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Introduction



Performance

● What is performance? 
● Latency
● Bandwidth
● Efficiency
● Scalability
● Execution time

● At what cost?



Performance Examples

● Operation Weather Forecasting Model
● Scalability

● Database search engine
● Latency

● Image processing system
● Throughput



What is Optimization?

● Finding hot spots & bottlenecks 
(profiling)
● Code in the program that uses a 

disproportional amount of time
● Code in the program that uses system 

resources inefficiently
● Reducing wall clock time
● Reducing resource requirements



Types of Optimization

● Hand-tuning
● Preprocessor
● Compiler
● Parallelization



Steps of Optimization

● Integrate libraries
● Optimize compiler switches 
● Profile
● Optimize blocks of code that dominate 

execution time
● Always examine correctness at every 

stage! 



Performance Strategies

● Always use optimal or near optimal 
algorithms.
● Be careful of resource requirements and 

problem sizes.
● Maintain realistic and consistent input 

data sets/sizes during optimization.
● Know when to stop. 



The 80/20 Rule

● Program spends 80 % time in 20 % of 
its code

● Programmer spends 20 % effort to get 
80 % of the total speedup possible in 
the code.

“The Law of Diminishing Returns”



How high is up?

● Profiling reveals percentages of time 
spent in CPU and I/O bound functions.

● Correlation with representative low-
level, kernel and application 
benchmarks.

● Literature search.
● Peak speed of CPU means little in 

relation to most codes.
● Example: ISIS solver package



Don’t Sweat the Small Stuff
● Make the Common Case Fast (Hennessey)

● A 20% decrease of procedure3()results in 
10% increase in performance.

● A 20% decrease of main()results in 2.6% 
increase in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%



Considerations when 
Optimizing

● Machine configuration, libraries and 
tools

● Hardware and software overheads
● Alternate algorithms 
● CPU/Resource requirements
● Amdahl’s Law
● Communication pattern, load balance 

and granularity



Important Facts about RISC 
Architecture



The Pipeline

● Instructions have latencies and 
bandwidths.

● Important to keep the pipeline full.
● Avoid step by step dependencies in your 

code.
● A -> B
● B -> C
● C -> D



The RISC Philosophy

● Reduced Instruction Set Architecture
● We can:

● Design, place and route more elegantly.
● Drive a higher clock rate
● Have a deeper pipeline.
● Expose opportunities for instruction 

parallelism to the compiler.
● Guess what? Your Pentium is a RISC.

● CISC translated to RISC “micro-ops”.



The RISC Philosophy

● Reduced Instruction Set Architecture
● If we:

● Keep the number of instructions small.
● Keep the functionality of the instructions 

orthogonal.
● Keep the instructions isolated to one piece 

of hardware on chip.



Cache Architecture

● Small high-speed memories with block 
access

● Divided into smaller units of transfer 
called lines 

● Address indicates
● Page number
● Cache line
● Byte offset



Caches exploit Locality

Spatial - If location X is being accessed, 
it is likely that a location near  X will be 
accessed soon.

Temporal - If location X is being 
accessed, it is likely that X will be 
accessed again soon.



Cache Benchmark
http://www.cs.utk.edu/~mucci/cachebench

do i = 1,max_length

  start_time

  do j = 1,max_iterations

    do k = 1,i

      A(k) = i

    enddo

  enddo

  stop_time_and_print

enddo



Cache Performance



Cache Mapping

● Two major types of mapping
● Direct Mapped

Each memory address resides in only one 
cache line. (constant hit time)

● N-way Set Associative
Each memory address resides in one of N 
cache lines. (variable hit time)

● Origin is 2-way set associative, 2-way interleaved



2 way Set Associative Cache

distinct lines = size / line size * associativity

Every datum can live in any set
 but in only 1 line (computed from its address)

Which class? Least Recently Used

Line0
Set0

Line1
Set0

Line2
Set0

Line3
Set0

Line0
Set1

Line1
Set1

Line2
Set1

Line3
Set1  



The Register Set

● Register access is almost free.
● Can be considered a level 0 cache.
● # of registers is also limited.
● Many processors contain virtual registers 

that get renamed to physical registers at 
execution time.



What is a TLB?

● Fully associative cache of virtual to 
physical address mappings. Used if data 
not in cache.

● Number is limited on many systems, 
usually much less than physical 
memory.



Contention for Shared 
Resources

● Most SMP's these days have fewer 
memory buses than processors.

● Most SMP's share some level of cache.
● Interconnect is also shared among 

processes.



Performance Metrics and 
Issues



Performance Metrics

● Wall Clock time - Time from start to 
finish of our program

● MFLOPS - Millions of floating point 
operations per second

● MIPS - Millions of instructions per 
second

● Possibly ignore set-up cost



What about MFLOPS?

● Poor measures of comparison because
● They are dependent on the definition, 

instruction set and the compiler
● Ok measures of numerical kernel 

performance for a single CPU

EXECUTION TIME 



What do we use for evaluation

● For purposes of optimization, we are 
interested in:
● Execution time of our code over a range of 

data sets
● MFLOPS of our kernel code vs. peak in 

order to determine EFFICIENCY
● Hardware resources dominating our 

execution time



Performance Metrics

For the purposes of comparing your 
codes performance among different 
architectures base your comparison 
on time.

...Unless you are completely aware of all 
the issues in performance analysis 
including architecture, instruction sets, 
compiler technology etc...



Fallacies
● MIPS is an accurate measure for comparing 

performance among computers. 
● MFLOPS is a consistent and useful measure of 

performance among computers.
● Synthetic benchmarks predict performance for real 

programs.
● Peak performance tracks observed performance.

(Hennessey and Patterson)



Basis for Performance Analysis

● Our evaluation will be based upon:
● Performance of a single machine on a 
● Single (optimal) algorithm using
● Execution time

● Optimizations are portable



Asymptotic Analysis

● Algorithm X requires O(N log N) time on 
O(N processors)

● This ignores constants and lower order 
terms!

10N > N log N for N < 1024
10N*N < 1000N log N for N < 996



Amdahl’s Law

● The performance improvement is 
limited by the fraction of time the faster 
mode can be used.

Speedup = Perf. enhanced / Perf. standard
Speedup = Time sequential / Time parallel

Time parallel = Tser + Tpar



Amdahl’s Law

● Be careful when using speedup as a 
metric. Ideally, use it only when the 
code is modified. Be sure to completely 
analyze and document your 
environment.

● Problem: This ignores the overhead of 
parallel reformulation.



Amdahl’s Law

● Problem? This ignores scaling of the 
problem size with number of nodes.

● Ok, what about Scaled Speedup?
● Scale the problem size with the # procs.
● Results will vary given the nature of the 

algorithm.
● Requires O() analysis of communication 

and run-time operations.



Efficiency

● A measure of code quality?

E = Time sequential / ( P * Time parallel)
S = P * E

● Sequential time is not a good reference 
point. 



Issues in Performance

● Brute speed (MHz and bus width)
● Cycles per operation (startup + 

pipelined)
● Number of functional units on chip
● Access to Cache, RAM and storage 

(local & distributed)



Issues in Performance

● Cache utilization
● Register allocation
● Loop nest optimization
● Instruction scheduling and pipelining
● Compiler Technology
● Programming Model (Shared Memory, 

Message Passing)



Problem Size and Precision

● Necessity
● Density and Locality 
● Memory, Communication and Disk I/O
● Numerical representation

● INTEGER, REAL, REAL*8, REAL*16



Parallel Performance Issues

● Single node performance
● Compiler Parallelization
● I/O and Communication
● Mapping Problem - Load Balancing
● Message Passing or Data Parallel 

Optimizations



What is Optimization?

● Finding hot spots & bottlenecks 
(profiling)
● Code in the program that uses a 

disproportional amount of time
● Code in the program that uses system 

resources inefficiently
● Reducing wall clock time
● Reducing resource requirements



Types of Optimization

● Hand-tuning
● Preprocessor
● Compiler
● Parallelization



Performance Strategies

● Use profiling tools before you optimize.
● Always use optimal or near optimal 

algorithms.
● Be careful of requirements and problem 

sizes.
● The largest bottleneck first.
● Maintain realistic and consistent input 

data sets/sizes during optimization.
● Know when to stop.



Considerations when 
Optimizing

Developer should be familiar with:
● Machine configuration, libraries and 

tools
● Hardware and Software overheads
● Algorithm and alternatives 
● CPU/Resource requirements
● Amdahl’s Law
● Communication patterns and load 

balance



Correctness at Every Step

● Floating point arithmetic is not 
associative. Which order is correct?

● Think about the following example:

sum = 0.0

do i = 1, n

  sum = sum + a(i)

enddo

sum1 = 0.0

sum2 = 0.0

do i = 1, n-1, 2

  sum1 = sum1 + a(i)

  sum2 = sum2 + a(i+1)

enddo

sum = sum1 + sum2



Compiler Technology



Understanding Compilers

● Compilers emphasize correctness rather 
than performance

● On well recognized constructs, 
compilers will usually do better than the 
developer

● The idea? To express an algorithm 
clearly to the compiler allows the most 
optimization.



Compiler Technology

● Ideally, compiler should do most of the 
work.

● Rarely happens in practice for real 
applications.

● Getting better every day.



Compiler flags

● Many optimizations can be controlled 
separately from -O<big>

● If possible, it's better to selectively 
disable optimizations rather than reduce 
the level of global optimization.



Exceptions

● Numerical computations resulting in 
undefined results or requiring 
assistance.

● Exception is generated by the 
processor.

● Handled in software by the Operating 
System.

● DENORM's are the worst.



Pointer Aliasing

● The compiler needs to assume that any 
2 pointers can point to the same region 
of memory.

● This removes many optimization 
opportunities.

● Programmer knows much more about 
pointer usage than compiler, try to 
express it with directives.



Advanced Aliasing

● Typed: Only pointers of the same type 
can point to the same region of 
memory.

● Restricted: All pointers are assumed to 
point to non-overlapping regions of 
memory.

● Disjointed: All pointer expressions are 
assumed to result in pointers to non-
overlapping regions of memory.



Software Pipelining

● Different iterations of a loop are 
overlapped in time in an attempt to 
keep all the functional units busy.

● Data needs to be in cache for this to 
work well.



Interprocedural Analysis

● When analysis is confined to a single 
procedure, the optimizer is forced to 
make worst case assumptions about the 
possible effects.

● IPA analyzes more of the code and 
feeds that to the other phases.

● Usually, the code is generated at link 
time.



IPA features

● Inlining across source files
● Common block padding
● Constant propagation
● Dead function/variable elimination
● Library reference optimizations



Inlining

● Replaces a subroutine call with the 
function itself.

● Useful in loops that have a large 
iteration count and functions that don’t 
do a lot of work.

● Allows other optimizations.
● Most compilers will do inlining but the 

decision process is conservative.



Serial Code Optimization



Parallel Performance

“The single most important 
impediment to good parallel 

performance is still poor 
single-node performance.”

- William Gropp
Argonne National Lab



Guidelines for Performance

● I/O is slow
● System calls are slow
● Use your in-cache data completely
● When looping, remember the pipeline! 

● Branches
● Function calls
● Speculation/Out-of-order execution
● Dependencies



Code Examples

● Many of the examples shown here are 
canonical.

● In simple benchmarks, modern compilers 
can optimize them fairly well.

● In a production code, they cannot.
● It is in your best interest, to learn how to 

write fast (and bug free) code from the 
beginning.



Array Optimization

● Array Initialization
● Array Padding
● Stride Minimization
● Loop Fusion
● Floating IF’s
● Loop Defactorization
● Loop Peeling
● Loop Interchange

● Loop Collapse
● Loop Unrolling
● Loop Unrolling and 

Sum Reduction
● Outer Loop Unrolling



Array Initialization

● Static initialization requires:
● Disk space (if non-zero)
● Demand paging
● Extra Cache and TLB misses.

● Use only when you have to.
● Really, why use static at all?



Array Initialization

● Static initialization
REAL(8) A(100,100) /10000*1.0/

● Dynamic initialization
DO I=1, DIM1

DO J=1, DIM2

A(I,J) = 1.0



Memory Access

● Programs should be designed for 
maximal cache benefit.
● Stride 1 access patterns
● Use entire cache lines
● Reusing data as soon as possible after first 

reference
● Also, we should minimize page faults 

and TLB misses. 



Array Allocation

● Array’s are allocated differently in C and 
FORTRAN. 

1 2  3  4 

5 6  7  8 

9 10 11 12

C: 1 2 3 4 5 6 7 8 9 10 11 12

Fortran: 1 5 9 2 6 10 3 7 11 4 8 12



Array Referencing

● In C, outer-most index should change 
fastest. 

[x,Y]
● In Fortran, inner-most index should 

change fastest.
(X,y)



Inter-Array Padding
● Common Block Example: dot product, miss per 

element on 16KB Direct mapped cache, 4 byte 
elements

common /xyz/ a(2048),b(2048)

common /xyz/ a(2048),pad(16),b(2048)

● Allocate is more difficult. Requires allocating 
additional space and starting from different 
offset.



Inter-Array Padding

● Data is often allocated in physically 
contiguous memory and on a page 
boundary. 

● Look for data structures whose size is a 
powers of two

● Know the associativity of your cache.
● Watch for performance anomalies.



Inter-Array Padding



Inter-Array Padding
a = a + b * c

Tuned Untuned Tuned
-O3

Untuned
-O3

Origin
2000 1064.1 1094.7 800.9 900.3



Intra-Array Padding

● Often required by matrix operations 
when striding across each dimension. 

● C: Trailing dimension of a power of 
two is often a bad choice.

● Fortran: Leading dimension of a power 
of two is often a bad choice.

● This depends on the degree of 
associativity of the cache.



Intra-Array Padding
DGEMM

Tuned Untuned

Xeon 2.8 3.3



Stride Minimization

● We must think about spatial locality.
● Effective usage of the cache provides us 

with the best possibility for a 
performance gain.

● Recently accessed data are likely to be 
faster to access.

● Tune your algorithm to minimize stride, 
innermost index changes fastest.



Stride Minimization

● Stride 1
do y = 1, 1000

do x = 1, 1000

c(x,y) = c(x,y) + a(x,y)*b(x,y)

  

● Stride 1000
do y = 1, 1000

do x = 1, 1000

c(y,x) = c(y,x) + a(y,x)*b(y,x)



Stride Minimization

Untuned
-O3

Tuned
-O3

Origin
2000

67.24 23.27

IBM SP2 201.07 17.54

Cray T3E 37.61 37.66



Loop Fusion

● Loop overhead reduced
● Better instruction overlap
● Lower cache misses
● Be aware of associativity issues with 

array’s mapping to the same cache line.



Loop Fusion

● Untuned

do i = 1, 50000

  x = x * a(i) + b(i)

enddo

do i = 1, 100000

  y = y + a(i) / b(i)

enddo

● Tuned

do i = 1, 50000

x = x * a(i) + b(i)

y = y + a(i) / b(i)

enddo

do i = 50001, 100000

  y = y + a(i) / b(i)

enddo



Loop Fusion
Untuned

-O3
Tuned

-O3

Origin
2000

276.37 191.06

IBM SP2 254.96 202.76

Cray T3E 1405.52 1145.91



Loop Interchange

● Swapping the nested order of loops
● Minimize stride
● Reduce loop overhead where inner loop 

counts are small
● Allows better compiler scheduling



Loop Interchange

● Untuned

real*8 a(2,40,2000)

do i=1, 2000

 do j=1, 40

   do k=1, 2

     a(k,j,i) = a(k,j,i)*1.01

   enddo

 enddo

enddo

● Tuned

real*8 a(2000,40,2)

do i=1, 2

 do j=1, 40

do k=1, 2000

     a(k,j,i) = a(k,j,i)*1.01

enddo

 enddo

enddo



Loop Interchange

Untuned
-O3

Tuned
-O3

Origin
2000

73.85 55.23

IBM SP2 432.39 434.15

Cray T3E 241.85 241.80



Floating IF’s

● IF statements that do not change from 
iteration to iteration may be moved out 
of the loop.

● Compilers can usually do this except 
when
● Loops contain calls to procedures
● Variable bounded loops
● Complex loops



Floating IF’s

● Untuned

do i = 1, lda

  do j = 1, lda

    if (a(i) .GT. 100) then

      b(i) = a(i) - 3.7

    endif

      x = x + a(j) + b(i)

  enddo

enddo

● Tuned

do i = 1, lda

  if (a(i) .GT. 100) then

    b(i) = a(i) - 3.7

  endif

  do j = 1, lda

     x = x + a(j) + b(i)

  enddo

enddo



Floating IF’s

Untuned 
–O3

Tuned
 –O3

Origin
2000

203.18 94.11

IBM
SP2

80.56 80.77

Cray
T3E

160.86 161.21



Loop Defactorization

● Loops involving multiplication by a 
constant in an array.

● Allows better instruction scheduling.
● Facilitates use of multiply-adds.



Gather-Scatter Optimization

● Untuned

do i = 1, n

  if (t(I).gt.0.0) then

    a(I)=2.0*b(I-1)

  end if

enddo

● Tuned

inc = 0

do i = 1, n

  tmp(inc) = i

  if (t(I).gt.0.0) then

    inc = inc + 1

  end if

enddo

do I = 1, inc

  a(tmp(I))=2.0*b((tmp(I)-1)

enddo



Gather-Scatter Optimization

● For loops with branches inside loops
● Increases pipelining
● Often, body of the loop is executed on 

every iteration, thus no savings
● Solution is to split the loop with a 

temporary array containing indices of 
elements to be computed with



IF Statements in Loops

● Solution is to unroll the loop
● Move conditional elements into scalars
● Test scalars at the end of the loop body
do I = 1, n, 2

  a = t(I)

  b = t(I+1)

  if (a .eq. 0.0)

  end if

  if (b .eq. 0.0)

  end if

end do



Loop Defactorization

● Note that floating point operations are 
not always associative. 

(A + B) + C   != A + (B + C)

● Be aware of your precision
● Always verify your results with 

unoptimized code first!



Loop Defactorization

● Untuned

do i = 1, lda

   A(i) = 0.0

   do j = 1, lda

     A(i)=A(i)+B(j)*D(j)*C(i)

   enddo

enddo

● Tuned

 do i = 1, lda

   A(i) = 0.0

   do j = 1, lda

     A(i) = A(i) + B(j) * D(j)

   enddo

   A(i) = A(i) * C(i)

 enddo



Loop Defactorization
Tuned

-O3
Untuned

-O3

Origin
2000

371.95 559.17

IBM SP2 449.03 591.26

Cray T3E 3201.35 3401.61



Loop Peeling

● For loops which access previous 
elements in arrays. 

● Compiler often cannot determine that 
an item doesn’t need to be loaded  
every iteration.



Loop Peeling

● Untuned

 jwrap = lda

 do i = 1, lda

   b(i) = (a(i)+a(jwrap))*0.5

   jwrap = i

 enddo

● Tuned

b(1) = (a(1)+a(lda))*0.5

do i = 2, lda

   b(i) = (a(i)+a(i-1))*0.5

enddo



Loop Peeling
Tuned

-O3
Untuned

-O3

Origin
2000

61.06 63.33

IBM SP2 25.68 40.50

Cray T3E 72.93 90.05



Loop Collapse

● For multi-nested loops in which the 
entire array is accessed.

● This can reduce loop overhead and 
improve compiler vectorization.



Loop Collapse

● Untuned
  
  do i = 1, lda
    do j = 1, ldb

       do k = 1, ldc

          A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)

       enddo

    enddo

 enddo



Loop Collapse

● Tuned
 do i = 1, lda*ldb*ldc

    A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)

 enddo

● More Tuned (declarations are 1D)
 do i = 1, lda*ldb*ldc

    A(i) = A(i) + B(i) * C(i)

 enddo



Loop Collapse
Tuned Tuned

–O3
Tuned

2nd 
Tuned 2nd

–O3

Origin
2000

400.25 143.01 410.58 77.86

IBM
SP2

144.75 31.57 144.18 31.54

Cray
T3E

394.19 231.44 394.92 229.86



Loop Unrolling

● Data dependence delays can be 
reduced or eliminated.

● Reduce loop overhead.
● Usually performed well by the compiler 

or preprocessor. 



Loop Unrolling

● Untuned
 

do i = 1, lda

   do j = 1, lda

      do k = 1, 4

         a(j,i) = a(j,i) + b(i,k) * c(j,k)

      enddo

   enddo

enddo



Loop Unrolling

● Tuned (4)

do i = 1, lda

   do j = 1, lda

      a(j,i) = a(j,i) +  b(i,1) * c(j,1)

      a(j,i) = a(j,i) +  b(i,2) * c(j,2)

      a(j,i) = a(j,i) +  b(i,3) * c(j,3)

      a(j,i) = a(j,i) +  b(i,4) * c(j,4)

   enddo

enddo



Loop Unrolling

Tuned
-O3

Untuned
-O3

Origin
2000

61.06 63.33

IBM SP2 11.26 12.65

Cray T3E 36.30 24.41



Loop Unrolling and Sum 
Reductions

● When an operation requires as input 
the result of the last output.

● Called a Data Dependency.
● Frequently happens with multi-add 

instruction inside of loops.
● Introduce intermediate sums. Use your 

registers!



Loop Unrolling and Sum 
Reductions

● Untuned
 

 do i = 1, lda

    do j = 1, lda

       a = a + (b(j) * c(i))

    enddo

 enddo



Loop Unrolling and Sum 
Reductions

● Tuned (4)
 

 do i = 1, lda

    do j = 1, lda, 4

       a1 = a1 + b(j) * c(i)

       a2 = a2 + b(j+1) * c(i)

       a3 = a3 + b(j+2) * c(i)

       a4 = a4 + b(j+3) * c(i)

    enddo

 enddo

 aa = a1 + a2 +a3 + a4



Loop Unrolling and Sum 
Reductions

Untuned
–O3

2
Tuned

2
Tuned
–O3

4
Tuned

-O3

8
Tuned

-O3

16
Tuned

-O3

Origin
2000

454 4945 352 350 350 330

IBM
SP2

281 6490 563 281 281 263

Cray
T3E 865 10064 564 340 231 860



Outer Loop Unrolling

● For nested loops, unrolling outer loop 
may reduce loads and stores in the 
inner loop.

● Compiler may perform this optimization.



Outer Loop Unrolling

● Untuned
● Each flop requires two loads and one store.

 do i = 1, lda

    do j = 1, ldb

       A(i,j) = B(i,j) * C(j)

    enddo

 enddo



Outer Loop Unrolling

● Tuned
● Each flop requires 5/4 loads and one store.

 do i = 1, lda, 4

    do j = 1, ldb

       A(i,j)   = B(i,j) * C(j) 

       A(i+1,j) = B(i+1,j) * C(j)

       A(i+2,j) = B(i+2,j) * C(j)

       A(i+3,j) = B(i+3,j) * C(j)

    enddo

 enddo



Outer Loop Unrolling
Tuned

-O3
Untuned

-O3

Origin
2000

28.85 34.52

IBM SP2 74.67 286.11

Cray T3E 14.33 30.91



Cache Blocking

● Takes advantage of the cache by 
working with smaller tiles of data

● Only really beneficial on problems with 
significant potential for reuse

● Merges naturally with unrolling and 
sum-reduction



Cache Blocking

● Untuned
REAL*8 A(M,N)

REAL*8 B(N,P)

REAL*8 C(M,P)

DO J=1,P

 DO I=1,M

  DO K=1,N

    C(I,P) = C(I,P) +

    A(I,K)*B(K,J)

  ENDDO

 ENDDO

ENDDO

● Tuned
DO JB=1,P,16
 DO IB=1,M,16
  DO KB=1,N
   DO J=JB,MIN(P,JB+15)
    DO I=IB,MIN(M,IB+15)
      C(I,P) = C(I,P) +
      A(I,K)*B(K,J)
     ENDDO
    ENDDO
   ENDDO
  ENDDO
 ENDDO
ENDDO



Indirect Addressing
XX(I) = XX(I) * Y(A(I))

● One of the most difficult constructs to 
optimize.

● Consider using a sparse solver package.
● Otherwise, consider doing blocks of 

operations. Instead of sparse degree 1, 
use blocked sparse format with 
prefetching.

● Redundant computations are ok.



Loop structure

● IF/GOTO and WHILE loops inhibit some 
compiler optimizations.

● Some optimizers and preprocessors can 
perform transforms.

● DO and for() loops are the most highly 
tuned.



Strength Reduction

● Reduce cost of mathematical operation 
with no loss in precision, compiler might 
do it.
● Integer multiplication/division by a 

constant with shift/adds
● Exponentiation by multiplication
● Factorization and Horner’s Rule
● Floating point division by inverse 

multiplication



Strength Reduction
Horner’s Rule

● Polynomial expression can be rewritten 
as a nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.

● Also uses multiply-add instructions
● Eases dependency analysis



Strength Reduction
Horner’s Rule

Tuned
-O3

Untuned
-O3

Origin
2000

74.20 74.09

IBM SP2 40.69 74.71

Cray T3E 61.70 160.05



Strength Reduction
Integer Division by a Power of 2

● Shift requires less cycles than division.
● Both dividend and divisor must both be 

unsigned or positive integers.
● Divides are often costly.

● Consider also multiplying times the inverse.



Strength Reduction
Integer division by a Power of 2

● Untuned

IL = 0

DO I=1,ARRAY_SIZE

  DO J=1,ARRAY_SIZE

    IL = IL + A(J)/2

  ENDDO

  ILL(I) = IL

ENDDO

● Tuned

IL = 0

ILL = 0

DO I=1,ARRAY_SIZE

  DO J=1,ARRAY_SIZE

    IL = IL + ISHFT(A(J),-1)

  ENDDO

  ILL(I) = IL

ENDDO



Strength Reduction
 Integer division by a Power of 2

Tuned
-O3

Untuned
-O3

Origin
2000

210.71 336.44

IBM SP2 422.65 494.05

Cray T3E 771.28 844.17



Strength Reduction
Factorization

● Allows for better instruction scheduling.
● Compiler can interleave loads and ALU 

operations.
● Especially benefits compilers able to do 

software pipelining.



Strength Reduction
Factorization

● Untuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

● Tuned
XX = X*(A(I) + B(I) + C(I) + D(I))



Strength Reduction
Factorization

Tuned
-O3

Untuned
-O3

Origin
2000

51.65 48.99

IBM SP2 57.43 57.40

Cray T3E 387.77 443.45



Subexpression Elimination
Parenthesis

● Parenthesis can help the compiler 
recognize repeated expressions.

● Some preprocessors and aggressive 
compilers will do it.

● Might limit aggressive optimizations



Subexpression Elimination
Parenthesis

● Untuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)

● Tuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I)+Z(I))



Subexpression Elimination
Type Considerations

● Changes the type or precision of data.
● Reduces resource requirements.
● Avoid type conversions.
● Processor specific performance.

● Do you really need 8 or 16 bytes of 
precision?



Subexpression Elimination
Type Considerations

● Consider which elements are used 
together?
● Should you be merging your arrays?
● Should you be splitting your loops for 

better locality?
● For C, are your structures packed tightly in 

terms of storage and reference pattern?



F90 Considerations

● WHERE statements
● ARRAY syntax
● ALLOCATE placement
● OO complication

● Class dependencies
● Code fragmentation
● Operator overloading
● Inlining



F90 WHERE

● This construct is basically a masking 
operator for array operations.

● It results in an IF statement for every 
operation. 

● Consider copying to temporary and then 
multiplying by mask array.



F90 ARRAY

● Be aware that specifying sections of 
arrays often implies a copy.

● Often this is done more than once in 
your code. 

● Consider doing it yourself and saving 
the result for reuse.



F90 ALLOCATE

● Recent experiments have shown that 
ALLOCATE often returns data on a page 
boundary.

● Very dangerous for caches with low 
associativity.



C/C++ Considerations

● Use STL and the C++ operators.
● Dynamic typing and polymorphism isn't 

free.
● Use inline, const and restrict 

keywords.
● Easy to become memory/pointer bound 

with operator overloading.
● OO complication as before.



STL and C++

● The goal of STL is to export more of the 
author's intent to the compiler.

● Many classes run much faster than 
handwritten code in applications
● Strong typing
● The compiler can tell what you're doing vs. 

just making a function call on a pointer.



Parallel Optimization



Parallel Performance

“The single most important 
impediment to good parallel 

performance is still poor 
single-node performance.”

- William Gropp
Argonne National Lab



What is Good Parallel 
Performance?

● Single CPU performance is high.
● The code is scalable out to more than a 

few nodes.
● The network is not the bottleneck.
● In parallel computation, algorithm design 

is the key to good performance. 
● You must reduce the amount of data 

that needs to be sent around.



Beware The Fallacy
Linear Scalability

● But what about per/PE performance?
● With a slow code, overall performance of 

the code is not vulnerable to other 
system parameters like communication 
bandwidth, latency.

● Very common on tightly integrated 
systems where you can simple add PE's 
for performance.



Parallel Optimization

● Two programming models.
● Message Passing
● Shared Memory



Parallel Performance

● Architecture is characterized by
● Number of CPU’s
● Connectivity
● I/O capability
● Single processor performance



MPP Optimization

● Programming
● Message passing (MPI, MPI-2, Shmem)
● Shared memory (OpenMP directive based)

● Algorithms
● Data or Functional Parallelism
● SIMD, MIMD
● Granularity (fine, medium, coarse)
● Master/Worker or Hostless



Choosing a Data Distribution

● The main issue in choosing a data layout for 
dense matrix computations is:
● load balance, or splitting the work reasonably 

evenly among the processors throughout the 
algorithm



Possible Data Layouts
● 1D block and cyclic column distributions

● 1D block-cyclic column and 2D block-cyclic 
distribution used in ScaLAPACK



Two-dimensional Block-Cyclic Distribution

● Ensure good load balance --> 
Performance and scalability,

● Encompasses a large number of (but not all) 
data distribution schemes,

● Need redistribution routines to go from one 
distribution to the other.



Load Balancing

● Static
● Data/tasks are partitioned among existing 

processors.
● Problem of finding an efficient mapping

● Dynamic
● Master/Worker model
● Synchronization and data distribution 

problems



Traditional Message Passing

● Node 1 needs X bytes from node 0
● Node 0 calls a send function (X bytes 

from address A)
● Node 1 calls a receive function (X bytes 

into address B)



Remote DMA

● Node 1 needs X bytes to addr. A from 
node 0 at addr. B

● Either:
● Node 0 sends RDMA PUT (X bytes from 

addr. A to Node 1 addr. B)
● Node 1 sends RDMA GET to Node 0 (X 

bytes from addr. A to  Node 1 addr. B)



Memory Window's

● Node 0: Declare comm. region between 
addr. A and B.

● Node 1: Declare comm. region between 
addr. C and D.

● Either node issues a PUT or GET.



MPI Optimization



Communication Issues

● Startup time, latency or overhead
● Bandwidth
● Network contention and congestion
● Bidirectionality
● Communication API
● Dedicated Channels



Communication Issues

● Startup time and bandwidth
● Startup time is higher than the time to 

actually transfer a small message.
● Send larger messages fewer times, but try 

to keep everyone busy.
● Contention can be reduced by uniformly 

distributing messages.



Message Passing Interface

● Provides numerous send/recv modes.
● Asynchronous
● One-sided

● Provides optimized collective 
operations.

● Supports customized data types.
● Is a standard and is highly portable.



Message Passing

● Upon message arrival
● If node B has not posted a receive the 

data is buffered until the receive function 
is called.

● Else the data is delivered directly to the 
address given to the receive function. No 
copy!

● The amount of buffering is implementation 
dependent.



Posting a Receive

● Means that the application has informed 
the communication layer about a 
message to be received (soon).

● Matching done in software, not 
hardware:
●  context, rank and tag.

● User should provide as much 
information as possible to MPI to 
reduce matching operation.



MPI Protocol

● Often 2 or 3 message size ranges.
● Short messages:

● Send right away, buffer, match and copy at 
receiver.

● Medium messages.
● Send first chunk, ask for more space or 

match, return with dest. addr. or wait.
● Long

● Send first chunk, return with dest. addr.



MPI Latency
Infiniband vs. Myrinet



MPI Bidirectional Bandwidth
Infiniband vs. Myrinet



Message Passing

● It is possible for sends and receives to 
be
● Nonblocking(send) or Posted(receive)
● Synchronous(send)
● Buffered
● Blocking



Message Passing

Buffering - Temporary storage of data. 
Posting - Temporary storage of an address.
Nonblocking - Refers to an function A that 

initiates an operation B and returns to the 
caller before the completion of B.

Blocking - The function A does not return to 
the caller until the completion of operation B.

Polling/Waiting - Testing for the completion 
of a nonblocking operation.



MPI Message Passing

● MPI introduces communication modes 
dictating semantics of completion of 
send operations.
● Buffered - When transmitted or buffered, 

space provided/limited by application, else 
error.

● Ready - Only if receive is posted, else 
error.

● Synchronous - Only when receive begins to 
execute, else wait. Useful for debugging.



MPI Message Passing

● In addition
standard - MPI will decide if/how much 

outgoing data is buffered. If space is 
unavailable, completion will be delayed 
until data is transmitted to receiver. (Like 
PVM) 

Immediate - nonblocking, returns to the 
caller ASAP. May be used with any of the 
above modes.



MPI Message Passing

● Ready sends can remove a handshake 
for large messages.

● There is only one receive mode, it 
matches any of the send modes.



MPI Optimizations

● We are primarily interested in
MPI_ISEND, MPI_IRECV, MPI_IRSEND

● Why? Because your program could be 
doing something useful while sending 
or receiving! You can hide much of the 
cost of these communication 
operations.



MPI Message Passing

● To test for the completion of a message 
use

MPI_WAITxxx and MPI_TESTxxx

where xxx is all, any, some or NULL.

● Remember you must test ISEND’s as 
well as IRECV’s before you can reuse 
the argument.



MPI Data Types

● For array transfers MPI has user 
defined data types to gather and 
scatter data to/from memory.

● Try to use MPI_TYPE_[H]VECTOR()or 
MPI_TYPE_[H]INDEXED()

● Avoid MPI_TYPE_STRUCT()



MPI Performance Tips

● Send big messages, infrequently.
● Avoid, small frequent messages.
● Think about the actual communication 

pattern.
● Use a collective operation.



MPI Performance Tips

● Reduce number of unexpected, 
unmatched messages.

● Always post receives as early as 
possible.

● Take advantage of bidirectionality in the 
communication link.
● MPI_sendrecv()



MPI Performance Tips

● Avoid data translation and derived data 
types unless necessary for good 
performance.

● Avoid wildcard receives.
● Align application buffers to double 

words and page sizes. 



MPI Performance Tips

● Pipeline communication/computation.
● On most systems, the data can move 

without CPU intervention.
● Take advantage of this fact!
● Avoid constructions like:

● MPI_IRECV()
● MPI_ISEND()
● MPI_WAIT()

● Here, no useful work is done while waiting!



MPI Collective Communication

● Unlike PVM, with MPI you should use 
the collective operations. They are likely 
to be highly tuned for the architecture.

● These operations are very difficult to 
optimize and are often the bottlenecks 
in parallel applications.



MPI Collective Communication
MPI_Barrier()

MPI_Bcast()

MPI_Gather[v]() MPI_Scatter[v]()

MPI_Allgather[v]() 

MPI_Alltoall[v]()

MPI_Reduce()

MPI_AllReduce()

MPI_Reduce_Scatter()

MPI_Scan()



Message Passing Optimization
Nearest Neighbor Example 1

N slave processors available plus Master, 
M particles each having (x,y,z) 
coordinates.

1) Master reads and distributes all 
coordinates to N processors.

2) Each processor calculates its subset of 
M/N and sends it back to the master.

3) Master processor receives and outputs 
information.



Message Passing Optimization
Nearest Neighbor Example 2

1) Master reads and scatters M/N coordinates to N 
processors.

2) Each processor receives its own subset and makes a 
replica.

3) Each processor calculates its subset of M/N 
coordinates versus the replica.

 4) Each processor sends to the next processor its replica 
of M/N coordinates.

5) Each processor receives the replica. Goto 3) N-1 
times.

6) Each processor sends its info back to the Master



Message Passing Optimization
Nearest Neighbor Example

● Example 1 works better only when:
● There are a small number of particles
● You have an super efficient broadcast

● Example 2 works better more often 
because:
● Computation is pipelined. Note that slave 

processor 0 is already busy before 
processor 1 even gets its input data.



OpenMP Optimization



Thread Level Parallelism

● Data parallelism: different processors 
running the same code on different 
data. (SPMD)

● Task parallelism means different 
processors are running different 
procedures. (MPMD)



OpenMP

● Designed for quick and easy parallel 
programming for SMP (and NUMA) 
machines.

● Insert compiler directives in code that 
implicitly spawn threads.

● Usually placed around loops but can 
work for any piece of structured code.
● One entry, one exit.



OpenMP Data Parallelism

  j = 0

c$omp parallel do shared(j),private(i)

do i=1,n

  j += i

  end do



OpenMP Task Parallelism

c$omp parallel private(i)

do i=1,n

 if (i=1) call sub1(...)

   if (i=2) call sub2(...)

 if (i=3) call sub3(...)

 if (i=4) call sub4(...)

end do



Parallel Overhead

● Creating/Scheduling threads
● Communication
● Synchronization
● Partitioning



Parallel Overhead

● For data parallel programming we can 
estimate some of the parallel overhead.

● Time the code with only one thread
● OMP_NUM_THREADS environment 

variable.
● Compare with code compiled without 

OpenMP turned on.



Reducing Parallel Overhead

● Don’t parallelize ALL the loops.
● Parallelize the big loops.
● Privatize variables where possible

● Create per thread temporaries with
● PRIVATE, FIRSTPRIVATE, THREADPRIVATE



Reducing Parallel Overhead

● Use task parallelism.
● Lower overhead
● More code runs in parallel
● Requires a parallel algorithm



Improving Load Balance

● Change the way loop iterations are 
allocated to threads.
● Change the scheduling type
● Change the chunk size



Improving Load Balance

● Scheduling 
– setenv OMP_SCHEDULE <type>

– c$omp schedule(<type>)
● STATIC,[<chunk> - default, iterations 

equally and sequentially allocated per 
processor. 

● RUNTIME – use the OMP_SCHEDULE 
environment variable. Default, static.



Improving Load Balance

● Scheduling 
● DYNAMIC,[<chunk>] - iterations are 

allocated per processor during run-time. 
When the amount of work is unknown.

● GUIDED,[<chunk>] - guided self 
scheduling. Each processor starts with a 
large number and finishes with a small 
number. 



OpenMP Gotcha's

● False sharing
● Shared variables that ping-pong between 

processors cache lines
● Hyperthreading

● Conflicting over shared resources
● OMP_NUM_THREADS to physical number 

of CPU's if doing data-parallel.
● Locking



Automatic Parallelization

● Let the compiler do the work.
● Advantages

● It’s easy
● Disadvantages

● Only does loop level parallelism.
● It wants to parallelize every loop iteration 

in your code.



Numerical Libraries



Optimized Arithmetic Libraries

● Advantages:
● Subroutines are quick to code and 

understand.
● Routines provide portability.
● Routines perform well.
● Comprehensive set of routines.

● Disadvantages
● Can lead to vertical code structure
● May mask memory performance problems



Think you can do it yourself?

● 512x512 Matrix Multiply
● Naïve (next page)

● ~200 Mflops (gcc 3.4)
● Advanced (next page)

● ~1000 Mflops (gcc 3.4)
● ATLAS

● ~2500 Mflops (gcc 3.4)



      do kb = 1,kk,blk
         ke = min(kb+blk-1,kk)
         do ib = 1,ii,blk
            ie = min(ib+blk-1,ii)
            do i = ib,ie
               do k = kb,ke
                  TB(k-kb+1,i-ib+1) = B(i,k)
               end do
            end do
            do jb = 1,jj,blk
               je = min(jb+blk-1,jj)
               do j = jb,je,2
                  do i = ib,ie,2
                     T1 = 0.0d0
                     T2 = 0.0d0
                     T3 = 0.0d0
                     T4 = 0.0d0
                     do k = kb,ke
                        T1 = T1 + TB(k-kb+1,i-ib+1)*C(k,j)
                        T2 = T2 + TB(k-kb+1,i-ib+2)*C(k,j)
                        T3 = T3 + TB(k-kb+1,i-ib+1)*C(k,j+1)
                        T4 = T4 + TB(k-kb+1,i-ib+2)*C(k,j+1)
                     enddo
                     A(i,j) = A(i,j)+T1
                     A(i+1,j) = A(i+1,j)+T2
                     A(i,j+1) = A(i,j+1)+T3
                     A(i+1,j+1) = A(i+1,j+1)+T4
                  enddo
               enddo
            enddo
         enddo
      enddo

A(i,j) = A(i,j) + B(i,k) * C(k,j)



Optimized Arithmetic Libraries

● BLAS: Basic Linear Algebra Subroutines
● PBLAS: Parallel version

● LAPACK: Linear Algebra Package
● ScaLAPACK: Parallel version



BLAS

● Common Matrix/Matrix, Matrix-Vector, 
Vector-Vector. REAL/DOUBLE/COMPLEX

● Reference version available from UT.
● Vendor versions offer high 

performance.
● MKL on Intel
● ACML on AMD

● Multithreaded are usually available.
• http://www.netlib.org/blas/index.html



Level 1, 2 and 3 BLAS
● Level 1 BLAS    

Vector-Vector 
operations

● Level 2 BLAS  
Matrix-Vector 
operations

● Level 3 BLAS  
Matrix-Matrix 
operations

+ *

*

+ *



Goto/ATLAS BLAS

● If you don't have a vendor BLAS:
● K. Goto has hand coded many BLAS 

routines.
● Near peak performance

● ATLAS: Automatic Tuned Linear Algebra 
Software
● Generates near optimal BLAS and a few 

LAPACK routines for ANY architecture by 
brute force.



LAPACK

● F77 routines for solving
● systems of simultaneous linear equations 

and eigenvalue problems
● matrix factorizations (LU, Cholesky, QR, 

SVD, Schur, generalized Schur)
● Related computations such as reordering 

and conditioning.
● Built on the level 1, 2 3 BLAS Single, 

Double, Complex, Double Complex
• http://www.netlib.org/lapack/index.html



LAPACK -- Release 3.0
● Add functionality

● divide and conquer SVD,
● error bounds for GLM and LSE,
● new expert drivers for GSEP,
● faster QRP,
● faster solver for the rank-deficient LS (xGELSY),
● divide and conquer least squares
● ...



ScaLAPACK Functionality
● Orthogonal/unitary transformation routines
● Prototypes

● Packed Storage routines for LLT, SEP, GSEP
● Out-of-Core Linear Solvers for LU, LLT, and QR
● Matrix Sign Function for Eigenproblems
● SuperLU and SuperLU_MT
● HPF Interface to ScaLAPACK



ScaLAPACK Documentation

● Documentation
● ScaLAPACK Users’ Guide 

http://www.netlib.org/scalapack/slug/scalapack_slug.html

● Installation Guide for ScaLAPACK
● LAPACK Working Notes

● Test Suites for ScaLAPACK, PBLAS, 
BLACS

● Example Programs 
http://www.netlib.org/scalapack/examples/

● Prebuilt ScaLAPACK libraries on netlib



Parallelism in ScaLAPACK
● Level 3 BLAS block 

operations
● All the reduction routines

● Pipelining
● QR Algorithm, Triangular 

Solvers, classic factorizations
● Redundant 

computations
● Condition estimators 

● Static work assignment
● Bisection

● Task parallelism
● Sign function eigenvalue 

computations
● Divide and Conquer

● Tridiagonal and band 
solvers, symmetric 
eigenvalue problem and Sign 
function 

● Cyclic reduction
● Reduced system in the band 

solver 



Narrow Band and Tridiagonal 
Matrices

● The ScaLAPACK routines solving narrow-
band and tridiagonal linear systems assume
● the narrow band or tridiagonal coefficient matrix to 

be distributed in a block-column fashion, and
● the dense matrix of right-hand-side vectors to be 

distributed in a block-row fashion.
● Divide-and-conquer algorithms have been 

implemented because they offer greater 
scope for exploiting parallelism than the 
corresponding adapted dense algorithms.



PETSc

● Generalized sparse solver package for 
solution of PDEs.

● Multiple preconditioners and explicit and 
implicit methods.

● Highly optimized for compressed block 
storage.

● Serial and Parallel versions.



SuperLU

● LU factorization sparse solver package.
● Highly optimized for compressed block 

storage.
● Serial and Parallel versions.



FFTW and UHFFT

● 1,2,3D FFT's on a variety of data types.
● Very good performance.
● Serial and Parallel versions.



VSIPL

● Vector Signal Image Processing Library
● Filters
● Stencils
● Convolutions
● Wavelet
● Serial and Parallel versions.



EISPACK

● LAPACK for Eigenvalue problems
● Serial and Parallel versions.



Performance Analysis Tools



Performance Evaluation

● Traditionally, performance evaluation has 
been somewhat of an art form:
● Limited set of tools (time & -p/-pg)
● Major differences between systems
● Lots of guesswork as to what was 'behind the 

numbers'
● Today, the situation is different.

● Hardware support for performance analysis
● A wide variety of Open Source tools to 

choose from.



Why Performance Analysis?
● 2 reasons: Economic & Qualitative
● Economic: TIME IS MONEY

● Average lifetime of these large machines is 4 
years before being decommissioned. 

● Consider the cost per day of a 4 Million 
Dollar machine, with annual 
maintenance/electricity cost of $300,000 
(US). That's $1500.00 (US) per hour of 
compute time.



Why Performance Analysis 2?

● Qualitative Improvements in Science
● Consider: Poorly written code can easily run 

10 times worse than an optimized version.
● Consider a 2-dimension domain 

decomposition of a Finite Difference 
formulation simulation.

● For the same amount of time, the code can 
do 10 times the work. 400x400 elements vs. 
1300x1300 elements

● Or it can do 400x400 for 10 times more 
time-steps.



Why Performance Analysis 3?

● So, we must strive to evaluate how our 
code is running.

● Learn to think of performance during the 
entire cycle of your design and 
implementation.



Processor Complexity



Rising Processor Complexity

● No longer can we easily trace the 
execution of a segment of code.
● Static/Dynamic Branch Prediction
● Prefetching
● Out-of-order scheduling
● Predication

● So, just a measure of 'wallclock' time is 
not enough. Need to know what's really 
happening under the hood.



Direct Measurement Methods
● Instrumentation based

● Tracing
● Generate a record for each measured event.
● Useful only when evidence of performance 

anomalies is present due to the large volume 
of data generated.

● Aggregate
● Reduce data at run-time avg/min/max 

measurements.
● Useful for application and architecture 

characterization and optimization.



Measurement Methods 2

● Indirect methods requires no 
instrumentation and can be used on 
unmodified applications.

● The reality is that the boundary between 
indirect and direct is somewhat fuzzy.
● gprof (no source mods, but requires relink or 

recompile)



Statistical Profiling

● At a defined interval (interrupts), record 
WHERE in the program the CPU is.

● Data gathered represents a probabilistic  
distribution in the form of a histogram.

● Interrupts can be based on time or 
hardware counter events with the proper 
infrastructure like...



External Timers

● /usr/bin/time <command> returns 3 kinds.
● Real time: Time from start to finish
● User: CPU time spent executing your code
● System:  CPU time spent executing system 

calls 
● Warning! The definition of CPU time is 

different on different machines.  



External Timers

● Sample output (from Linux)
0.56user 0.12system 0:03.80elapsed 18%CPU 

(0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (55major+2684minor)pagefaults 
0swaps

1) User 
2) System 
3) Real 
4) Percent of time spent on behalf of this process, not including 

waiting.
5) Text size, data size, max memory
6) 0 input, 0 output operations
7) Page faults (major, minor), swaps.



Internal Timers

● gettimeofday(), part of the C 
library obtains seconds and 
microseconds since Jan 1, 1970.

● second(), Fortran 90.
● Latency is not the same as resolution.

● Many calls to this function will affect your 
wall clock time.



Internal Timers

● clock_gettime() for POSIX, usually 
implemented as gettimeofday(). 

● MPI_Wtime() returns elapsed wall 
clock time in seconds as a double.



Hardware Performance 
Counters

● On/off chip registers that count 
hardware events

● Many different events.
● OS accumulates counts into 64-bit 

quantities.
● Both user and kernel modes can be 

measured.
● Explicit counting or statistical 

histograms based on counter overflow.



Performance Counters
● Most high performance processors include hardware 

performance counters.
● AMD Athlon and Opteron
● Compaq Alpha EV Series
● CRAY T3E,  X1
● IBM Power Series
● Intel Itanium, Itanium 2, Pentium
● SGI MIPS R1xK Series
● Sun UltraSparc II, III, IV
● IBM Blue Gene
● And many others...



Performance Counters
● Performance Counters are hardware registers dedicated 

to counting certain types of events within the processor 
or system.
● Usually a small number of these registers (2,4,8)
● Sometimes they can count a lot of events or just a few
● Symmetric or asymmetric

● Each register has an associated control register that 
tells it what to count and how to do it.
● Interrupt on overflow
● Edge detection (cycles vs. events)
● User vs. kernel mode



• Cycle count
• Instruction count

– All instructions
– Floating point
– Integer
– Load/store 

• Branches
– Taken / not taken 
– Mispredictions

• Pipeline stalls due to
– Memory subsystem

– Resource conflicts

• Cache
– I/D cache misses for 

different levels 
– Invalidations

• TLB 
– Misses
– Invalidations

Some Hardware Performance 
Counter Events



Statistical Profiling
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Hardware Statistical Profiling
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PAPI

• Performance Application Programming Interface 

• The purpose of PAPI is to implement a standardized 
portable and efficient API to access the hardware 
performance monitor counters found on most 
modern microprocessors.

• The goal of PAPI is to facilitate the optimization of 
parallel and serial code performance by 
encouraging the development of cross-platform 
optimization tools.



PAPI Preset Events
● PAPI supports around preset events
● Proposed set of events deemed most relevant 

for application performance tuning
● Preset events are mappings from symbolic 

names to machine specific definitions for a 
particular hardware resource.
● Total Cycles is PAPI_TOT_CYC

● Mapped to native events on a given platform
● PAPI also supports presets that may be derived 

from the underlying hardware metrics



Linux Performance Tools 
● Contrary to popular belief, the Linux 

infrastructure is well established.
● PAPI is 8 years old.
● Wide complement of tools from which to 

choose.
● Some are production quality.
● Sun, IBM and HP are now focusing on 

Linux/HPC which means a focus on 
performance.



Which Tool?



The Right Performance Tool

● What are your needs? Things to 
consider:
● User Interface

● Complex Suite
● Quick and Dirty

● Data Collection Mechanism
● Aggregate
● Trace based
● Statistical



The Right Performance Tool 2

● Performance Data
● Communications (MPI)
● Synchronization (Threads and OpenMP)
● External Libraries
● User code

● Data correlation
● Task Parallel (MPI)
● Thread Parallel

● Instrumentation Mechanism
● Source/Binary/Library interposition



The Right Performance Tool 3

● Data Management
● Performance Database
● User (Flat file)

● Data Visualization
● Run Time
● Post Mortem
● Serial/Parallel Display
● ASCII



Hardware Profiling and Papiex

● A simple tool that generates 
performance measurements for the 
entire run of a code.

● Requires no recompilation.
● Monitors all subprocesses/threads.
● Output goes to stderr or a file.
● Try running your code under papiex to 

measure IPC or MFLOPS (the default).



Papiex v0.9 Example
> module load perftools/1.1

> papiex <application>

> papiex -e PAPI_TOT_CYC -e PAPI_TOT_INS 
-- <application>

> mpirun -np 4 `which papiex` -f -- 
<application>



papiex v0.9 Output

Executable:             /afs/pdc.kth.se/home/m/mucci/mpiP-2.7/testing/a.out
Parent Process ID:      18115
Process ID:             18116
Hostname:               h05n05.pdc.kth.se
Start:                  Tue Aug 17 17:45:36 2004
Finish:                 Tue Aug 17 17:45:40 2004
Domain:                 User
Real usecs:             3678252 (3s.)
Real cycles:            3310413694
Proc usecs:             16592 (0s.)
Proc cycles:            14932800
PAPI_TOT_CYC:           13962873
PAPI_FP_INS:            285847
 
Event descriptions:
Event: PAPI_TOT_CYC
        Derived: No
        Short: Total cycles
        Long: Total cycles
        Vendor Symbol: CPU_CYCLES
        Vendor Long: CPU_CYCLES
Event: PAPI_FP_INS
        Derived: No
        Short: FP instructions
        Long: Floating point instructions
        Vendor Symbol: FP_OPS_RETIRED
        Vendor Long: FP_OPS_RETIRED



Papiex v0.9 Usage
Usage: papiex [-lLihvtmnukord] [-f [prefix]] [-e event]... -- <cmd> 

<cmd options>

 -l             List the available events.

 -L             List all information about the available events.

 -i             Print information about the host machine.

 -h             Print this message.

 -v             Print version information.

 -t             Enable monitoring of multiple threads.

 -m             Enable multiplexing of hardware counters.

 -n             Do not follow fork()'s.

 -u             Monitor user mode events. (default)

 -k             Monitor kernel mode events.

 -f[prefix]     Output to <prefix><cmd>.papiex.<host>.<pid>.<tid>.

 -e event       Monitor this hardware event.



Parallel Profiling

● Often we want to see how much time we 
are spending communicating.

● Many tools to do this via “Tracing” the 
MPI calls.

● A very good and simple tool available on 
Lucidor is mpiP v2.7, it does online trace 
reduction.



MpiP v2.7 Example
> module load perftools/1.1

> module show perftools

● Follow the instructions to link your 
C/C++/F77/F90 codes with mpiP.

● Run your code and examine the output 
in <*.mpiP>.



MpiP v2.7 Output

@--- MPI Time (seconds) ---------------------------------------------------
Task    AppTime    MPITime     MPI%
   0      0.084     0.0523    62.21
   1     0.0481      0.015    31.19
   2      0.087     0.0567    65.20
   3     0.0495     0.0149    29.98
   *      0.269      0.139    51.69

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------
Call                 Site       Time    App%    MPI%
Barrier                 1        112   41.57   80.42
Recv                    1       26.2    9.76   18.89
Allreduce               1      0.634    0.24    0.46
Bcast                   1        0.3    0.11    0.22
Send                    1      0.033    0.01    0.02

@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------
Call                 Site      Count      Total       Avrg  Sent%
Allreduce               1          8    4.8e+03        600  46.15
Bcast                   1          8    4.8e+03        600  46.15
Send                    1          2        800        400   7.69



MpiP v2.7 Output 2

@--- Callsite Time statistics (all, milliseconds): 16 Name              Site Rank  
Count      Max     Mean      Min   App%   MPI%
Allreduce            1    0      2    0.105    0.087    0.069   0.21   0.33
Allreduce            1    1      2    0.118     0.08    0.042   0.33   1.07
Allreduce            1    2      2     0.11    0.078    0.046   0.18   0.27
Allreduce            1    3      2    0.102    0.072    0.042   0.29   0.97
Barrier              1    0      3     51.9     17.3    0.015  61.86  99.44
.
.
.
@--- Callsite Message Sent statistics (all, sent bytes) Name              Site 
Rank   Count       Max      Mean       Min       Sum
Allreduce            1    0       2       800       600       400      1200
Allreduce            1    1       2       800       600       400      1200
Allreduce            1    2       2       800       600       400      1200
Allreduce            1    3       2       800       600       400      1200
Bcast                1    0       2       800       600       400      1200
Bcast                1    1       2       800       600       400      1200
Bcast                1    2       2       800       600       400      1200
Bcast                1    3       2       800       600       400      1200
Send                 1    0       1       400       400       400       400
Send                 1    2       1       400       400       400       400
Send                 1    *      18       800     577.8       400  1.04e+04
---------------------------------------------------------------------------
@--- End of Report --------------------------------------------------------



MPI Tracing and Jumpshot
● Sometimes we need to see the exact 

sequence of messages exchanged 
between processes.

● For this, we can enable MPI tracing by 
relinking our application and using the 
Jumpshot tool.

● Works with any MPI by linking with the 
Jumpshot MPI tracing library.



Jumpshot 3 Example
> module load perftools/1.1

> mpicc -mpilog example.c -o example

> mpirun -np 4 example

> clog2slog example.clog

> jumpshot example.slog



Jumpshot Main Window



Jumpshot Timeline



PerfSuite from NCSA
● Command line tool similar to IRIX's 

perfex command.
● Does aggregate counting of the 

entire run. Also provides statistical 
profiling.

● Uses library preloading.
● Output is XML or Plain Text.

● Machine information
● Raw counter values
● Derived metrics



PSRUN Sample Output
Index Description                                                              Counter Value
============================================================================================

    1 Conditional branch instructions mispredicted.....................           4831072449
    2 Conditional branch instructions correctly predicted..............          52023705122
    3 Conditional branch instructions taken............................          47366258159
    4 Floating point instructions......................................          86124489172
    5 Total cycles.....................................................         594547754568
    6 Instructions completed...........................................        1049339828741
    7 Level 1 data cache accesses......................................          30238866204
    8 Level 1 data cache hits..........................................            972479062
    9 Level 1 data cache misses........................................          29224377672
   10 Level 1 instruction cache reads..................................         221828591306
   11 Level 1 cache misses.............................................          29312740738
   12 Level 2 data cache accesses......................................         129470315862
   13 Level 2 data cache misses........................................          15569536443
   14 Level 2 data cache reads.........................................         110524791561
   15 Level 2 data cache writes........................................          18622708948
   16 Level 2 instruction cache reads..................................            566330907
   17 Level 2 store misses.............................................           1208372120
   18 Level 2 cache misses.............................................          15401180750
   19 Level 3 data cache accesses......................................           4650999018
   20 Level 3 data cache hits..........................................            186108211
   21 Level 3 data cache misses........................................           4451199079
   22 Level 3 data cache reads.........................................           4613582451
   23 Level 3 data cache writes........................................             38456570
   24 Level 3 instruction cache misses.................................              3631385
   25 Level 3 instruction cache reads..................................             17631093
   26 Level 3 cache misses.............................................           4470968725
   27 Load instructions................................................         111438431677
   28 Load/store instructions completed................................         130391246662
   29 Cycles Stalled Waiting for memory accesses.......................         256484777623
   30 Store instructions...............................................          18840914540
   31 Cycles with no instruction issue.................................          61889609525
   32 Data translation lookaside buffer misses.........................              2832692



PSRUN Sample Output 

Statistics
============================================================================================
Graduated instructions per cycle.......................................                1.765
Graduated floating point instructions per cycle........................                0.145
% graduated floating point instructions of all graduated instructions..                8.207
Graduated loads/stores per cycle.......................................                0.219
Graduated loads/stores per graduated floating point instruction........                1.514
Mispredicted branches per correctly predicted branch...................                0.093
Level 1 data cache accesses per graduated instruction..................                2.882
Graduated floating point instructions per level 1 data cache access....                2.848
Level 1 cache line reuse (data)........................................                3.462
Level 2 cache line reuse (data)........................................                0.877
Level 3 cache line reuse (data)........................................                2.498
Level 1 cache hit rate (data)..........................................                0.776
Level 2 cache hit rate (data)..........................................                0.467
Level 3 cache hit rate (data)..........................................                0.714
Level 1 cache miss ratio (instruction).................................                0.003
Level 1 cache miss ratio (data)........................................                0.966
Level 2 cache miss ratio (data)........................................                0.120
Level 3 cache miss ratio (data)........................................                0.957
Bandwidth used to level 1 cache (MB/s).................................             1262.361
Bandwidth used to level 2 cache (MB/s).................................             1326.512
Bandwidth used to level 3 cache (MB/s).................................              385.087
% cycles with no instruction issue.....................................               10.410
% cycles stalled on memory access......................................               43.139
MFLOPS (cycles)........................................................              115.905
MFLOPS (wallclock).....................................................              114.441
MIPS (cycles)..........................................................             1412.190
MIPS (wallclock).......................................................             1394.349
CPU time (seconds).....................................................              743.058
Wall clock time (seconds)..............................................              752.566
% CPU utilization......................................................               98.737   
 



HPCToolkit from Rice U.
● Use event-based sampling and statistical 

profiling to profile unmodified 
applications: hpcrun

● Interpret program counter histograms: 
hpcprof

● Correlate source code, structure and 
performance metrics: hpcprof/hpcquick

● Explore and analyze performance 
databases: hpcviewer



HPCToolkit Goals
● Support large, multi-lingual applications

● Fortran, C, C++, external libraries (possibly binary only) with 
thousands of procedures, hundreds of thousands of lines

● Avoid
– Manual instrumentation
– Significantly altering the build process
– Frequent recompilation

• Collect execution measurements scalably and efficiently
– Don’t excessively dilate or perturb execution
– Avoid large trace files for long running codes

• Support measurement and analysis of serial and parallel codes 

• Present analysis results effectively
● Top down analysis to cope with complex programs 
● Intuitive enough for physicists and engineers to use
● Detailed enough to meet the needs of compiler writers

• Support a wide range of computer platforms



HPCToolkit Sample Output



TAU from U. Oregon
● Integrated toolkit for parallel and serial 

performance instrumentation, 
measurement, analysis, and visualization

● Open software approach with technology 
integration

● Robust timing and hardware 
performance support using PAPI

● TAU supports both profiling and tracing 
models.



Some TAU Features

● Function-level, block-level, statement-
level

● Support for callgraph and callpath 
profiling

● Parallel profiling and Inter-process 
communication events

● Supports user-defined events
● Trace merging and format conversion



TAU Instrumentation
● Source code both manual and automatic.

● C, C++, F77/90/95 (Program Database 
Toolkit (PDT))

● OpenMP (directive rewriting (Opari), POMP 
spec)

● Object code
● pre-instrumented libraries (e.g., MPI using 

PMPI)
● Executable code

● dynamic instrumentation (pre-execution) 
(DynInstAPI)



TAU Parallel Display



TAU Program Display



● KOJAK (Juelich, UTK)
● Instrumentation, tracing and analysis system for 

MPI, OpenMP and Performance Counters.
● Provides automated diagnosis of many common 

parallel performance problems.
● Q-Tools (HP) (non-PAPI, IA64 only)

● Statistical profiling of system and user processes
● DynaProf (Me)

● Dynamic instrumentation tool.

More Performance Tools



Conclusion



5 Ways to Avoid Performance 
Problems: Number 1

Never, ever, write your own code unless 
you absolutely have to.
● Libraries, libraries, libraries!
● Spend time to do the research, chances are 

you will find a package that suits your 
needs.

● Often you just need to do the glue that puts 
the application together.

● The 80/20 Rule! 80% of time is spent in 
20% of code.



5 Ways to Avoid Performance 
Problems: Number 2

Never violate the usage model of your 
environment.
● If something seems impossible to 

accomplish in your language or 
programming environment, you're probably 
doing something wrong.

● Consider such anomalies as:
● Matlab in parallel on a cluster of machines.
● High performance(?!) Java.

● There probably is a better way to do it, ask 
around.



5 Ways to Avoid Performance 
Problems: Number 3

Always let the compiler do the work.
● The compiler is much better at optimizing 

most code than you are. 
● Gains of 30-50% are reasonably common 

when the 'right' flags are thrown.
● Spend some time to read the manual and 

ask around.



5 Ways to Avoid Performance 
Problems: Number 4

Never use more data than absolutely 
necessary.
● C: float vs. double.
● Fortran: REAL*4, REAL*8, REAL*16 
● Only use 64-bit precision if you NEED it.
● A reduction in the amount of data the CPU 

needs ALWAYS translates to a increase in 
performance.

● Remember that the memory subsystem and 
the network are the ultimate bottlenecks.



5 Ways to Avoid Performance 
Problems: Number 5

Always make friends with a computer 
scientist!
● Learning just a little about modern computer 

architecture will result in much better code.



Questions?

● Email: mucci@cs.utk.edu
● For those here at KTH, many on the PDC 

staff are well versed in the art of 
performance. Use them!



HTTP References
http://www.openmp.org

http://www.netlib.org

http://http://www-unix.mcs.anl.gov/petsc/petsc-2/

http://crd.lbl.gov/~xiaoye/SuperLU

http://www.netlib.org/eispack

http://www2.cs.uh.edu/~mirkovic/fft/parfft.htm

http://www.fftw.org

http://www.intel.com/software/products/mkl

http://www.cs.utexas.edu/users/flame/goto

http://www.netlib.org/atlas

http://www.vsipl.org



HTTP References
http://www.cs.utk.edu/~mucci/latest/mucci_talks.html

http://icl.cs.utk.edu/papi

http://www.fz-juelich.de/zam/kojak/

http://www.hpl.hp.com/research/linux/q-tools

http://www.cs.utk.edu/~mucci/papiex

http://www.cs.utk.edu/~mucci/dynaprof

http://www.cs.uoregon.edu/research/paracomp/tau/

http://hipersoft.cs.rice.edu/hpctoolkit/

http://perfsuite.ncsa.uiuc.edu

http://www.cs.utk.edu/~mucci/MPPopt.html



Thanks


