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Agenda

• CVS Web Structure

• 2.3.4 Bugs

• 2.3.5 Release

• PAPI 3.0, 3.1

• Status of Platforms

• Feature Requests



CVS Web Presence

• New web site format
– Better tools section, now includes 3rd party

– Up to date reference information

– Up to date FAQ

• Bugzilla
– http://icl.cs.utk.edu/projects/papi/bugz



2.3.4 Bugs

• Bad exe info when built as shared library. 
– Undefined _data_start in libpapi.so in certain 

configurations. (Rice)

• Very, very rare, multiplexing errors 
causing:
– Assert() on IA64, IA32 platforms
– Hang of POE applications on AIX 5

• Re-enters pm_child_sighandler, hangs aquiring 
lock



2.3.4 Bugs 2

• Pentium IV
– L1DCM/L2DCM Metrics return same numbers.

• Alpha EVx
– Returning all zeroes even with patched kernel.

• AIX 5 and Threads
– Pmapi was returning “ Context already created”  from 

pm_set_program_mythread() depending on mix of 
thread calls used.

– This was because pmapi was causing all new threads 
to inherit the parents context. 

– Fix was to call pm_delete_program_mythread() and 
then call the above.



2.3.5 Release

• Latest PerfCtr 2.4 and PerfCtr 2.6 for:
– Opteron

– Xeon

• Additional Xeon events

• Latest pfmon/perfmon for IA64

• Bug fixes

• X1 port

• Build from external PerfCtr installation, not just 
external source tree.



PAPI 3 Design Goals

• Using lessons learned from earlier 
releases:
– Eliminate unused features

– Add functionality where needed

– Respond to user requests

• Redesign for:
– Robustness

– Feature set flexibility

– Simplicity and speed

– Portability to new platforms



New PAPI 3 Functionality
• New Substrates: AMD Opteron and Cray X1 

• Streamlined overhead on calls to start/ stop and read 
counters.

• Better native event support:
– This:

PAPI_event_name_to_code(“PM_FPU0_FDIV”, &native);
PAPI_add_event(EventSet, native);

– Instead of this:
native =  0 | 10 << 8 | 0; /* PM_FPU0_FDIV */
PAPI_add_event(EventSet,native);

• Bipartite counter allocation.  If a mapping exists, 
PAPI will find it.

• Multiple simultaneous overflow and profile.

• Version Macros to obtain Major, Minor and Revision 
level of the PAPI library.



PAPI 3 High Level Changes
• The PAPI High-level interface is now 

thread safe.

• High-level calls maintain better state for 
mixing calls.

• Now supports three rate-based calls:
• PAPI_flops – Floating point Operations per 

Second*

• PAPI_flips – Floating point Instructions per 
Second*

• PAPI_ipc      – Instructions per Cycle
________________________________________________________________________________
__
* Instructions typically measure what goes through the floating point execution unit, while Operations 
measure the theoretically expected number of floating point arithmetic operations.



PAPI 3 API Changes
• Deprecated calls:

• PAPI_add_pevent, PAPI_rem_pevent

• PAPI_query_(all)_events_verbose

• PAPI_describe_event, PAPI_label_event

• PAPI_get_overflow_address

• PAPI_save, PAPI_restore

• Modified calls:
• PAPI_add_event(s)

• PAPI_lock, PAPI_unlock

• PAPI_cleanup_eventset

• PAPI_initialized  PAPI_is_initialized

• PAPI_rem_event(s)  PAPI_remove_event(s)

• PAPI_get_mem_info  PAPI_get_hardware_info 



New PAPI 3 API Calls
• New event description calls work on 

both native and preset events:
• PAPI_enum_event

• PAPI_get_event_info

• New thread storage and registration 
events:
• PAPI_get_thr_specific

• PAPI_set_thr_specific

• PAPI_register_thread

• Other new events:
• PAPI_num_events

• PAPI_get_shared_lib_info



Better Register Allocation

• On most CPUs, counter registers are scarce

• Often, not all events can be counted on all 
registers

• As the number of simultaneously counted 
events increases, effective mapping of 
registers to events becomes increasingly 
important

• PAPI 2 used a ‘ greedy’  or opportunistic 
allocation scheme: many theoretical mappings 
failed

• PAPI 3 implements a bipartite maximal 
matching scheme: if a mapping exists, it will be 
found



Register Allocation Comparison

The new bipartite allocation scheme maps many 
more events for larger event sets than the old 
opportunistic  scheme.
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Overheads: PAPI 3 vs PAPI 2.3.4
((PAPI 2.3.4 overhead – PAPI 3.0 overhead)/PAPI 2.3.4 overhead)*100%
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Feature Requests

• Efficient timestamp with PAPI_read()
– PAPI_read_ts() maybe

• P4/SSE events
– LLNL, UIUC

• Opteron Memory reference events
– Loads/Stores

• Variance metrics in ctests/cost



Latest RedHat IA64

• Red Hat Enterprise Linux 3.0 broke kernel 
support for the hardware counter 
infrastructure.
– First update of RHEL will include a fix



Message to developers

• Improve and coalesce documentation

• Per Platform Installation Guide on Web

• Power 4 event map

• Pentium IV event map

• Opteron Loads/Stores


