
Performance Optimization for the
Origin 2000

Kevin London (london@cs.utk.edu)

Philip Mucci (mucci@cs.utk.edu)

University of Tennessee, Knoxville

http://www.cs.utk.edu/~mucci/MPPopt.html

Army Research Laboratory, Aug. 31 - Sep. 2

SGI Optimization Tutorial

Day 1

Getting Started

• First logon to an origin 2000. Today we
will be using eckert.

• Copy the tutorials to your home area. They
can be found in:

 ~london/arl_tutorial

 You can copy all the necessary files by:

Cp -rf ~london/arl_tutorial ~/.

Getting Started (Continued)

• For todays tutorial we will be using the files
in ~/ARL_TUTORIAL/DAY1

• We will be using some performance
analysis tools to look at fft code written in
MPI.

Version 1 of Mpifft

Version 2 of Mpifft

Version 3 of Mpifft

perfex

• perfex is useful for a first pass on your
code

• Today run perfex on mpifft the
following way:
– mpirun -np 5 perfex -mp -x -y -a mpifft

Speedshop Tools

• ssusage -- allows you to collect
information about your machines resources

• ssrun -- this is the command to run
experiments on a program to collect
performance data

• prof -- analyzes the performance data you
have recorded using ssrun

Speedshop Experiment Types

• Statistical PC sampling with pcsamp
experiments

• Statistical hardware counter sampling with
_hwc experiments. (On R10000 systems
with built-in hardware counters)

• Statistical call stack profiling with usertime

• Basic block counting with ideal

Speedshop Experiment Types

• Floating point exception trace with fpe

Using Speedshop Tools for
Performance Analysis

The general steps for a performance analysis
cycle are:

• Build the application

• Run experiments on the application to collect
performance data

• Examine the performance data

• Generate an improved version of the program

• Repeat as needed

Using ssusage on Your Program

• Run your program with ssusage:
– ssusage <program_name>

• This allows you to identify high user CPU
time, high system CPU time, high I/O time,
and a high degree of paging

• With this information you can then decide
on which experiments to run for further
study

ssusage (Continued)

• In this tutorial ssusage will be called like
the following:
– ssusage mpirun -np 5 mpifft

• The output will look something like this:
– 38.31 real, 0.02 user, 0.08 sys, 0 majf, 117 minf, 0 sw, 0 rb, 0 wb,

172 vcx, 1 icx

– Real-time, user-cpu time, system-cpu time, major page faults
(those causing physical I/O), minor page faults (those requiring
mapping only), swaps, physical blocks read and written, voluntary
context switches and involuntary context switches.

Using ssrun on Your Program

• To collect performance data, call ssrun as
follows:
– ssrun flags exp_type prog_name prog_args

– Flags are one or more valid flags

– Exp_type experiment name

– Prog_name executable name

– Prog_args any arguments to the executable

Choosing an Experiment Type

• If you have high user CPU time, you should run
usertime, pcsamp, *_hwc and ideal
experiments

• If you have high system CPU time, you should run
fpe if floating point exceptions are suspected

• High I/O time you should run ideal and then
examine counts of I/O routines

• High paging you should run ideal then:
– prof -feedback

– Use cord to rearrange procedures

Running Experiments on a MPI
Program

• Running experiments on MPI programs is a
little different

• You need to setup a script to run
experiments with them
– #!/Bin/sh

– Ssrun -usertime mpifft

• You then run the script by:
– mpirun -np 5 <script>

Experiments That We Will Run for
the Tutorial.

• usertime

• fpcsamp

• ideal

• dsc_hwc -- secondary data cache misses

• tlb_hwc -- TLB misses

usertime

• This experiment is already setup in
runmpifft in the v[1-3] directories

• To run the experiment use:
– mpirun -np 5 runmpifft

• This will give you 6 files in the directory:
mpifft.usertime.?????

• To look at the results use:
– prof mpifft.usertime.?????

usertime (Continued)

• Example output:
Cpu : r10000

Fpu : r10010

Clock : 195.0mhz

Number of cpus : 32

Index %samples self descendents total name

[1] 95.7% 0.00 17.82 594 _fork_child_handle

[2] 78.7% 0.00 14.67 489 slave_main

[3] 53.6% 0.72 9.27 333 slave_receive_data

%Samples is the total percentage of samples take in this function or its
descendants. Self, and descendants are the time spent in that function
and its descendants as determined by the number of samples in that
function * the sample interval. Total is the number of samples.

fpcsamp

• To run this experiment you need to edit the
runmpifft script and change the line:
– ssun -usertime mpifft to:

– ssrun -fpcsamp mpifft

• Once again this will give you 6 files in your
directory:
– mpifft.fpcsamp.?????

• To look at the results use:
– prof mpifft.fpcsamp.?????

fpcsamp (Continued)

• Example output:
Samples time CPU FPU clock n-cpu s-interval countsize

 30990 30.99s r10000 r10010 195.0mhz 32 1.0ms 2(bytes)

Each sample covers 4 bytes for every 1.0 ms (0.00% of 30.9900s)

--
-

Samples time(%) cum time(%) procedure (dso:file)

4089 4.09s(13.2) 4.09s(13.2) one_fft
(mpifft:/home/army/london/eckert/arl_tutorial/day1/v1/slave.C)

3669 3.67s(11.8) 7.76s(25.0) mpi_sgi_progress
(/usr/lib32/libmpi.So:/xlvll/array/array_3.0/work/mpi/lib/libmpi/libmpi
_n32_m4/adi/progress.C)

fpcsamp (Continued)

• Samples column shows the amount of samples
were taken when the process was executing the
function

• Time(%) covers the amount of time and percentage
of time spent in this function

• Cum time(%) covers the amount of time up to and
including this function and its percentage

• Procedure shoes where this function came from

ideal

• To run this experiment you need to edit the
runmpifft script and change the line to:

– ssrun -ideal mpifft

• This will leave 13 files in your directory

– 6 mpifft.ideal.?????

– spifft.pixie

– 6 lib*.pixn32 files for ex. libmpi.so.pixn32

• To view the results type:

– prof mpifft.ideal.?????

ideal (Continued)

• Example output:
2332123106: total number of cycles

 11.95961s: total execution time

2924993455: total number of instructions executed

 0.797:ratio of cycles / instruction

195: clock rate in mhz

 R10000: target processor modeled

Cycles(%) cum % secs instrns calls procedure(dso:file)

901180416(38.64) 38.64 4.62 1085714432 2048
mpifft.Pixie:/home/army/london/eckert/arl_tutorial/day1/v1/slave.C)

ideal (Continued)

• Cycles (%) reports the number and procedure

• Cum% column shows the cumulative percentage of calls

• Secs column shows the number of seconds spent in the
procedure

• Instrns column shows the number of instructions executed
for the procedure

• Calls column reports the number of calls to the procedure

• Procedure column shows you which function and where it is
coming from.

Secondary Data Cache Misses
(dsc_hwc)

• To run this experiment you need to change
the line in the runmpifft script to:
– ssrun -dsc_hwc mpifft

• This will leave 6 files in your directory:
– 6 mpifft.fdsc_hwc.?????

• To view the results type:
– prof mpifft.dsc_hwc.?????

Secondary Data Cache Misses
(dsc_hwc) (Continued)

• Example output:
Counter : sec cache D misses

Counter overflow value : 131

Total number of ovfls : 38925

Cpu : r10000

Fpu : r10010

Clock : 195.0 mhz

Number of cpus : 32

--
--

Overflows(%) cum overflows(%) procedure (dso:file)

11411(29.3) 11411(29.3) memcpy
(/usr/lib32/libc.So.1:/xlv21/patches/3108/work/irix/lib/libx/libc_n32_
m4/strings/bcopy.S)

Secondary Data Cache Misses
(dsc_hwc)

• Overflows(%) column shows the number of
overflows caused by the function and
percentage of misses in the whole program

• Cum overflows(%) column shows a
cumulative number and percentage of
overflows

• Procedure column shows the procedure and
where it is found.

Translation Lookaside Buffer
Misses (tlb_hwc)

• To run this experiment you need to change
the line in the runmpifft script to:
– ssrun -tlb_hwc mpifft

• This will leave 6 files in your directory:
– 6 mpifft.tlb_hwc.?????

• To look at the results use:
– prof mpifft.tlb_hwc.?????

Translation Lookaside Buffer
Misses (tlb_hwc)

• Example output:
Counter : TLB misses

Counter overflow value : 257

Total number of ovfls : 120

Cpu : r10000

Fpu : r10010

Clock : 195.0 mhz

Number of cpus : 32

--
--

Overflows(%) cum overflows(%) procedure (dso:file)

25(20.8) 25(20.8) mpi_sgi_barsync
(/usr/lib32/libmpi.So:/xlvll/array/array_3.0/work/mpi/lib/libmpi/libmpi
_n32_m4/sgimp/barsync.C)

SGI Optimization Tutorial

Day 2

More Info on Tools

• http://www.cs.utk.edu/~browne/perftools-review

• http://www.nhse.org/ptlib

Getting the new files

• You need to cd into ~/ARL_TUTORIAL/DAY1

• Then
cp ~london/ARL_TUTORIAL/DAY1/make* .

Outline

• nupshot tutorial

• vampir tutorial

• matrix multiply tutorial

Nupshot view

nupshot

• nupshot is distributed with the mpich
distribution.

• nupshot can read alog and picl-1 log
files.

• A good way to get a quick overview of how
your well the communication in your
program is doing.

Using nupshot

• The change to the makefile in using mpe is
in the link line you need to call -llmpi
before -lmpi

• MPE for the tutorial is located in:
– /home/army/london/ECKERT/nup_mpe/lib

• Next if you have csh/tcsh
– source ~london/NUP_SOURCE

Using nupshot (continued)

• This file has the following stuff adding to
your environment:

– setenv TCL_LIBRARY /ha/cta/unsupported/SPE/profiling/tcl7.3-tk3.6/lib

– setenv TK_LIBRARY /ha/cta/unsupported/SPE/profiling/tcl7.3-tk3.6/lib

– set path = ($path /ha/cta/unsupported/SPE/profiling/nupshot

• These will setup the correct TCL/TK
libraries and that nupshot is in your path.

• Then you need to set your display and use
xhost to authorize eckert to connect to your
display.

Using nupshot (continued)

• For example:
– setenv DISPLAY heat04.ha.md.us

– On heat04 type xhost +eckert

• If you don’t use csh/tcsh all the variables
need to be set up by hand and you can do it
this way:
– DISPLAY=heat04.ha.md.us

– export DISPLAY

Running the example

• To make the example go into the DAY1
directory and type:
– make clean

– make

• This will link in the mpe profiling library
and make the executables.

• To run the executables go into the v1, v2
and v3 directories and type:
– mpirun -np 5 mpifft

Running the Example (continued)

• If everything works out right, you will see a
line to stdout like the following:
– Writing logfile.

– Finished writing logfile.

• This will leave a mpifft.alog file in
your directory.

• To view it type nupshot and click on the
logfile button. And use the open button to
view the logfile.

Running the Example (continued)

• This will bring up a timeline window, you can also
get a mountain range view by clicking on Display,
then on configure and click on add and mountain
ranges.

• The mountain ranges view is a histogram of the
states the processors are in at any one time.

• If you click and hold in the timeline display on a
MPI call it will tell you the start/stop time and total
amount of time spent in that call.

Vampir Tutorial (Getting Started)

• Setup environment variables for the vampir
tracing tools.
– setenv PAL_ROOT /home/army/london/ECKERT/vampir-trace

• In your makefile you need to link in the
vampir library
– -L/home/army/london/ECKERT/vampir-trace/lib -lVT

• This needs to be linked in before mpi.

• Then run your executable like normal.

Vampir Tutorial Creating a
logfile

• To setup the tutorial for vampir go into the DAY1 directory
and do the following:

– rm make.def
– ln -s make_vampir.sgi make.def

– make

• Then run the executables using
– mpirun -np 5 mpifft

• If everything goes right you will see:
– Writing logfile mpifft.bpv

– Finished writing logfile.

Vampir Tutorial Viewing the
Logfile

• This will leave 1 file, mpifft.bpv in your
directory.

• We now need to setup our variables again.
– setenv PAL_ROOT /home/army/london/ECKERT/vampir

– setenv DISPLAY <your display>

– set path = ($path /home/army/london/ECKERT/vampir/bin)

• Then create a directory for VAMPIR
defaults
– mkdir ~/.VAMPIR_defaults

– cp /home/army/london/ECKERT/vampir/etc/VAMPIR2.cnf
~/VAMPIR_defaults/.

Using Vampir

• To start up Vampir use
– vampir &

From the “File” menu, select “Open Tracefile…”. A file selection box
will appear. Choose mpifft.bpv

We’ll start by viewing the timeline for the the entire run. From the
“Global Displays” menu, select “Global Timeline”. A window with
the timeline will pop up.

Zoom in on a section of the timeline:

Click and drag over a portion of the timeline with the left mouse
button. This part will be magnified. If you zoom in close enough you
will see the MPI calls.

Vampir Startup Screen

Vampir Timeline Display

Using Vampir viewing statistics for
selected portion of the timeline.

View process statistics for the selected portion of the timeline.

From the “Global Displays” menu, select “Global Activity Chart”.

A new window will open.

Press the right mouse button within this window.

Select “Use Timeline Portion”.

Scroll the timeline, using the scroll bar at the bottom of the timeline
window, and watch what happens in both displays.

Press the right mouse button in the “Global Activity Chart” and select
“Close”.

Vampir Global Activity Chat

Vampir, additional info on
messages

Obtain additional information on messages.

Click on the “Global Timeline” window with the right mouse button.

From the pop-up menu, select “Identify Message”.

Messages are drawn as lines between processes. Click on any
message with the left mouse button. A window with message
information should pop up.

Press the “Close” button when finished reading.

• To exit VAMPIR from the “File” menu select
“Exit”.

Identifying a message in Vampir

Identifying messages in Vampir

Matrix-Matrix Multiply Demo

• These exercises are to get you familiar with
some of the code optimizations that we
went over early today.

• All of these exercises are located in the
DAY2 directory.

Exercise 1

• This first exercise will use a simple matrix-
matrix inner product multiplication to
demonstrate various optimization
techniques.

Matrix-Matrix Multiplication -
Simple Optimization by Cache Reuse

Purpose: The exercise is intended to show how the reuse of data that has been
loaded into cache by some previous instruction can save time and thus increase
the performance of your code.

Information: Perform the matrix multiplication A=A+B*C using the code
segment below as a template and ordering the ijk loops in to the following
orders(ijk, jki, kij, and kji). In the file matmul.f, one ordering has been
provided for you (ijk), as well as high performance BLAS routine dgemm
which does double precision general matrix multiplication. dgemm and other
routines can be obtained from Netlib. The cariables in the matmul routine
(reproduced on the next page) are chosen for compatibility with the BLAS
routines and have the following meanings: the variables ii, jj,kk, reflect the sizes
of the matrix A (ii by jj), B(ii by kk) and C(kk by jj); the variables lda, ldb, and
ldc are the leading dimensions of each of those matrices and reflect the total size
of the allocated matrix, not just the part of the matrix used.

Example of the loop

subroutine ijk (A, ii, jj, lda, B, kk, ldb, C, ldc)

double precision A(lda, *), B(ldb,*),C(ldc,*)

integer=i,j,k

do i=1,ii

do j=1,jj

do k=1,kk

A(i,j) = A(i,j)+B(i,k)*C(k,j)

enddo

enddo

enddo

Instructions for the exercise

Instructions: For this exercise, use the files provided in the
directory matmul1-f. You will need to work on the file
matmul.f. If you need help, consult matmul.f.ANS, where
there is one possible solution.

(a)Compile the code: make matmul and run the code, making
note of the Mflops you get.

(b) Edit matmul.f and alter the orderings of the loops, make,
run and repeat for the various loop orderings. Make a note
of the Mflops so you can compare them at then end.

Exercise 1 (continued)

• Which loop ordering achieved the best
performance and why? (ijk, jki,kij, kji)

Explanations: To explain the reason for these timing and performance figures, the
multiplication operation needs to be examined more closely. The matrices are drawn
below, with the dimensions of rows and columns indicated. The ii indicates the size of
the dimension which is traveled when we do the i loop, the jj indicates the dimension
traveled when we do the j loop and the kk indicates the dimension traveled when we do
the k loop.

A CBA= + *

1 1 1 1

ii ii ii

jj jjjj kk

kk
The pairs of routines with the same innermost loop (e.g. jki and kji) should have similar
results. Let’s look at jki and kji again. These two routines achieve the best
performance, and have the i loop as the innermost loop. Looking at the diagram, this
corresponds to traveling down the columns of 2 (A and B) of the 3 matrices that are
used in the calculations. Since in Fortran, matrices are stored in memory column by
column, going down a column simply means using the next contiguous data item,
which usually will already be in the cache. Most of the data for the i loop should
already be in the cache for both the A and B matrices when it is needed.

Some improvements to the simple loops approach to matrix multiplication
which are implemented by dgemm include loop unrolling (some of the
innermost loops are expanded so that not so many branch instructions are
necessary), and blocking (data is used as much as possible while it is in
cache). These methods will be explored later in Exercise 2.

Exercise 2 Matrix-Matrix Multiplication
Optimization using Blocking and Unrolling of Loops

Purpose: This exercise is intended to show how to subdivide data into blocks and
unroll loops. Subdividing data into blocks helps them to fit into cache memory better.
Unrolling loops decreases the number of branch instructions. Both of these methods
sometimes increase performance. A final example shows how matrix multiplication
performance can be improved by combining methods of subdividing data into blocks,
unrolling loops, and using temporary variables and controlled access patterns.

Information: The matrix multiplication A = A + B * C can be executed using the
simple code segment below. This loop ordering kji should correspond to one of the
best access ordering the six possible simple i, j, k style loops.

subroutine kji (A, ii, jj, lda, B, kk, ldb, C, ldc)
double precision A(lda, *), B(ldb, *), C(ldc, *)
integer i, j, k
do k = 1, kk

do j = 1, jj
do i = 1, ii

A(i,j) = A(i,j) +B(i,k) * C(k,j)
enddo

enddo
enddo
return
enddo

However, this is not the best optimization technique. Performance can be improved
further by blocking and unrolling the loops. The first optimization will demonstrate the
effect of loop unrolling. In the instructions, you will be asked to add code to unroll the
j, k, and i loops by two, so that you have, for example, do j = 1, jj, 2, and add code to
compensate for all the loops that you are skipping, for example, A
(i,j) = A(i,j) + B(i,k) *C(k,j) + B(i,k+1) * C(k+1, j). Think of multiplying a 2x2
matrix to figure out the unrolling.

The second optimization will demonstrate the effect of blocking, so that, as much as
possible, the blocks that are being handled can be kept completely in cache memory.
Thus each loop is broken up into blocks (ib, beginning of an i block, ie, end of an i
block) and the variables travel from the beginning of the block to the end of the block
for each i,j,k. Use blocks of size 32 to start with, if you wish you can experiment with
the size of the block to obtain the optimal size.

The next logical step is to combine these two optimizations into a routine which is both
blocked and unrolled and you will be asked to do this.

The final example tries to extract the core of the BLAS dgemm matrix-multiply
routine. The blocking and unrolling are retained, but the additional trick here is to
optimize the innermost loop. Make sure that it only references items in columns and
that it does not reference anything that would not be in a column. To that end, B is
copied and transposed into the temp matrix T(k,i) = B(i,k). Then multiplying B(i,k)*C
(k,j) is equivalent to multiplying T(k,i)*C(k,j) (notice the k index occurs only in the
row). Also, we do not store the result in A(i,j)=A(i,j)+B(i,k)*C(k,j) but in a temporary
variable T1=T1+T(k,j)*C(k,j). The effect of this is the inner k-loop has no extraneous
references. After the inner loop has executed, A(i,j) is set to its correct value.

mydgemm:
do kb = 1, kk, blk

ke = min(kb+blk-1,kk)
do ib = 1, ii, blk

ie = min(ib+blk-1, ii)
do i = ib,ie

do k = kb, ke
T(k-kb+1, i-ib+1) = B(i,k)

enddo
enddo
do jb = 1, jj, blk

je = min(jb+blk-1, jj)
do j = jb, je, 2

do i = ib, ie, 2
T1 = 0.0d0
T2 = 0.0d0
T3 = 0.0d0
T4 = 0.0d0
do k = kb, ke

T1 = T1 + T (k-kb+1,i-ib+1)*C(k,j)
T2 = T2 + T(k-kb+1, i-ib+2)*C(k,j)
T3 = T3 + T(k-kb+1, i-ib+1)*C(k,j+1)
T4 = T4 +T(k-kb+1, i-ib+2)*C(k,j+1)

enddo
A(i,j) = A(i,j)+T1
A(i+1,j) = A(i+1, j)+T2
A(i,j+1) = A(i, j+1)+T3
A(i+1, j+1) = A(i+1, j+1) +T4

enddo
enddo

enddo
enddo

enddo

Instructions: For this exercise, use the files provided in the directory matmul2-f. You
will need to edit the file matmul.f. One possible solution has been provided in the file
matmul.f.ANS.

•Compile by typing make matmul and execute matmul, recording the Mflops values
returned for kji, dgemm and mydgemm. You will get some “0.000” values. Those
are from areas where you are expected to edit the code and are not doing anything
currently.

•Note: In order to speed up your execution, you can comment out each routine after
you have finished recording its execution rates. For example, you could comment out
the kji, dgemm and mydgemm routines now and you would not have to wait for them
to execute in future runs.

•Edit matmul.f and uncomment and correct the routine kjib which should be a blocked
version of kji (use blocks of size 32). Compile and execute the code, recording the
Mflops values.

•Edit matmul.f and uncomment and correct the routine kjiu which should be an
unrolled version of kji. Compile and execute the code, recording the Mflops values.

•Which optimizations achieved the best performance?

•Why was this performance achieved? (Review the information about dgemm and
mydgemm for the answer)

•Why is the performance of dgemm worse than that of mydgemm? (mydgemm
extracts the core of dgemm to make it somewhat simpler to understand. In doing so it
throws away the parts of dgemm which are generic and applicable to any size matrix.
Since mydgemm cannot handle arbitrary size matrices it is somewhat faster than
dgemm but less useful)..

