source can truly mean standing on the

shoulders of giants.

• Continued success and R.O.I gained by
following through on the strategy.
– Integration and cooperation lowers support cost

51

Acknowledgements

• Center for Information Services and HPC, Technische
Universität Dresden, Germany.

• ParaTools, Inc.
• Innovative Computing Laboratory, University of

Tennessee, Knoxville.
• Lawrence Livermore National Laboratory.
• HiPerSoft, Rice University.
• National Center for Atmospheric Research.
• Stefane Eranian of HP Laboratories.
• Tushar Mohan, Jim Rosinski, Peter Watkins of

SiCortex.

52

