
PAPI Users Group Meeting
SC2003

Philip Mucci, mucci@cs.utk.edu
Felix Wolf, fwolf@cs.utk.edu

Nils Smeds, smeds@pdc.kth.se
Tuesday, November 18th

Phoenix, AZ

Agenda

• CVS Web Structure

• 2.3.4 Bugs

• 2.3.5 Release

• PAPI 3.0, 3.1

• Status of Platforms

• Feature Requests

CVS Web Presence

• New web site format
– Better tools section, now includes 3rd party

– Up to date reference information

– Up to date FAQ

• Bugzilla
– http://icl.cs.utk.edu/projects/papi/bugz

2.3.4 Bugs

• Bad exe info when built as shared library.
– Undefined _data_start in libpapi.so in certain

configurations. (Rice)

• Very, very rare, multiplexing errors
causing:
– Assert() on IA64, IA32 platforms
– Hang of POE applications on AIX 5

• Re-enters pm_child_sighandler, hangs aquiring
lock

2.3.4 Bugs 2

• Pentium IV
– L1DCM/L2DCM Metrics return same numbers.

• Alpha EVx
– Returning all zeroes even with patched kernel.

• AIX 5 and Threads
– Pmapi was returning “ Context already created” from

pm_set_program_mythread() depending on mix of
thread calls used.

– This was because pmapi was causing all new threads
to inherit the parents context.

– Fix was to call pm_delete_program_mythread() and
then call the above.

2.3.5 Release

• Latest PerfCtr 2.4 and PerfCtr 2.6 for:
– Opteron

– Xeon

• Additional Xeon events

• Latest pfmon/perfmon for IA64

• Bug fixes

• X1 port

• Build from external PerfCtr installation, not just
external source tree.

PAPI 3 Design Goals

• Using lessons learned from earlier
releases:
– Eliminate unused features

– Add functionality where needed

– Respond to user requests

• Redesign for:
– Robustness

– Feature set flexibility

– Simplicity and speed

– Portability to new platforms

New PAPI 3 Functionality
• New Substrates: AMD Opteron and Cray X1

• Streamlined overhead on calls to start/ stop and read
counters.

• Better native event support:
– This:

PAPI_event_name_to_code(“PM_FPU0_FDIV”, &native);
PAPI_add_event(EventSet, native);

– Instead of this:
native = 0 | 10 << 8 | 0; /* PM_FPU0_FDIV */
PAPI_add_event(EventSet,native);

• Bipartite counter allocation. If a mapping exists,
PAPI will find it.

• Multiple simultaneous overflow and profile.

• Version Macros to obtain Major, Minor and Revision
level of the PAPI library.

PAPI 3 High Level Changes
• The PAPI High-level interface is now

thread safe.

• High-level calls maintain better state for
mixing calls.

• Now supports three rate-based calls:
• PAPI_flops – Floating point Operations per

Second*

• PAPI_flips – Floating point Instructions per
Second*

• PAPI_ipc – Instructions per Cycle
__
__
* Instructions typically measure what goes through the floating point execution unit, while Operations
measure the theoretically expected number of floating point arithmetic operations.

PAPI 3 API Changes
• Deprecated calls:

• PAPI_add_pevent, PAPI_rem_pevent

• PAPI_query_(all)_events_verbose

• PAPI_describe_event, PAPI_label_event

• PAPI_get_overflow_address

• PAPI_save, PAPI_restore

• Modified calls:
• PAPI_add_event(s)

• PAPI_lock, PAPI_unlock

• PAPI_cleanup_eventset

• PAPI_initialized PAPI_is_initialized

• PAPI_rem_event(s) PAPI_remove_event(s)

• PAPI_get_mem_info PAPI_get_hardware_info

New PAPI 3 API Calls
• New event description calls work on

both native and preset events:
• PAPI_enum_event

• PAPI_get_event_info

• New thread storage and registration
events:
• PAPI_get_thr_specific

• PAPI_set_thr_specific

• PAPI_register_thread

• Other new events:
• PAPI_num_events

• PAPI_get_shared_lib_info

Better Register Allocation

• On most CPUs, counter registers are scarce

• Often, not all events can be counted on all
registers

• As the number of simultaneously counted
events increases, effective mapping of
registers to events becomes increasingly
important

• PAPI 2 used a ‘ greedy’ or opportunistic
allocation scheme: many theoretical mappings
failed

• PAPI 3 implements a bipartite maximal
matching scheme: if a mapping exists, it will be
found

Register Allocation Comparison

The new bipartite allocation scheme maps many
more events for larger event sets than the old
opportunistic scheme.

793726

856423

500469

627460

249678

388021

97053

197543

28050

79185

5468 550

1000000

1000000

22264 3763

0

200000

400000

600000

800000

1000000

1200000

PAPI-2.1

New Allocation

Number of registers

1 2 3 4 5 6 7 8

S
uccessful allocations

Overheads: PAPI 3 vs PAPI 2.3.4
((PAPI 2.3.4 overhead – PAPI 3.0 overhead)/PAPI 2.3.4 overhead)*100%

-25

0

25

50

75

100

%
 O

ve
rh

ea
d

 R
ed

u
ct

io
n

A
th

lo
n

P
3

R
12K

Itan
iu

m
2

U
ltra II

P
o

w
er 4

Processor

Start/Stop Pair Read

N Counter Statistical Profiling

Program Text Addresses

Event
Count

DTLB

L2DCML1DCM

Feature Requests

• Efficient timestamp with PAPI_read()
– PAPI_read_ts() maybe

• P4/SSE events
– LLNL, UIUC

• Opteron Memory reference events
– Loads/Stores

• Variance metrics in ctests/cost

Latest RedHat IA64

• Red Hat Enterprise Linux 3.0 broke kernel
support for the hardware counter
infrastructure.
– First update of RHEL will include a fix

Message to developers

• Improve and coalesce documentation

• Per Platform Installation Guide on Web

• Power 4 event map

• Pentium IV event map

• Opteron Loads/Stores

