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PerformancePerformance

■ What is performance? What is performance? 
– LatencyLatency
– BandwidthBandwidth
– EfficiencyEfficiency
– ScalabilityScalability
– Execution timeExecution time

■ At what cost?At what cost?



Performance ExamplesPerformance Examples

■ Operation Weather Forecasting ModelOperation Weather Forecasting Model
– ScalabilityScalability

■ Database search engineDatabase search engine
– LatencyLatency

■ Image processing systemImage processing system
– ThroughputThroughput



What is Optimization?What is Optimization?

■ Finding Finding hot spotshot spots &  & bottlenecks bottlenecks 
(profiling)(profiling)
– Code in the program that uses a Code in the program that uses a 

disproportionaldisproportional amount of  amount of timetime
– Code in the program that uses system Code in the program that uses system 

resources resources inefficientlyinefficiently
■ Reducing Reducing wall clockwall clock time time
■ Reducing resource requirementsReducing resource requirements



Types of OptimizationTypes of Optimization

■ Hand-tuningHand-tuning
■ PreprocessorPreprocessor
■ CompilerCompiler
■ ParallelizationParallelization



Steps of OptimizationSteps of Optimization

■ Optimize compiler switches Optimize compiler switches 
■ Integrate librariesIntegrate libraries
■ ProfileProfile
■ Optimize blocks of code that dominate Optimize blocks of code that dominate 

execution timeexecution time
■ Always examine correctness at every Always examine correctness at every 

stage! stage! 



Performance StrategiesPerformance Strategies

■ Always use optimal or near optimal Always use optimal or near optimal 
algorithms.algorithms.
– Be careful of resource requirements and Be careful of resource requirements and 

problem sizes.problem sizes.
■ Maintain realistic and consistent input Maintain realistic and consistent input 

data sets/sizes during optimization.data sets/sizes during optimization.
■ Know when to stop. Know when to stop. 



The 80/20 RuleThe 80/20 Rule

■ Program spends 80 % time in 20 % of Program spends 80 % time in 20 % of 
its codeits code

■ Programmer spends 20 % effort to get Programmer spends 20 % effort to get 
80 % of the total speedup possible in 80 % of the total speedup possible in 
the code.the code.



How high is up?How high is up?

■ Profiling reveals percentages of time Profiling reveals percentages of time 
spent in CPU and I/O bound functions.spent in CPU and I/O bound functions.

■ Correlation with representative low-Correlation with representative low-
level, kernel and application level, kernel and application 
benchmarks.benchmarks.

■ Literature search.Literature search.
■ Peak speed of CPU means little in Peak speed of CPU means little in 

relation to most codes.relation to most codes.
■ Example: ISIS solver packageExample: ISIS solver package



Don’t Sweat the Small StuffDon’t Sweat the Small Stuff
■ Make the Common Case Fast (Hennessy)Make the Common Case Fast (Hennessy)

■ A 20% decrease of A 20% decrease of procedure3()procedure3()results in results in 
10% increase in performance.10% increase in performance.

■ A 20% decrease of A 20% decrease of main()main()results in 2.6% results in 2.6% 
increase in performanceincrease in performance

PROCEDURE TIME
main() 13%
procedure1() 17%
procedure2() 20%

procedure3() 50%



Considerations when Considerations when 
OptimizingOptimizing

■ Machine configuration, libraries and Machine configuration, libraries and 
toolstools

■ Hardware and software overheadsHardware and software overheads
■ Alternate algorithms Alternate algorithms 
■ CPU/Resource requirementsCPU/Resource requirements
■ Amdahl’s LawAmdahl’s Law
■ Communication pattern, load balance Communication pattern, load balance 

and granularityand granularity



Origin 2000 ArchitectureOrigin 2000 Architecture

■ Up to 64 nodesUp to 64 nodes
■ Each node has 2 R10000’s running at Each node has 2 R10000’s running at 

195 Mhz, 1 memory per node195 Mhz, 1 memory per node
■ Each R10000 has on chip 32K Each R10000 has on chip 32K 

instruction, 32K data caches (32/64 instruction, 32K data caches (32/64 
Byte line)Byte line)

■ EachEach R10000 has a 4MB off-chip  R10000 has a 4MB off-chip unifiedunified  
cache (128 Byte line)cache (128 Byte line)

■ 64(58) entry TLB (each holds 2 pages)64(58) entry TLB (each holds 2 pages)



Origin 2000 ArchitectureOrigin 2000 Architecture

■ Each node is connected with a Each node is connected with a 
624MB/sec 624MB/sec CrayLinkCrayLink

■ Shared memory support in hardwareShared memory support in hardware
■ Variable page size, migration (Variable page size, migration (dplace)dplace)
■ Provides explicit (programmer) or Provides explicit (programmer) or 

implicit (compiler) parallelismimplicit (compiler) parallelism
■ Communication with MPI or shared-Communication with MPI or shared-

memory.memory.



R10000 ArchitectureR10000 Architecture

■ 5 independent, pipelined, execution 5 independent, pipelined, execution 
unitsunits

■ 1 non-blocking load/store unit1 non-blocking load/store unit
■ 2 asymmetric integer units (both add, 2 asymmetric integer units (both add, 

sub, log)sub, log)
■ 2 asymmetric floating point units (390 2 asymmetric floating point units (390 

MFlops)MFlops)
■ Conditional  load/store instructionsConditional  load/store instructions



R10000 ArchitectureR10000 Architecture

■ Superscalar with 5 pipelinesSuperscalar with 5 pipelines
■ Each pipeline has 7 stagesEach pipeline has 7 stages
■ Dynamic, out-of-order, speculative Dynamic, out-of-order, speculative 

executionexecution
■ 32 logical registers32 logical registers
■ 512 Entry Branch history table512 Entry Branch history table
■ Hardware performance countersHardware performance counters



Cache ArchitectureCache Architecture

■ Small high-speed memories with block Small high-speed memories with block 
accessaccess

■ Divided into smaller units of transfer Divided into smaller units of transfer 
called lines called lines 

■ Address indicatesAddress indicates
– Page numberPage number
– Cache lineCache line
– Byte offsetByte offset



Caches exploit LocalityCaches exploit Locality

Spatial - Spatial - If location X is being accessed, If location X is being accessed, 
it is likely that a location it is likely that a location nearnear  X will be   X will be 
accessed accessed soon.soon.

TemporalTemporal - If location X is being  - If location X is being 
accessed, it is likely that X will be accessed, it is likely that X will be 
accessed again accessed again soon.soon.



Cache BenchmarkCache Benchmark
http://www.cs.utk.edu/~mucci/cachebenchhttp://www.cs.utk.edu/~mucci/cachebench

do i = 1,max_lengthdo i = 1,max_length

    start_timestart_time

    do j = 1,max_iterationsdo j = 1,max_iterations

        do k = 1,ido k = 1,i

            A(k) = iA(k) = i

        enddoenddo

    enddoenddo

    stop_time_and_printstop_time_and_print

enddoenddo



Cache PerformanceCache Performance



Cache MappingCache Mapping

■ Two major types of mappingTwo major types of mapping
– Direct MappedDirect Mapped

Each memory address resides in only one Each memory address resides in only one 
cache line. (constant hit time)cache line. (constant hit time)

– N-way Set AssociativeN-way Set Associative
Each memory address resides in one of N Each memory address resides in one of N 
cache lines. (variable hit time)cache lines. (variable hit time)

– Origin is 2-way set associative, 2-way interleavedOrigin is 2-way set associative, 2-way interleaved



2 way Set Associative Cache2 way Set Associative Cache

distinct lines = size / line size * associativitydistinct lines = size / line size * associativity

Every datum can live in any classEvery datum can live in any class
but in only 1 line (computed from its address)but in only 1 line (computed from its address)

Which class? Least Recently UsedWhich class? Least Recently Used

Line0
Class0

Line1
Class0

Line2
Class0

Line3
Class0

Line0
Class1

Line1
Class1

Line2
Class1

Line3
Class1  



What is a TLB?What is a TLB?

■ Fully associative cache of virtual to Fully associative cache of virtual to 
physical address mappings. Used if data physical address mappings. Used if data 
not in cache.not in cache.

■ Number is limited on R10K, by default:Number is limited on R10K, by default:
16KB/pg * 2pgs/TLB * 58 TLBs = 2MB  16KB/pg * 2pgs/TLB * 58 TLBs = 2MB  

■ Processing with more than 2MB of data Processing with more than 2MB of data 
results in TLB misses.results in TLB misses.



O2K Memory HierarchyO2K Memory Hierarchy

RegistersRegisters
Level 1 CachesLevel 1 Caches
Level 2 CacheLevel 2 Cache

Memory (NUMA)Memory (NUMA)
DiskDisk

SizeSpeed



Origin 2000 Access TimesOrigin 2000 Access Times

■ Register: 1 cycleRegister: 1 cycle
■ L1 Cache Hit: 2-3 cyclesL1 Cache Hit: 2-3 cycles
■ L1 Cache Miss: 7-13 cyclesL1 Cache Miss: 7-13 cycles
■ L2 Cache Miss: ~60-200 cyclesL2 Cache Miss: ~60-200 cycles
■ TLB Miss: > 60 cyclesTLB Miss: > 60 cycles



Performance MetricsPerformance Metrics

■ Wall ClockWall Clock time - Time from start to  time - Time from start to 
finish of our programfinish of our program

■ MFLOPS - Millions of floating point MFLOPS - Millions of floating point 
operations per secondoperations per second

■ MIPS - Millions of instructions per MIPS - Millions of instructions per 
secondsecond

■ Possibly ignore set-up costPossibly ignore set-up cost



What about MFLOPS?What about MFLOPS?

■ Poor measures of comparison becausePoor measures of comparison because
– They are dependent on the definition, They are dependent on the definition, 

instruction set and the compilerinstruction set and the compiler
■ Ok measures of numerical Ok measures of numerical kernelkernel  

performance for a single CPUperformance for a single CPU

EXECUTION TIMEEXECUTION TIME  



What do we use for evaluationWhat do we use for evaluation

■ For purposes of optimization, we are For purposes of optimization, we are 
interested in:interested in:
– Execution time of our code over a range of Execution time of our code over a range of 

data setsdata sets
– MFLOPS of our kernel code vs. peak in MFLOPS of our kernel code vs. peak in 

order to determine order to determine EFFICIENCYEFFICIENCY
– Hardware resources dominating our Hardware resources dominating our 

execution timeexecution time



Performance MetricsPerformance Metrics

For the purposes of comparing your For the purposes of comparing your 
codes performance among different codes performance among different 
architectures architectures base your comparison base your comparison 
on time.on time.

......UnlessUnless you are completely aware of all  you are completely aware of all 
the issues in performance analysis the issues in performance analysis 
including architecture, instruction sets, including architecture, instruction sets, 
compiler technology etc...compiler technology etc...



FallaciesFallacies

– MIPS is an accurate measure for comparing MIPS is an accurate measure for comparing 
performance among computersperformance among computers. . 

– MFLOPS is a consistent and useful measure MFLOPS is a consistent and useful measure 
of performance.of performance.

– Synthetic benchmarks predict performance Synthetic benchmarks predict performance 
for real programs.for real programs.

– Peak performance tracks observed Peak performance tracks observed 
performance.performance.

(Hennessey and Patterson)(Hennessey and Patterson)



Basis for Performance AnalysisBasis for Performance Analysis

■ Our evaluation will be based upon:Our evaluation will be based upon:
– Performance of a single machine on a Performance of a single machine on a 
– Single (Single (optimaloptimal) algorithm using) algorithm using
– Execution timeExecution time

■ Optimizations are portableOptimizations are portable



Asymptotic AnalysisAsymptotic Analysis

■ Algorithm X requires O(N log N) time on Algorithm X requires O(N log N) time on 
O(N processors)O(N processors)

■ This ignores constants and lower order This ignores constants and lower order 
terms!terms!

10N > N log N for N < 102410N > N log N for N < 1024
10N*N < 1000N log N for N < 99610N*N < 1000N log N for N < 996



Amdahl’s LawAmdahl’s Law

■ The performance improvement is The performance improvement is 
limited by the fraction of time the faster limited by the fraction of time the faster 
mode can be used.mode can be used.

Speedup = Perf. enhanced / Perf. standardSpeedup = Perf. enhanced / Perf. standard
Speedup = Time sequential / Time parallelSpeedup = Time sequential / Time parallel

Time parallel = TTime parallel = Tser ser + T+ Tparpar



Amdahl’s LawAmdahl’s Law

■ Be careful when using speedup as a Be careful when using speedup as a 
metric. Ideally, use it only when the metric. Ideally, use it only when the 
code is modified. Be sure to completely code is modified. Be sure to completely 
analyze and document your analyze and document your 
environment.environment.

■ Problem: This ignores the overhead of Problem: This ignores the overhead of 
parallel reformulation.parallel reformulation.



Amdahl’s LawAmdahl’s Law

■ Problem? This ignores scaling of the Problem? This ignores scaling of the 
problem size with number of nodes.problem size with number of nodes.

■ Ok, what about Ok, what about Scaled Speedup?Scaled Speedup?
– Results will vary given the nature of the Results will vary given the nature of the 

algorithmalgorithm
– Requires O() analysis of communication Requires O() analysis of communication 

and run-time operations.and run-time operations.



EfficiencyEfficiency

■ A measure of code quality?A measure of code quality?

E = Time sequential / ( P * Time parallel)E = Time sequential / ( P * Time parallel)
S = P * ES = P * E

■ Sequential time is not a good reference Sequential time is not a good reference 
point. For Origin, 4 is good.point. For Origin, 4 is good.



Issues in PerformanceIssues in Performance

■ Brute speed (MHz and bus width)Brute speed (MHz and bus width)
■ Cycles per operation (startup + Cycles per operation (startup + 

pipelined)pipelined)
■ Number of functional units on chipNumber of functional units on chip
■ Access to Cache, RAM and storage Access to Cache, RAM and storage 

(local & distributed)(local & distributed)



Issues in PerformanceIssues in Performance

■ Cache utilizationCache utilization
■ Register allocationRegister allocation
■ Loop nest optimizationLoop nest optimization
■ Instruction scheduling and pipeliningInstruction scheduling and pipelining
■ Compiler TechnologyCompiler Technology
■ Programming Model (Shared Memory, Programming Model (Shared Memory, 

Message Passing)Message Passing)



Problem Size and PrecisionProblem Size and Precision

■ NecessityNecessity
■ Density and Locality Density and Locality 
■ Memory, Communication and Disk I/OMemory, Communication and Disk I/O
■ Numerical representationNumerical representation

– INTEGER, REAL, REAL*8, REAL*16INTEGER, REAL, REAL*8, REAL*16



Parallel Performance IssuesParallel Performance Issues

■ Single node performanceSingle node performance
■ Compiler ParallelizationCompiler Parallelization
■ I/O and CommunicationI/O and Communication
■ Mapping Problem - Load BalancingMapping Problem - Load Balancing
■ Message Passing or Data Parallel Message Passing or Data Parallel 

OptimizationsOptimizations



Understanding CompilersUnderstanding Compilers

■ Why?Why?
– Compilers emphasize correctness rather Compilers emphasize correctness rather 

than performancethan performance
– On well recognized constructs, compilers On well recognized constructs, compilers 

will will usuallyusually do better than the developer do better than the developer
– The idea? To express an algorithm The idea? To express an algorithm clearlyclearly  

to the compiler allows the most to the compiler allows the most 
optimization.optimization.



Compiler TechnologyCompiler Technology

■ Ideally, compiler should do most of the Ideally, compiler should do most of the 
workwork

■ Rarely happens in practice for Rarely happens in practice for realreal  
applicationsapplications

■ Here we will cover some of the options Here we will cover some of the options 
for the MIPSpro 7.x compiler suitefor the MIPSpro 7.x compiler suite



Recommended FlagsRecommended Flags
-n32 -mips4 -Ofast=ip27 -LNO:cache_size2=4096 -n32 -mips4 -Ofast=ip27 -LNO:cache_size2=4096 

-OPT:IEEE_arithmetic=3-OPT:IEEE_arithmetic=3

■ Use at link and compile timeUse at link and compile time
■ We don’t need more than 2GB of dataWe don’t need more than 2GB of data
■ Turn on the highest level of Turn on the highest level of 

optimization for the Originoptimization for the Origin
■ Tell compiler we have 4MB of L2 cacheTell compiler we have 4MB of L2 cache
■ Favor speed over precise numerical Favor speed over precise numerical 

roundingrounding



Accuracy ConsiderationsAccuracy Considerations

■ Try moving forwardTry moving forward
-O2 -IPA -SWP:=ON -O2 -IPA -SWP:=ON 

-LNO -TENV:X=0-5-LNO -TENV:X=0-5

■ Try backing offTry backing off
-Ofast=ip27-Ofast=ip27

-OPT:roundoff=0-3-OPT:roundoff=0-3

-OPT:IEEE_arithmetic=1-3-OPT:IEEE_arithmetic=1-3



Compiler flagsCompiler flags

■ Many optimizations can be controlled Many optimizations can be controlled 
separately from -Ofastseparately from -Ofast

■ It’s better to selectively disable It’s better to selectively disable 
optimizations rather than reduce the optimizations rather than reduce the 
level of global optimizationlevel of global optimization

■ -OPT:IEEE_arithmetic=n controls -OPT:IEEE_arithmetic=n controls 
rounding and overflowrounding and overflow

■ -OPT:roundoff=n controls roundoff-OPT:roundoff=n controls roundoff



Roundoff exampleRoundoff example

■ Floating point arithmetic is not Floating point arithmetic is not 
associative. Which order is correct?associative. Which order is correct?

■ Think about the following example:Think about the following example:

sum = 0.0sum = 0.0

do i = 1, ndo i = 1, n

    sum = sum + a(i)sum = sum + a(i)

enddoenddo

sum1 = 0.0

sum2 = 0.0

do i = 1, n-1, 2

  sum1 = sum1 + a(i)

  sum2 = sum2 + a(i+1)

enddo

sum = sum1 + sum2



ExceptionsExceptions

■ Numerical computations resulting in Numerical computations resulting in 
undefined resultsundefined results

■ Exception is generated by the processor Exception is generated by the processor 
(with control)(with control)

■ Handled in software by the Operating Handled in software by the Operating 
System.System.



Exception profilingException profiling

■ If there are few exceptions, enable a If there are few exceptions, enable a 
faster level of exception handling at faster level of exception handling at 
compile time with compile time with -TENV:X=0-5-TENV:X=0-5

■ Defaults are Defaults are 11 at  at -O0-O0 through  through -O2-O2, , 22  
at at -O3-O3 and higher and higher

■ Else if there are exceptions, link with Else if there are exceptions, link with 

-lfpe-lfpe  
setenv TRAP_FPE “UNDERFL=ZERO”setenv TRAP_FPE “UNDERFL=ZERO”



AliasingAliasing

■ The compiler needs to assume that any The compiler needs to assume that any 
2 pointers can point to the same region 2 pointers can point to the same region 
of memoryof memory

■ This removes many optimization This removes many optimization 
opportunitiesopportunities

■ -Ofast-Ofast implies  implies -OPT:alias=typed-OPT:alias=typed
■ Only pointers of the same type can Only pointers of the same type can 

point to the same region of memory.point to the same region of memory.



Advanced AliasingAdvanced Aliasing

■ Programmer knows much more about Programmer knows much more about 
pointer usage than compiler.pointer usage than compiler.

■ -OPT:alias=restrict-OPT:alias=restrict - all pointer  - all pointer 
variables are assumed to point to non-variables are assumed to point to non-
overlapping regions of memory.overlapping regions of memory.

■ -OPT:alias=disjoint-OPT:alias=disjoint - all pointer  - all pointer 
expressions are assumed to point to expressions are assumed to point to 
non-overlapping regions of memory.non-overlapping regions of memory.

■ Very important for C programs.Very important for C programs.



Advanced AliasingAdvanced Aliasing

■ Most advanced form is the Most advanced form is the ivdep ivdep 
compilercompiler  directive.directive.

■ Used on inner loops with software Used on inner loops with software 
pipelining. pipelining. 

■ Can move a loop to be completely Can move a loop to be completely 
load/store bound.load/store bound.

■ Please refer to the Please refer to the Origin 2000 Origin 2000 
Optimization and Tuning GuideOptimization and Tuning Guide..



Software PipeliningSoftware Pipelining

■ Important contribution of Important contribution of -O3-O3
■ Different iterations of a loop are Different iterations of a loop are 

overlapped in time in an attempt to overlapped in time in an attempt to 
keep all the functional units busy.keep all the functional units busy.

■ Data needs to be in cache for this to Data needs to be in cache for this to 
work well.work well.

■ Can be enabled with Can be enabled with -SWP:=ON-SWP:=ON



Interprocedural AnalysisInterprocedural Analysis

■ When analysis is confined to a single When analysis is confined to a single 
procedure, the optimizer is forced to procedure, the optimizer is forced to 
make worst case assumptions about the make worst case assumptions about the 
possible effects of subroutines.possible effects of subroutines.

■ IPA analyzes the entire program at once IPA analyzes the entire program at once 
and feeds that information into the and feeds that information into the 
other phases.other phases.



IPA featuresIPA features

■ Inlining across source filesInlining across source files
■ Common block paddingCommon block padding
■ Constant propagationConstant propagation
■ Dead function/variable eliminationDead function/variable elimination
■ Library reference optimizationsLibrary reference optimizations
■ Enabled with Enabled with -IPA-IPA



InliningInlining

■ Replaces a subroutine call with the Replaces a subroutine call with the 
function itself.function itself.

■ Useful in loops that have a large Useful in loops that have a large 
iteration count and functions that don’t iteration count and functions that don’t 
do a lot of work.do a lot of work.

■ Allows other optimizations.Allows other optimizations.
■ Most compilers will do inlining but the Most compilers will do inlining but the 

decision process is conservative.decision process is conservative.



Manual InliningManual Inlining

-INLINE:file=<-INLINE:file=<filenamefilename>>

-INLINE:must=<-INLINE:must=<namename>[,>[,name2name2,,name3name3..]..]

-INLINE:all-INLINE:all

■ Exposes internals of the call to the Exposes internals of the call to the 
optimizeroptimizer

■ Eliminates overhead of the callEliminates overhead of the call
■ Expands codeExpands code



Loop Nest OptimizerLoop Nest Optimizer

■ Optimizes the use of the memory Optimizes the use of the memory 
heirarchyheirarchy

■ Works on relatively small sections of Works on relatively small sections of 
codecode

■ Enabled with Enabled with -LNO-LNO
■ Visualize the transformations with Visualize the transformations with 

-FLIST:=on-FLIST:=on

-CLIST:=on-CLIST:=on



LNO functionalityLNO functionality

■ Cache blockingCache blocking
■ Merging of data used togetherMerging of data used together
■ Loop fusionLoop fusion
■ Loop unrollingLoop unrolling
■ Loop interchangeLoop interchange
■ Loop fissionLoop fission
■ PrefetchingPrefetching



Optimized Arithmetic LibrariesOptimized Arithmetic Libraries

■ Advantages:Advantages:
– Subroutines are quick to code and Subroutines are quick to code and 

understand.understand.
– Routines provide Routines provide portability.portability.
– Routines perform well.Routines perform well.
– Comprehensive set of routines.Comprehensive set of routines.

■ DisadvantagesDisadvantages
– Can lead to vertical code structureCan lead to vertical code structure
– May mask memory performance problemsMay mask memory performance problems



Numerical LibrariesNumerical Libraries

■ libfastm libfastm 
– Link with Link with -r10000-r10000 and  and -lfastm-lfastm

– Link before Link before -lm-lm

■ CHALLENGEcomplib and SCSLCHALLENGEcomplib and SCSL
– Sequential and parallel versionsSequential and parallel versions
– FFTs, convolutions, BLAS, LINPACK, FFTs, convolutions, BLAS, LINPACK, 

EISPACK, LAPACK and sparse solversEISPACK, LAPACK and sparse solvers



CHALLENGEcomplib and SCSLCHALLENGEcomplib and SCSL

■ SerialSerial
-lcomplib.sgimath-lcomplib.sgimath or or
-lscs-lscs

■ ParallelParallel
-mp -lcomplib.sgimath_mp-mp -lcomplib.sgimath_mp or or
-lscs_mp-lscs_mp



LAPACKLAPACK

■ F77 routines for solvingF77 routines for solving
– systems of simultaneous linear equations systems of simultaneous linear equations 

and eigenvalue problemsand eigenvalue problems
– matrix factorizations (LU, Cholesky, QR, matrix factorizations (LU, Cholesky, QR, 

SVD, Schur, generalized Schur)SVD, Schur, generalized Schur)
– Related computations such as reordering Related computations such as reordering 

and conditioning.and conditioning.
– Built on the level 1, 2 3 BLAS Single, Built on the level 1, 2 3 BLAS Single, 

Double, Complex, Double ComplexDouble, Complex, Double Complex
■ http://www.netlib.org/lapack/index.htmlhttp://www.netlib.org/lapack/index.html



ScaLAPACKScaLAPACK

■ Parallelized LAPACK routinesParallelized LAPACK routines
■ Based upon LAPACK and BLASBased upon LAPACK and BLAS
■ Can be used with vendor librariesCan be used with vendor libraries
■ Available inAvailable in
/home/army/susan/ECKERT/lib/home/army/susan/ECKERT/lib



PETScPETSc

■ Generalized sparse solver package for Generalized sparse solver package for 
solution of PDEs.solution of PDEs.

■ Multiple preconditioners and explicit and Multiple preconditioners and explicit and 
implicit methods.implicit methods.

■ Available in Available in 
/home/army/susan/ECKERT/petsc-2.0.21/home/army/susan/ECKERT/petsc-2.0.21

http://www.mcs.anl.gov/petschttp://www.mcs.anl.gov/petsc



O2K Performance ToolsO2K Performance Tools

■ TimersTimers
■ Hardware CountersHardware Counters
■ ProfilersProfilers

– perfexperfex
– SpeedShopSpeedShop
– profprof
– dprofdprof
– cvdcvd



External TimersExternal Timers

■ time <command> time <command> returns 3 kinds.returns 3 kinds.
– Real time: Time from start to finishReal time: Time from start to finish
– User: CPU time spent executing your codeUser: CPU time spent executing your code
– System:  CPU time spent executing system System:  CPU time spent executing system 

calls calls 

■ Use Use timextimex on the SGI. on the SGI.
■ Warning! The definition of CPU time is Warning! The definition of CPU time is 

different on different machines.  different on different machines.  



External TimersExternal Timers

■ Sample output for csh users:Sample output for csh users:
              1      2      3       4    5        6      71      2      3       4    5        6      7

1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w1.150u 0.020s 0:01.76 66.4 15+3981k 24+10io 0pf+0w

1) User (ksh)1) User (ksh)
2) System (ksh)2) System (ksh)
3) Real (ksh)3) Real (ksh)
4) Percent of time spent on behalf of this process, not including 4) Percent of time spent on behalf of this process, not including 

waiting.waiting.
5) 15K shared, 3981K unshared5) 15K shared, 3981K unshared
6) 24 input, 10 output operations6) 24 input, 10 output operations
7) No page faults, no swaps.7) No page faults, no swaps.



Internal TimersInternal Timers

■ gettimeofday(),gettimeofday(), part of the C  part of the C 
library obtains seconds and library obtains seconds and 
microseconds since Jan 1, 1970.microseconds since Jan 1, 1970.

■ Resolution is hardware dependent, few Resolution is hardware dependent, few 
microseconds for SP2, T3E and SGIs.microseconds for SP2, T3E and SGIs.

■ Latency is not the same as resolution.Latency is not the same as resolution.
– Many calls to this function will affect your Many calls to this function will affect your 

wall clock time.wall clock time.



Internal TimersInternal Timers

■ clock_gettime()clock_gettime()

■ MPI_WtimeMPI_Wtime() returns elapsed wall () returns elapsed wall 
clock time in seconds as a double.clock time in seconds as a double.

  Fortran
integer ierr

double start

call MPI_INIT(ierr);

start = MPI_WTIME();

call MPI_FINALIZE(ierr)



Hardware Performance Hardware Performance 
CountersCounters

■ 2 32-bit registers that do the counting2 32-bit registers that do the counting
■ 32 different events (30 distinct, 14  32 different events (30 distinct, 14  

each, 1 shared)each, 1 shared)
■ OS accumulates counts into 64-bit OS accumulates counts into 64-bit 

quantitiesquantities
■ Both user and kernel modes can be Both user and kernel modes can be 

measuredmeasured
■ Explicit counting or overflowsExplicit counting or overflows



Some Hardware Counter Some Hardware Counter 
EventsEvents

■ Cycles, InstructionsCycles, Instructions
■ Loads, Stores, MissesLoads, Stores, Misses
■ Exceptions, MispredictionsExceptions, Mispredictions
■ CoherencyCoherency
■ Issued/GraduatedIssued/Graduated
■ ConditionalsConditionals



Hardware Performance Hardware Performance 
Counter AccessCounter Access

■ At the source level with raw counter API At the source level with raw counter API 
or perfex API.or perfex API.

■ At the application level with At the application level with perfexperfex
■ At the function level with SpeedShop At the function level with SpeedShop 

and and profprof..
■ List all the events with List all the events with perfex -hperfex -h



Origin Counter APIOrigin Counter API

■ Very simple, easy to use.Very simple, easy to use.
– start_counter()start_counter()

– stop_counter()stop_counter()

– read_counters()read_counters()

– print_counters()print_counters()

■ Information available with Information available with 
man start_countersman start_counters



Perfex usagePerfex usage

■ Used to gather statistics about the Used to gather statistics about the 
entire run of the program.entire run of the program.

■ From the command line:From the command line:
perfex [perfex [optionsoptions] command [] command [argsargs]]
■ At compile time, perfex library calls can At compile time, perfex library calls can 

start or stop collection.start or stop collection.
■ Link with Link with -lperfex-lperfex

■ man libperfexman libperfex



Perfex featuresPerfex features

■ Explicit counts (FP and Total)Explicit counts (FP and Total)
perfex -e 15 -e 21 <exe>perfex -e 15 -e 21 <exe>
■ Multiplex over all countsMultiplex over all counts
perfex -a <exe>perfex -a <exe>
■ Analytic output (for all)Analytic output (for all)
perfex -a -y <exe>perfex -a -y <exe>
■ Exceptions (for Cycles & L1DC misses)Exceptions (for Cycles & L1DC misses)
perfex -e 1 -e 25 -x <exe>perfex -e 1 -e 25 -x <exe>



Speedshop Speedshop 

■ Find out exactly where program is Find out exactly where program is 
spending it’s timespending it’s time
– proceduresprocedures
– lineslines

■ Uses 3 methodsUses 3 methods
– SamplingSampling
– CountingCounting
– TracingTracing



Speedshop ComponentsSpeedshop Components

■ 4 parts4 parts
– ssrunssrun performs experiments and collects  performs experiments and collects 

datadata
– ssusagessusage reports machine resources reports machine resources

– profprof processes the data and prepares  processes the data and prepares 
reportsreports

– SpeedShop allows caliper pointsSpeedShop allows caliper points
■ See man pagesSee man pages



Speedshop UsageSpeedshop Usage

ssrun [options] <ssrun [options] <exeexe>>

■ output is placed in output is placed in ././
command.experiment.pidcommand.experiment.pid

■ Viewed withViewed with
prof [options] <prof [options] <command.experiment.pidcommand.experiment.pid>>



Speedshop SamplingSpeedshop Sampling

■ Basd uponBasd upon
– interval timers interval timers 
– instructionsinstructions
– cyclescycles
– i/d/s cache missesi/d/s cache misses
– TLB faultsTLB faults
– FP instructionsFP instructions
– any hardware any hardware 

countercounter

-usertime (30ms)
-pcsamp   (10ms)
-gi_hwc
-cy_hwc
-ic_hwc
-isc_hwc
-dc_hwc
-dsc_hwc
-tlb_hwc
-gfp_hwc
-prof_hwc

ssrun Option



SpeedShop SamplingSpeedShop Sampling

■ All procedures called by the code, many All procedures called by the code, many 
will be foreign to the programmer.will be foreign to the programmer.

■ Statistics are created by sampling and Statistics are created by sampling and 
then looking up the PC and correlating then looking up the PC and correlating 
it with the address and symbol table it with the address and symbol table 
information.information.

■ Phase problems may cause erroneous Phase problems may cause erroneous 
results and reporting.results and reporting.



Speedshop CountingSpeedshop Counting

■ Based upon basic block profilingBased upon basic block profiling
■ Basic block is a section of code with one Basic block is a section of code with one 

entry and one exitentry and one exit
■ Executable is instrumented with Executable is instrumented with pixiepixie

■ pixiepixie adds a counter to every basic  adds a counter to every basic 
blockblock



Ideal ExperimentIdeal Experiment

■ ssrun -idealssrun -ideal
■ Calculates ideal timeCalculates ideal time

– no cache/TLB missesno cache/TLB misses
– minimum latencies for all operationsminimum latencies for all operations

■ Exact operation count with Exact operation count with -op-op
– floating point floating point operations (MADD is 2)operations (MADD is 2)
– integer operationsinteger operations



Prof UsageProf Usage

■ Normally just Normally just prof <prof <output fileoutput file>>

■ --heavyheavy lists offending line numbers lists offending line numbers
■ --sourcesource lists source code and  lists source code and 

disassembled machine code with disassembled machine code with 
specific instructions highlighted      specific instructions highlighted      



ideal Experiment Exampleideal Experiment Example

  Prof run at: Fri Jan 30 01:59:32 1998Prof run at: Fri Jan 30 01:59:32 1998
  Command line: prof nn0.ideal.21088Command line: prof nn0.ideal.21088
  ----------------------------------------------------------------------------------------------------------------
  3954782081: Total number of cycles3954782081: Total number of cycles
    20.28093s: Total execution time20.28093s: Total execution time
  2730104514: Total number of instructions executed2730104514: Total number of instructions executed
            1.449: Ratio of cycles / instruction1.449: Ratio of cycles / instruction
                            195: Clock rate in MHz195: Clock rate in MHz

        R10000: Target processor modeledR10000: Target processor modeled
------------------------------------------------------------------------------------------------------------------
..
..
..
------------------------------------------------------------------------------------------------------------------
                cycles(%)  cum %     secs    instrns calls procedure(dso:file)cycles(%)  cum %     secs    instrns calls procedure(dso:file)
3951360680(99.91)  99.91    20.26 2726084981     1 main(nn0.pixie:nn0.c)3951360680(99.91)  99.91    20.26 2726084981     1 main(nn0.pixie:nn0.c)
1617034( 0.04)     99.95     0.01    1850963  5001 doprnt1617034( 0.04)     99.95     0.01    1850963  5001 doprnt



pcsamp Experiment Examplepcsamp Experiment Example
------------------------------------------------------------------------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:06:07 1998Profile listing generated Fri Jan 30 02:06:07 1998
        with:       prof nn0.pcsamp.21081with:       prof nn0.pcsamp.21081
------------------------------------------------------------------------------------------------------------------------------------
samples   time    CPU    FPU   Clock   N-cpu  S-interval Countsizesamples   time    CPU    FPU   Clock   N-cpu  S-interval Countsize
      1270    13s R10000 R10010 195.0MHz   1     10.0ms     2(bytes)1270    13s R10000 R10010 195.0MHz   1     10.0ms     2(bytes)
Each sample covers 4 bytes for every 10.0ms ( 0.08% of 12.7000s)Each sample covers 4 bytes for every 10.0ms ( 0.08% of 12.7000s)
------------------------------------------------------------------------------------------------------------------------------------
samples   time(%)      cum time(%)      procedure (dso:file)samples   time(%)      cum time(%)      procedure (dso:file)
      1268    13s( 99.8)   13s( 99.8)           main (nn0:nn0.c)1268    13s( 99.8)   13s( 99.8)           main (nn0:nn0.c)
            1  0.01s(  0.1)   13s( 99.9)        _doprnt 1  0.01s(  0.1)   13s( 99.9)        _doprnt 



usertime Experiment Exampleusertime Experiment Example
--------------------------------------------------------------------------------------------------------------------------------
Profile listing generated Fri Jan 30 02:11:45 1998Profile listing generated Fri Jan 30 02:11:45 1998
        with:       prof nn0.usertime.21077with:       prof nn0.usertime.21077
--------------------------------------------------------------------------------------------------------------------------------
                Total Time (secs)     : 3.81Total Time (secs)     : 3.81
                Total Samples         : 127Total Samples         : 127
                Stack backtrace failed: 0Stack backtrace failed: 0
                Sample interval (ms)  : 30Sample interval (ms)  : 30
                CPU                   : R10000CPU                   : R10000
                FPU                   : R10010FPU                   : R10010
                Clock                 : 195.0MHzClock                 : 195.0MHz
                Number of CPUs        : 1Number of CPUs        : 1
--------------------------------------------------------------------------------------------------------------------------------
index  %Samples  self    descendents  total        nameindex  %Samples  self    descendents  total        name
(1)    100.0%    3.78        0.03     127          main(1)    100.0%    3.78        0.03     127          main
(2)      0.8%    0.00        0.03       1          _gettimeofday(2)      0.8%    0.00        0.03       1          _gettimeofday

(3 )      0.8%    0.03        0.00       1          _BSD_getime(3 )      0.8%    0.03        0.00       1          _BSD_getime  



Gprof UsageGprof Usage

■ profprof doesn’t give information about  doesn’t give information about 
the call heirarchythe call heirarchy

■ Some function may be used everywhere Some function may be used everywhere 
but is only a problem in one specific but is only a problem in one specific 
instance.instance.

■ prof -gprofprof -gprof can be used only with  can be used only with 
Ideal and Usertime experimentsIdeal and Usertime experiments



Gprof informationGprof information

■ In addition to the information from profIn addition to the information from prof
– Contributions from descendantsContributions from descendants
– Distribution relative to callersDistribution relative to callers

■ To get gprof like information useTo get gprof like information use
prof -gprof <prof -gprof <output fileoutput file>>



Exception ProfilingException Profiling

■ By default the R10000 causes hardware By default the R10000 causes hardware 
traps on floating point exceptions and traps on floating point exceptions and 
then ignores them in softwarethen ignores them in software

■ This can result in lots of overhead.This can result in lots of overhead.
■ Use Use ssrun -fpe <exe>ssrun -fpe <exe> to generate a  to generate a 

trace of locations generating trace of locations generating 
exceptions.exceptions.



Address Space ProfilingAddress Space Profiling

■ Used primarily for checking shared Used primarily for checking shared 
memory programs for memory memory programs for memory 
contention.contention.

■ Generates a trace of most frequently Generates a trace of most frequently 
referenced pagesreferenced pages

■ Samples operand address instead of PCSamples operand address instead of PC
dprof -hwpc <dprof -hwpc <exeexe>>



dprofdprof

■ Output is organized byOutput is organized by
– virtual addressvirtual address
– threadthread
– samples per pagesamples per page

■ Difficult to trace pages to actual Difficult to trace pages to actual 
symbolssymbols



Parallel ProfilingParallel Profiling

■ After tuning for a single CPU, tune for After tuning for a single CPU, tune for 
parallel.parallel.

■ Use full path of toolUse full path of tool
■ ssrun/perfexssrun/perfex used directly with  used directly with 
mpirunmpirun

■ mpirun <opts> /bin/perfex -mp <opts> <exe> mpirun <opts> /bin/perfex -mp <opts> <exe> 
<args> |& cat > output<args> |& cat > output

■ mpirun <opts> /bin/ssrun <opts> <exe> <args>mpirun <opts> /bin/ssrun <opts> <exe> <args>



Parallel ProfilingParallel Profiling

■ perfexperfex outputs all tasks followed by all  outputs all tasks followed by all 
tasks summedtasks summed

■ In shared memory executables, watch In shared memory executables, watch 
– load imbalance (cntr 21, flinstr)load imbalance (cntr 21, flinstr)
– excessive synchronization (4, store cond)excessive synchronization (4, store cond)
– false sharing (31, shared cache block)false sharing (31, shared cache block)



CASEVision DebuggerCASEVision Debugger

■ cvdcvd
■ GUI interface to SpeedShop PC GUI interface to SpeedShop PC 

sampling and ideal experimentssampling and ideal experiments
■ Interface to viewing automatic Interface to viewing automatic 

parallelization optionsparallelization options
■ Poor documentationPoor documentation
■ Debugging supportDebugging support
■ This tool is complex...This tool is complex...



OutlineOutline

■ Performance guidelines Performance guidelines 
■ Array/Loop OptimizationArray/Loop Optimization
■ Language specific considerationsLanguage specific considerations
■ MPI OptimizationMPI Optimization
■ Shared Memory OptimizationShared Memory Optimization



Guidelines for PerformanceGuidelines for Performance

■ I/O is slowI/O is slow
■ System calls are slowSystem calls are slow
■ Use your in-cache data completelyUse your in-cache data completely
■ When looping, remember the pipeline! When looping, remember the pipeline! 

– BranchesBranches
– Function callsFunction calls
– Speculation/Out-of-order executionSpeculation/Out-of-order execution
– DependenciesDependencies



Array OptimizationArray Optimization

■ Array InitializationArray Initialization
■ Array PaddingArray Padding
■ Stride MinimizationStride Minimization
■ Loop FusionLoop Fusion
■ Floating IF’sFloating IF’s
■ Loop DefactorizationLoop Defactorization
■ Loop PeelingLoop Peeling
■ Loop InterchangeLoop Interchange

■ Loop CollapseLoop Collapse
■ Loop UnrollingLoop Unrolling
■ Loop Unrolling and Loop Unrolling and 

Sum ReductionSum Reduction
■ Outer Loop UnrollingOuter Loop Unrolling



Memory AccessMemory Access

■ Programs should be designed for Programs should be designed for 
maximal cache benefit.maximal cache benefit.
– Stride 1 access patternsStride 1 access patterns
– Use entire cache linesUse entire cache lines
– Reusing data as soon as possible after first Reusing data as soon as possible after first 

referencereference
■ Also, we should minimize page faults Also, we should minimize page faults 

and TLB misses. (code and and TLB misses. (code and dplacedplace))



Array AllocationArray Allocation

■ Array’s are allocated differently in C and Array’s are allocated differently in C and 
FORTRAN. FORTRAN. 

1 2 31 2 3

4 5 64 5 6

7 8 97 8 9

C: C: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Fortran: Fortran: 1 4 7 2 5 8 3 6 91 4 7 2 5 8 3 6 9



Array ReferencingArray Referencing

■ In C, outer most index should change In C, outer most index should change 
fastest. fastest. 

[x,[x,YY]]
■ In Fortran, inner most index should In Fortran, inner most index should 

change fastest.change fastest.
((XX,y),y)



Array InitializationArray Initialization

Which to choose?Which to choose?
■ Static initialization requires:Static initialization requires:

– Disk space and Compile timeDisk space and Compile time
– Demand pagingDemand paging
– Extra Cache and TLB misses.Extra Cache and TLB misses.
– Less run timeLess run time

■ Use only for small sizes with default Use only for small sizes with default 
initialization to 0.initialization to 0.



Array InitializationArray Initialization

■ Static initializationStatic initialization
REAL(8) A(100,100) /10000*1.0/REAL(8) A(100,100) /10000*1.0/

■ Dynamic initializationDynamic initialization
DO I=1, DIM1DO I=1, DIM1

DO J=1, DIM2DO J=1, DIM2

A(I,J) = 1.0A(I,J) = 1.0



Array PaddingArray Padding

■ Data inData in COMMON COMMON blocks is allocated  blocks is allocated 
contiguously contiguously 

■ Watch for powers of two and know the Watch for powers of two and know the 
associativity of your cacheassociativity of your cache

■ Example: dot product, possible miss per Example: dot product, possible miss per 
element on 16KB Direct mapped cache element on 16KB Direct mapped cache 
for 4 byte elementsfor 4 byte elements

common /xyz/ a(2048),b(2048)common /xyz/ a(2048),b(2048)



Array PaddingArray Padding
a = a + b * ca = a + b * c

Tuned Untuned Tuned
-O3

Untuned
-O3

Origin
2000 1064.1 1094.7 800.9 900.3



Stride MinimizationStride Minimization

■ We must think about spatial locality.We must think about spatial locality.
■ Effective usage of the cache provides us Effective usage of the cache provides us 

with the best possibility for a with the best possibility for a 
performance gain.performance gain.

■ RecentlyRecently accessed data are likely to be  accessed data are likely to be 
faster to access.faster to access.

■ Tune your algorithm to minimize stride, Tune your algorithm to minimize stride, 
innermost index changes fastestinnermost index changes fastest..



Stride MinimizationStride Minimization

■ Stride 1Stride 1
do y = 1, 1000do y = 1, 1000

do x = 1, 1000do x = 1, 1000

c(x,y) = c(x,y) + a(x,y)*b(x,y)c(x,y) = c(x,y) + a(x,y)*b(x,y)

    

■ Stride 1000Stride 1000
do y = 1, 1000do y = 1, 1000

do x = 1, 1000do x = 1, 1000

c(y,x) = c(y,x) + a(y,x)*b(y,x)c(y,x) = c(y,x) + a(y,x)*b(y,x)



Stride MinimizationStride Minimization

Untuned
-O3

Tuned
-O3

Origin
2000

67.24 23.27

IBM SP2 201.07 17.54

Cray T3E 37.61 37.66



Loop FusionLoop Fusion

■ Loop overhead reducedLoop overhead reduced
■ Better instruction overlapBetter instruction overlap
■ Lower cache missesLower cache misses
■ Be aware of associativity issues with Be aware of associativity issues with 

array’s mapping to the same cache line.array’s mapping to the same cache line.



Loop FusionLoop Fusion

■ UntunedUntuned

do i = 1, 50000do i = 1, 50000

    x = x * a(i) + b(i)x = x * a(i) + b(i)

enddoenddo

do i = 1, 100000do i = 1, 100000

    y = y + a(i) / b(i)y = y + a(i) / b(i)

enddoenddo

■ TunedTuned

do i = 1, 50000do i = 1, 50000

x = x * a(i) + b(i)x = x * a(i) + b(i)

y = y + a(i) / b(i)y = y + a(i) / b(i)

enddoenddo

do i = 50001, 100000do i = 50001, 100000

    y = y + a(i) / b(i)y = y + a(i) / b(i)

enddoenddo



Loop FusionLoop Fusion
Untuned

-O3
Tuned

-O3

Origin
2000

276.37 191.06

IBM SP2 254.96 202.76

Cray T3E 1405.52 1145.91



Loop InterchangeLoop Interchange

■ Swapping the nested order of loopsSwapping the nested order of loops
– Minimize strideMinimize stride
– Reduce loop overhead where inner loop Reduce loop overhead where inner loop 

counts are smallcounts are small
– Allows better compiler schedulingAllows better compiler scheduling



Loop InterchangeLoop Interchange

■ UntunedUntuned

real*8 a(2,40,2000)real*8 a(2,40,2000)

do i=1, 2000do i=1, 2000

  do j=1, 40do j=1, 40

      do k=1, 2do k=1, 2

          a(k,j,i) = a(k,j,i)*1.01a(k,j,i) = a(k,j,i)*1.01

      enddoenddo

  enddoenddo

enddoenddo

■ TunedTuned

real*8 a(2000,40,2)real*8 a(2000,40,2)

do i=1, 2do i=1, 2

  do j=1, 40do j=1, 40

do k=1, 2000do k=1, 2000

          a(k,j,i) = a(k,j,i)*1.01a(k,j,i) = a(k,j,i)*1.01

enddoenddo

  enddoenddo

enddoenddo



Loop InterchangeLoop Interchange

Untuned
-O3

Tuned
-O3

Origin
2000

73.85 55.23

IBM SP2 432.39 434.15

Cray T3E 241.85 241.80



Floating IF’sFloating IF’s

■ IF statements that do not change from IF statements that do not change from 
iteration to iteration may be moved out iteration to iteration may be moved out 
of the loop.of the loop.

■ Compilers can usually do this except Compilers can usually do this except 
whenwhen
– Loops contain calls to proceduresLoops contain calls to procedures
– Variable bounded loopsVariable bounded loops
– Complex loopsComplex loops



Floating IF’sFloating IF’s

■ UntunedUntuned

do i = 1, ldado i = 1, lda

    do j = 1, ldado j = 1, lda

        if (a(i) .GT. 100) thenif (a(i) .GT. 100) then

            b(i) = a(i) - 3.7b(i) = a(i) - 3.7

        endifendif

            x = x + a(j) + b(i)x = x + a(j) + b(i)

    enddoenddo

enddoenddo

■ TunedTuned

do i = 1, ldado i = 1, lda

    if (a(i) .GT. 100) thenif (a(i) .GT. 100) then

        b(i) = a(i) - 3.7b(i) = a(i) - 3.7

    endifendif

    do j = 1, ldado j = 1, lda

          x = x + a(j) + b(i)x = x + a(j) + b(i)

    enddoenddo

enddoenddo



Floating IF’sFloating IF’s

Untuned 
–O3

Tuned
 –O3

Origin
2000

203.18 94.11

IBM
SP2

80.56 80.77

Cray
T3E

160.86 161.21



Loop DefactorizationLoop Defactorization

■ Loops involving multiplication by a Loops involving multiplication by a 
constantconstant in an array. in an array.

■ Allows better instruction scheduling.Allows better instruction scheduling.
■ Facilitates use of multiply-adds.Facilitates use of multiply-adds.



Gather-Scatter OptimizationGather-Scatter Optimization

■ UntunedUntuned

do i = 1, ndo i = 1, n

    if (t(I).gt.0.0) thenif (t(I).gt.0.0) then

        a(I)=2.0*b(I-1)a(I)=2.0*b(I-1)

    end ifend if

enddoenddo

■ TunedTuned

inc = 0inc = 0

do i = 1, ndo i = 1, n

    tmp(inc) = itmp(inc) = i

    if (t(I).gt.0.0) thenif (t(I).gt.0.0) then

        inc = inc + 1inc = inc + 1

    end ifend if

enddoenddo

do I = 1, incdo I = 1, inc

    a(tmp(I))=2.0*b((tmp(I)-1)a(tmp(I))=2.0*b((tmp(I)-1)

enddoenddo



Gather-Scatter OptimizationGather-Scatter Optimization

■ For loops with branches inside loopsFor loops with branches inside loops
■ Increases pipeliningIncreases pipelining
■ Often, body of the loop is executed on Often, body of the loop is executed on 

every iteration, thus no savingsevery iteration, thus no savings
■ Solution is to split the loop with a Solution is to split the loop with a 

temporary array containing indices of temporary array containing indices of 
elements to be computed withelements to be computed with



IF Statements in LoopsIF Statements in Loops

■ Solution is to unroll the loopSolution is to unroll the loop
■ Move conditional elements into scalarsMove conditional elements into scalars
■ Test scalars at the end of the loop bodyTest scalars at the end of the loop body
do I = 1, n, 2do I = 1, n, 2

    a = t(I)a = t(I)

    b = t(I+1)b = t(I+1)

    if (a .eq. 0.0)if (a .eq. 0.0)

    end ifend if

    if (b .eq. 0.0)if (b .eq. 0.0)

    end ifend if

end doend do



Loop DefactorizationLoop Defactorization

■ Note that floating point operations are Note that floating point operations are 
not always associative. not always associative. 

(A + B) + C   != A + (B + C)(A + B) + C   != A + (B + C)

■ Be aware of your precisionBe aware of your precision
■ Always verify your results with Always verify your results with 

unoptimized code first!unoptimized code first!



Loop DefactorizationLoop Defactorization

■ UntunedUntuned

do i = 1, ldado i = 1, lda

      A(i) = 0.0A(i) = 0.0

      do j = 1, ldado j = 1, lda

          A(i)=A(i)+B(j)*D(j)*C(i)A(i)=A(i)+B(j)*D(j)*C(i)

      enddoenddo

enddoenddo

■ TunedTuned

  do i = 1, ldado i = 1, lda

      A(i) = 0.0A(i) = 0.0

      do j = 1, ldado j = 1, lda

          A(i) = A(i) + B(j) * D(j)A(i) = A(i) + B(j) * D(j)

      enddoenddo

      A(i) = A(i) * C(i)A(i) = A(i) * C(i)

  enddoenddo



Loop DefactorizationLoop Defactorization
Tuned

-O3
Untuned

-O3

Origin
2000

371.95 559.17

IBM SP2 449.03 591.26

Cray T3E 3201.35 3401.61



Loop PeelingLoop Peeling

■ For loops which access previous For loops which access previous 
elements in arrays. elements in arrays. 

■ Compiler often cannot determine that Compiler often cannot determine that 
an item doesn’t need to be loaded  an item doesn’t need to be loaded  
every iteration.every iteration.



Loop PeelingLoop Peeling

■ UntunedUntuned

  jwrap = ldajwrap = lda

  do i = 1, ldado i = 1, lda

      b(i) = (a(i)+a(jwrap))*0.5b(i) = (a(i)+a(jwrap))*0.5

      jwrap = ijwrap = i

  enddoenddo

■ TunedTuned

b(1) = (a(1)+a(lda))*0.5b(1) = (a(1)+a(lda))*0.5

do i = 2, ldado i = 2, lda

      b(i) = (a(i)+a(i-1))*0.5b(i) = (a(i)+a(i-1))*0.5

enddoenddo



Loop PeelingLoop Peeling
Tuned

-O3
Untuned

-O3

Origin
2000

61.06 63.33

IBM SP2 25.68 40.50

Cray T3E 72.93 90.05



Loop CollapseLoop Collapse

■ For multi-nested loops in which the For multi-nested loops in which the 
entire array is accessed.entire array is accessed.

■ This can reduce loop overhead and This can reduce loop overhead and 
improve compiler vectorization.improve compiler vectorization.



Loop CollapseLoop Collapse

■ UntunedUntuned
    
    do i = 1, ldado i = 1, lda

        do j = 1, ldbdo j = 1, ldb

              do k = 1, ldcdo k = 1, ldc

                    A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)A(k,j,i) = A(k,j,i) + B(k,j,i) * C(k,j,i)

              enddoenddo

        enddoenddo

  enddoenddo



Loop CollapseLoop Collapse

■ TunedTuned
  do i = 1, lda*ldb*ldcdo i = 1, lda*ldb*ldc

        A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)A(i,1,1) = A(i,1,1) + B(i,1,1) * C(i,1,1)

  enddoenddo

■ More Tuned (declarations are 1D)More Tuned (declarations are 1D)
  do i = 1, lda*ldb*ldcdo i = 1, lda*ldb*ldc

        A(i) = A(i) + B(i) * C(i)A(i) = A(i) + B(i) * C(i)

  enddoenddo



Loop CollapseLoop Collapse
Tuned Tuned

–O3
Tuned

2nd 
Tuned 2nd

–O3

Origin
2000

400.25 143.01 410.58 77.86

IBM
SP2

144.75 31.57 144.18 31.54

Cray
T3E

394.19 231.44 394.92 229.86



Loop UnrollingLoop Unrolling

■ Data dependence delays can be Data dependence delays can be 
reduced or eliminated.reduced or eliminated.

■ Reduce loop overhead.Reduce loop overhead.
■ Usually performed well by the compiler Usually performed well by the compiler 

or preprocessor. or preprocessor. 



Loop UnrollingLoop Unrolling

■ UntunedUntuned
  

do i = 1, ldado i = 1, lda

      do j = 1, ldado j = 1, lda

            do k = 1, 4do k = 1, 4

                  a(j,i) = a(j,i) + b(i,k) * c(j,k)a(j,i) = a(j,i) + b(i,k) * c(j,k)

            enddoenddo

      enddoenddo

enddoenddo



Loop UnrollingLoop Unrolling

■ Tuned (4)Tuned (4)

do i = 1, ldado i = 1, lda

      do j = 1, ldado j = 1, lda

            a(j,i) = a(j,i) +  b(i,1) * c(j,1)a(j,i) = a(j,i) +  b(i,1) * c(j,1)

            a(j,i) = a(j,i) +  b(i,2) * c(j,2)a(j,i) = a(j,i) +  b(i,2) * c(j,2)

            a(j,i) = a(j,i) +  b(i,3) * c(j,3)a(j,i) = a(j,i) +  b(i,3) * c(j,3)

            a(j,i) = a(j,i) +  b(i,4) * c(j,4)a(j,i) = a(j,i) +  b(i,4) * c(j,4)

      enddoenddo

enddoenddo



Loop UnrollingLoop Unrolling

Tuned
-O3

Untuned
-O3

Origin
2000

61.06 63.33

IBM SP2 11.26 12.65

Cray T3E 36.30 24.41



Loop Unrolling and Sum Loop Unrolling and Sum 
ReductionsReductions

■ When an operation requires as input When an operation requires as input 
the result of the last output.the result of the last output.

■ Called a Data Dependency.Called a Data Dependency.
■ Frequently happens with multi-add Frequently happens with multi-add 

instruction inside of loops.instruction inside of loops.
■ Introduce intermediate sums. Use your Introduce intermediate sums. Use your 

registers!registers!



Loop Unrolling and Sum Loop Unrolling and Sum 
ReductionsReductions

■ UntunedUntuned
  

  do i = 1, ldado i = 1, lda

        do j = 1, ldado j = 1, lda

              a = a + (b(j) * c(i))a = a + (b(j) * c(i))

        enddoenddo

  enddoenddo



Loop Unrolling and Sum Loop Unrolling and Sum 
ReductionsReductions

■ Tuned (4)Tuned (4)
  

  do i = 1, ldado i = 1, lda

        do j = 1, lda, 4do j = 1, lda, 4

              a1 = a1 + b(j) * c(i)a1 = a1 + b(j) * c(i)

              a2 = a2 + b(j+1) * c(i)a2 = a2 + b(j+1) * c(i)

              a3 = a3 + b(j+2) * c(i)a3 = a3 + b(j+2) * c(i)

              a4 = a4 + b(j+3) * c(i)a4 = a4 + b(j+3) * c(i)

        enddoenddo

  enddoenddo

  aa = a1 + a2 +a3 + a4aa = a1 + a2 +a3 + a4



Loop Unrolling and Sum Loop Unrolling and Sum 
ReductionsReductions

Untuned
–O3

2
Tuned

2
Tuned
–O3

4
Tuned

-O3

8
Tuned

-O3

16
Tuned

-O3

Origin
2000

454 4945 352 350 350 330

IBM
SP2

281 6490 563 281 281 263

Cray
T3E 865 10064 564 340 231 860



Outer Loop UnrollingOuter Loop Unrolling

■ For nested loops, unrolling outer loop For nested loops, unrolling outer loop 
may reduce loads and stores in the may reduce loads and stores in the 
inner loop.inner loop.

■ Compiler may perform this optimization.Compiler may perform this optimization.



Outer Loop UnrollingOuter Loop Unrolling

■ UntunedUntuned
– Each flop requires two loads and one store.Each flop requires two loads and one store.

  do i = 1, ldado i = 1, lda

        do j = 1, ldbdo j = 1, ldb

              A(i,j) = B(i,j) * C(j)A(i,j) = B(i,j) * C(j)

        enddoenddo

  enddoenddo



Outer Loop UnrollingOuter Loop Unrolling

■ TunedTuned
– Each flop requires 5/4 loads and one store.Each flop requires 5/4 loads and one store.

  do i = 1, lda, 4do i = 1, lda, 4

        do j = 1, ldbdo j = 1, ldb

              A(i,j)   = B(i,j) * C(j) A(i,j)   = B(i,j) * C(j) 

              A(i+1,j) = B(i+1,j) * C(j)A(i+1,j) = B(i+1,j) * C(j)

              A(i+2,j) = B(i+2,j) * C(j)A(i+2,j) = B(i+2,j) * C(j)

              A(i+3,j) = B(i+3,j) * C(j)A(i+3,j) = B(i+3,j) * C(j)

        enddoenddo

  enddoenddo



Outer Loop UnrollingOuter Loop Unrolling
Tuned

-O3
Untuned

-O3

Origin
2000

28.85 34.52

IBM SP2 74.67 286.11

Cray T3E 14.33 30.91



Cache BlockingCache Blocking

■ Takes advantage of the cache by Takes advantage of the cache by 
working with smaller tiles of dataworking with smaller tiles of data

■ Only really beneficial on problems with Only really beneficial on problems with 
significant potential for reusesignificant potential for reuse

■ Merges naturally with unrolling and Merges naturally with unrolling and 
sum-reductionsum-reduction



Cache BlockingCache Blocking

■ UntunedUntuned
REAL*8 A(M,N)REAL*8 A(M,N)

REAL*8 B(N,P)REAL*8 B(N,P)

REAL*8 C(M,P)REAL*8 C(M,P)

DO J=1,PDO J=1,P

  DO I=1,MDO I=1,M

    DO K=1,NDO K=1,N

        C(I,P) = C(I,P) +C(I,P) = C(I,P) +

        A(I,K)*B(K,J)A(I,K)*B(K,J)

    ENDDOENDDO

  ENDDOENDDO

ENDDOENDDO

■ TunedTuned
DO JB=1,P,16DO JB=1,P,16
  DO IB=1,M,16DO IB=1,M,16
    DO KB=1,NDO KB=1,N
      DO J=JB,MIN(P,JB+15)DO J=JB,MIN(P,JB+15)
        DO I=IB,MIN(M,IB+15)DO I=IB,MIN(M,IB+15)
            C(I,P) = C(I,P) +C(I,P) = C(I,P) +
            A(I,K)*B(K,J)A(I,K)*B(K,J)
          ENDDOENDDO
        ENDDOENDDO
      ENDDOENDDO
    ENDDOENDDO
  ENDDOENDDO
ENDDOENDDO



Loop structureLoop structure

■ IF/GOTO and WHILE loops inhibit some IF/GOTO and WHILE loops inhibit some 
compiler optimizations.compiler optimizations.

■ Some optimizers and preprocessors can Some optimizers and preprocessors can 
perform transforms.perform transforms.

■ DO and for() loops are the most highly DO and for() loops are the most highly 
tuned.tuned.



Strength ReductionStrength Reduction

■ Reduce cost of mathematical operation Reduce cost of mathematical operation 
with no loss in precision, compiler might with no loss in precision, compiler might 
do it.do it.
– Integer multiplication/division by a Integer multiplication/division by a 

constant with shift/addsconstant with shift/adds
– Exponentiation by multiplicationExponentiation by multiplication
– Factorization and Horner’s RuleFactorization and Horner’s Rule
– Floating point division by inverse Floating point division by inverse 

multiplicationmultiplication



Strength ReductionStrength Reduction
Horner’s RuleHorner’s Rule

■ Polynomial expression can be rewritten Polynomial expression can be rewritten 
as a nested factorization.as a nested factorization.

Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F =

((((Ax + B) * x + C) * x + D) * x + E) * x + F.((((Ax + B) * x + C) * x + D) * x + E) * x + F.

■ Also uses multiply-add instructionsAlso uses multiply-add instructions
■ Eases dependency analysisEases dependency analysis



Strength ReductionStrength Reduction
Horner’s RuleHorner’s Rule

Tuned
-O3

Untuned
-O3

Origin
2000

74.20 74.09

IBM SP2 40.69 74.71

Cray T3E 61.70 160.05



Strength ReductionStrength Reduction
Integer Division by a Power of 2Integer Division by a Power of 2

■ Shift requires less cycles than division.Shift requires less cycles than division.
■ Both dividend and divisor must both be Both dividend and divisor must both be 

unsigned or positive integers.unsigned or positive integers.



Strength ReductionStrength Reduction
Integer division by a Power of 2Integer division by a Power of 2

■ UntunedUntuned

IL = 0IL = 0

DO I=1,ARRAY_SIZEDO I=1,ARRAY_SIZE

    DO J=1,ARRAY_SIZEDO J=1,ARRAY_SIZE

        IL = IL + A(J)/2IL = IL + A(J)/2

    ENDDOENDDO

    ILL(I) = ILILL(I) = IL

ENDDOENDDO

■ TunedTuned

IL = 0IL = 0

ILL = 0ILL = 0

DO I=1,ARRAY_SIZEDO I=1,ARRAY_SIZE

    DO J=1,ARRAY_SIZEDO J=1,ARRAY_SIZE

        IL = IL + ISHFT(A(J),-1)IL = IL + ISHFT(A(J),-1)

    ENDDOENDDO

    ILL(I) = ILILL(I) = IL

ENDDOENDDO



Strength ReductionStrength Reduction
  Integer division by a Power of 2Integer division by a Power of 2

Tuned
-O3

Untuned
-O3

Origin
2000

210.71 336.44

IBM SP2 422.65 494.05

Cray T3E 771.28 844.17



Strength ReductionStrength Reduction
FactorizationFactorization

■ Allows for better instruction scheduling.Allows for better instruction scheduling.
■ Compiler can interleave loads and ALU Compiler can interleave loads and ALU 

operations.operations.
■ Especially benefits compilers able to do Especially benefits compilers able to do 

software pipelining.software pipelining.



Strength ReductionStrength Reduction
FactorizationFactorization

■ UntunedUntuned
XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)XX = X*A(I) + X*B(I) + X*C(I) + X*D(I)

■ TunedTuned
XX = X*(A(I) + B(I) + C(I) + D(I))XX = X*(A(I) + B(I) + C(I) + D(I))



Strength ReductionStrength Reduction
FactorizationFactorization

Tuned
-O3

Untuned
-O3

Origin
2000

51.65 48.99

IBM SP2 57.43 57.40

Cray T3E 387.77 443.45



Subexpression EliminationSubexpression Elimination
ParenthesisParenthesis

■ Parenthesis can help the compiler Parenthesis can help the compiler 
recognize repeated expressions.recognize repeated expressions.

■ Some preprocessors and aggressive Some preprocessors and aggressive 
compilers will do it.compilers will do it.

■ Might limit aggressive optimizationsMight limit aggressive optimizations



Subexpression EliminationSubexpression Elimination
ParenthesisParenthesis

■ UntunedUntuned
XX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*YXX = XX + X(I)*Y(I)+Z(I) + X(I)*Y(I)-Z(I) + X(I)*Y

(I) + Z(I)(I) + Z(I)

■ TunedTuned
XX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (XXX = XX + (X(I)*Y(I)+Z(I)) + X(I)*Y(I)-Z(I) + (X

(I)*Y(I)+Z(I))(I)*Y(I)+Z(I))



Subexpression EliminationSubexpression Elimination
Type ConsiderationsType Considerations

■ Changes the type or precision of data.Changes the type or precision of data.
– Reduces resource requirements.Reduces resource requirements.
– Avoid type conversions.Avoid type conversions.
– Processor specific performance.Processor specific performance.

■ Do you really need 8 or 16 bytes of Do you really need 8 or 16 bytes of 
precision?precision?



Subexpression EliminationSubexpression Elimination
Type ConsiderationsType Considerations

■ Consider which elements are used Consider which elements are used 
together?together?
– Should you be merging your arrays?Should you be merging your arrays?
– Should you be splitting your loops for Should you be splitting your loops for 

better locality?better locality?
– For C, are your structures packed tightly in For C, are your structures packed tightly in 

terms of storage and reference pattern?terms of storage and reference pattern?



F90 ConsiderationsF90 Considerations

■ WHERE statementsWHERE statements
■ ARRAY syntaxARRAY syntax
■ ALLOCATE placementALLOCATE placement
■ OO complicationOO complication

– Class dependenciesClass dependencies
– Code fragmentationCode fragmentation
– Operator overloadingOperator overloading
– InliningInlining



C/C++ ConsiderationsC/C++ Considerations

■ Use C++ I/O operatorsUse C++ I/O operators
■ Call by const ref Call by const ref 
■ OO complicationOO complication
■ Avoid unsigned conversionsAvoid unsigned conversions
■ Use Use inlineinline, , constconst and  and __restrict__restrict  

keywordskeywords



dplacedplace Usage Usage

■ Used to specify different page sizes and Used to specify different page sizes and 
data placementdata placement

■ For performance use:For performance use:

dplace -data_pagesize 64k -stack_pagesize 64k <program>dplace -data_pagesize 64k -stack_pagesize 64k <program>

mpirun -np <procs> /usr/sbin/dplace <args> <program>mpirun -np <procs> /usr/sbin/dplace <args> <program>

mpirun -np <procs> /bin/ssrun <args> /usr/sbin/dplace mpirun -np <procs> /bin/ssrun <args> /usr/sbin/dplace 
<args> <program> <args> <program> 



Parallel OptimizationParallel Optimization

■ Two programming models.Two programming models.
– Message PassingMessage Passing
– Shared MemoryShared Memory

■ Optimizing parallel codeOptimizing parallel code



Choosing a Data DistributionChoosing a Data Distribution

■ The two main issues in choosing a data The two main issues in choosing a data 
layout for dense matrix computations arelayout for dense matrix computations are::
– load balanceload balance, or splitting the work reasonably , or splitting the work reasonably 

evenly among the processors throughout the evenly among the processors throughout the 
algorithm, andalgorithm, and

– use of the Level 3 BLASuse of the Level 3 BLAS during computations on  during computations on 
a single processor to utilize the memory hierarchy a single processor to utilize the memory hierarchy 
on each processoron each processor..



Possible Data LayoutsPossible Data Layouts
■ 1D block and cyclic column distributions1D block and cyclic column distributions

■ 1D block-cyclic column and 2D block-cyclic 1D block-cyclic column and 2D block-cyclic 
distribution used in ScaLAPACKdistribution used in ScaLAPACK



Two-dimensional Block-Cyclic DistributionTwo-dimensional Block-Cyclic Distribution

■ Ensure good load balance --> Ensure good load balance --> 
Performance and scalabilityPerformance and scalability,,

■ Encompasses a large number of (but not all) Encompasses a large number of (but not all) 
data distribution schemes,data distribution schemes,

■ Need redistribution routines to go from one Need redistribution routines to go from one 
distribution to the otherdistribution to the other..



Load BalancingLoad Balancing

■ StaticStatic
– Data/tasks are partitioned among existing Data/tasks are partitioned among existing 

processors.processors.
– Problem of finding an efficient mappingProblem of finding an efficient mapping

■ DynamicDynamic
– Master/Worker modelMaster/Worker model
– Synchronization and data distribution Synchronization and data distribution 

problemsproblems



MPP OptimizationMPP Optimization

■ ProgrammingProgramming
– Message passing (MPI, PVM, Shmem)Message passing (MPI, PVM, Shmem)
– Shared memory (HPF or MP directive Shared memory (HPF or MP directive 

based)based)
■ AlgorithmsAlgorithms

– Data or Functional ParallelismData or Functional Parallelism
– SIMD, MIMDSIMD, MIMD
– Granularity (fine, medium, coarse)Granularity (fine, medium, coarse)
– Master/Worker or HostlessMaster/Worker or Hostless



Parallel PerformanceParallel Performance

■ Architecture is characterized byArchitecture is characterized by
– Number of CPU’sNumber of CPU’s
– ConnectivityConnectivity
– I/O capabilityI/O capability
– Single processor performanceSingle processor performance



Message Passing APIsMessage Passing APIs

■ Two popular message passing API’s.Two popular message passing API’s.
– PVMPVM

■ UT/ORNLUT/ORNL
■ VendorVendor

– MPIMPI
■ MPICH from MS StateMPICH from MS State
■ LAM from Ohio Supercomputing CenterLAM from Ohio Supercomputing Center
■ VendorVendor



Message Passing APIsMessage Passing APIs

■ In generalIn general
– PVM is a message passing research vehicle.PVM is a message passing research vehicle.
– MPI is a production product intended for MPI is a production product intended for 

application engineers.application engineers.
– MPI will outperform PVM.MPI will outperform PVM.
– MPI has richer functionalityMPI has richer functionality
– PVM is better for applications requiring PVM is better for applications requiring 

fault tolerance, heterogeneity and fault tolerance, heterogeneity and 
changing number of processes.changing number of processes.



Message Passing InterfaceMessage Passing Interface

■ MPIMPI
– Support collective operationsSupport collective operations
– Support customized data typesSupport customized data types
– Will take advantage of shared memoryWill take advantage of shared memory
– Exist on almost every platform includingExist on almost every platform including

■ Networks of workstationsNetworks of workstations
■ Windows 95 and NTWindows 95 and NT
■ Multiprocessor workstationsMultiprocessor workstations



Message PassingMessage Passing

■ Node 1 needs X bytes from node 0Node 1 needs X bytes from node 0
■ Node 0 calls a send function (X bytes Node 0 calls a send function (X bytes 

from address A)from address A)
■ Node 1 calls a receive function (X bytes Node 1 calls a receive function (X bytes 

into address B)into address B)



Message PassingMessage Passing

■ Upon message arrivalUpon message arrival
– If node B has not If node B has not postedposted a receive the  a receive the 

data is data is bufferedbuffered until the receive function  until the receive function 
is called.is called.

– Else the data is copied directly to the Else the data is copied directly to the 
address given to the receive function.address given to the receive function.



Communication IssuesCommunication Issues

■ Startup time, latency or overheadStartup time, latency or overhead
■ BandwidthBandwidth
■ Network contention and congestionNetwork contention and congestion
■ BidirectionalityBidirectionality
■ Communication APICommunication API
■ Dedicated ChannelsDedicated Channels



Communication IssuesCommunication Issues

■ Startup time and bandwidthStartup time and bandwidth
– Startup time is higher than the time to Startup time is higher than the time to 

actually transfer a actually transfer a smallsmall message. message.
– Send larger messages fewer times, but try Send larger messages fewer times, but try 

to keep everyone busy.to keep everyone busy.
■ Contention can be reduced by uniformly Contention can be reduced by uniformly 

distributing messages.distributing messages.



Communication IssuesCommunication Issues

■ To take advantage of bidirectionality, To take advantage of bidirectionality, 
post  receives before sending. post  receives before sending. 

■ As mentioned, use MPI_Ixxx calls.As mentioned, use MPI_Ixxx calls.
– It can handle more particles than fit in It can handle more particles than fit in 

memorymemory



Message PassingMessage Passing

BufferingBuffering - Temporary storage of data.  - Temporary storage of data. 
PostingPosting - Temporary storage of an address. - Temporary storage of an address.
NonblockingNonblocking - Refers to an function A that  - Refers to an function A that 

initiates an operation B and returns to the initiates an operation B and returns to the 
caller before the completion of B.caller before the completion of B.

BlockingBlocking - The function A does not return to  - The function A does not return to 
the caller until the completion of operation B.the caller until the completion of operation B.

Polling/Waiting Polling/Waiting - Testing for the completion - Testing for the completion 
of a nonblocking operation.of a nonblocking operation.



Message PassingMessage Passing

■ It is possible for sends and receives to It is possible for sends and receives to 
bebe
– Nonblocking(send) or Posted(receive)Nonblocking(send) or Posted(receive)
– Synchronous(send)Synchronous(send)
– BufferedBuffered
– BlockingBlocking



MPI Message PassingMPI Message Passing

■ MPI introduces communication MPI introduces communication modes modes 
dictating semantics of completion of dictating semantics of completion of 
send operations.send operations.
– BBuffered - When transmitted or buffered, uffered - When transmitted or buffered, 

space provided/limited by application, else space provided/limited by application, else 
error.error.

– RReady - Only if receive is posted, else eady - Only if receive is posted, else 
error.error.

– SSynchronous - Only when receive begins to ynchronous - Only when receive begins to 
execute, else wait. Useful for debugging.execute, else wait. Useful for debugging.



MPI Message PassingMPI Message Passing

■ In additionIn addition
standard - MPI will decide if/how much standard - MPI will decide if/how much 

outgoing data is buffered. If space is outgoing data is buffered. If space is 
unavailable, completion will be delayed unavailable, completion will be delayed 
until data is transmitted to receiver. (Like until data is transmitted to receiver. (Like 
PVM) PVM) 

IImmediate - nonblocking, returns to the mmediate - nonblocking, returns to the 
caller ASAP. May be used with any of the caller ASAP. May be used with any of the 
above modes.above modes.



MPI Message PassingMPI Message Passing

■ Ready sends can remove a handshake Ready sends can remove a handshake 
for large messages.for large messages.

■ There is only one receive mode, it There is only one receive mode, it 
matches any of the send modes.matches any of the send modes.



MPI OptimizationsMPI Optimizations

■ We are primarily interested inWe are primarily interested in
MPI_ISEND, MPI_IRECV, MPI_IRSENDMPI_ISEND, MPI_IRECV, MPI_IRSEND

■ Why? Because your program could be Why? Because your program could be 
doing something useful while sending doing something useful while sending 
or receiving! You can hide much of the or receiving! You can hide much of the 
cost of these communication cost of these communication 
operations.operations.

■ Avoid one sided and persistent Avoid one sided and persistent 
communication operations.communication operations.



MPI Data TypesMPI Data Types

■ For array transfers MPI has user For array transfers MPI has user 
defined data types to gather and defined data types to gather and 
scatter data to/from memory.scatter data to/from memory.

■ Try to use Try to use MPI_TYPE_[H]VECTOR()MPI_TYPE_[H]VECTOR()or or 
MPI_TYPE_[H]INDEXED()MPI_TYPE_[H]INDEXED()

■ Avoid Avoid MPI_TYPE_STRUCT()MPI_TYPE_STRUCT()



MPI Collective CommunicationMPI Collective Communication

■ Unlike PVM, with MPI you should use Unlike PVM, with MPI you should use 
the collective operations. They are likely the collective operations. They are likely 
to be highly tuned for the architecture.to be highly tuned for the architecture.

■ These operations are very difficult to These operations are very difficult to 
optimize and are often the bottlenecks optimize and are often the bottlenecks 
in parallel applications.in parallel applications.



MPI Collective CommunicationMPI Collective Communication

MPI_Barrier()MPI_Barrier()

MPI_Bcast()MPI_Bcast()

MPI_Gather[v]() MPI_Scatter[v]()MPI_Gather[v]() MPI_Scatter[v]()

MPI_Allgather[v]() MPI_Allgather[v]() 

MPI_Alltoall[v]()MPI_Alltoall[v]()

MPI_Reduce()MPI_Reduce()

MPI_AllReduce()MPI_AllReduce()

MPI_Reduce_Scatter()MPI_Reduce_Scatter()

MPI_Scan()MPI_Scan()



Message Passing Message Passing 
OptimizationsOptimizations

■ Try to keep message sizes Try to keep message sizes not smallnot small
■ Try to pipeline Try to pipeline 

communication/computationcommunication/computation
■ Avoid data translation and data types Avoid data translation and data types 

unless necessary for good performanceunless necessary for good performance
■ Avoid wildcard receivesAvoid wildcard receives
■ Align application buffers to double Align application buffers to double 

words and page sizes. Be careful of words and page sizes. Be careful of 
cache lines!cache lines!



Message Passing OptimizationMessage Passing Optimization
Nearest Neighbor Example 1Nearest Neighbor Example 1

N slave processors available plus Master, N slave processors available plus Master, 
M particles each having (M particles each having (x,y,zx,y,z) ) 
coordinates.coordinates.

1) Master reads and distributes all 1) Master reads and distributes all 
coordinates to N processors.coordinates to N processors.

2) Each processor calculates its subset of 2) Each processor calculates its subset of 
M/N and sends it back to the master.M/N and sends it back to the master.

3) Master processor receives and outputs 3) Master processor receives and outputs 
information.information.



Message Passing OptimizationMessage Passing Optimization
Nearest Neighbor Example 2Nearest Neighbor Example 2

1) Master reads and scatters M/N coordinates to N 1) Master reads and scatters M/N coordinates to N 
processors.processors.

2) Each processor receives its own subset and makes a 2) Each processor receives its own subset and makes a 
replica.replica.

3) Each processor calculates its subset of M/N 3) Each processor calculates its subset of M/N 
coordinates versus the replica.coordinates versus the replica.

  4) Each processor sends to the next processor its replica 4) Each processor sends to the next processor its replica 
of M/N coordinates.of M/N coordinates.

5) Each processor receives the replica. Goto 3) N-1 5) Each processor receives the replica. Goto 3) N-1 
times.times.

6) Each processor sends its info back to the Master6) Each processor sends its info back to the Master



Message Passing OptimizationMessage Passing Optimization
Nearest Neighbor ExampleNearest Neighbor Example

■ Example 1 works better only whenExample 1 works better only when
– There are a small number of particlesThere are a small number of particles
– You have an super efficient broadcastYou have an super efficient broadcast

■ Example 2 works better more often Example 2 works better more often 
becausebecause
– Computation is pipelined. Note that slave Computation is pipelined. Note that slave 

processor 0 is already busy before processor 0 is already busy before 
processor 1 even gets its input data.processor 1 even gets its input data.



MPI Message PassingMPI Message Passing

■ To test for the completion of a message To test for the completion of a message 
useuse

MPI_WAITxxx MPI_WAITxxx andand MPI_TESTxxx MPI_TESTxxx

where where xxxxxx is all, any, some or NULL. is all, any, some or NULL.

■ Remember you must test ISEND’s as Remember you must test ISEND’s as 
well as IRECV’s before you can reuse well as IRECV’s before you can reuse 
the argument.the argument.



Automatic ParallelizationAutomatic Parallelization

■ Let the compiler do the work.Let the compiler do the work.
■ AdvantagesAdvantages

– It’s easyIt’s easy
■ DisadvantagesDisadvantages

– Only does loop level parallelism.Only does loop level parallelism.
– It wants to parallelize every loop iteration It wants to parallelize every loop iteration 

in your code.in your code.



Automatic ParallelizationAutomatic Parallelization

■ On the SGIOn the SGI
f77 -pfa <prog.f>f77 -pfa <prog.f>

■ Tries to parallelize every loop in your Tries to parallelize every loop in your 
code.code.



Data ParallelismData Parallelism

■ Data parallelism: Data parallelism: different processors different processors 
running the same code on different running the same code on different 
data. (SPMD)data. (SPMD)

■ Identify hot spots.Identify hot spots.
■ Do it by hand via directives.Do it by hand via directives.
■ Modify the code to remove Modify the code to remove 

dependencies.dependencies.
■ Make sure you get the right answers.Make sure you get the right answers.



Data Parallelism on the SGI’sData Parallelism on the SGI’s

■ Insert the Insert the c$doacrossc$doacross directive just  directive just 
before the loop to be parallelized.before the loop to be parallelized.

■ Declare local and shared variablesDeclare local and shared variables
■ Compile with Compile with -mp-mp option. option.

c$doacross local(i) share(a,n)c$doacross local(i) share(a,n)

do i=1,ndo i=1,n

a(i)=float(i)a(i)=float(i)

end doend do



Data Parallelism on the SGI’sData Parallelism on the SGI’s

■ Directives affect only immediately Directives affect only immediately 
referenced loop.referenced loop.

■ Directives begin in column one.Directives begin in column one.
■ c$doacrossc$doacross is becoming a standard.  is becoming a standard. 



Data Parallelism on the SGI’sData Parallelism on the SGI’s

■ Compiler generates code that runs with Compiler generates code that runs with 
any number of threads settable at any number of threads settable at 
runtime.runtime.

■ Set number of threads.Set number of threads.
pagh> setenv MP_SET_NUMTHREADS 4pagh> setenv MP_SET_NUMTHREADS 4



Task ParallelismTask Parallelism

■ Task parallelismTask parallelism means different  means different 
processors are running different processors are running different 
procedures. procedures. 

■ Can be accomplished on Can be accomplished on anyany machine  machine 
with data parallel directives via if with data parallel directives via if 
statements inside a loop.statements inside a loop.



Task ParallelismTask Parallelism

c$doacross local(i)c$doacross local(i)

do i=1,ndo i=1,n

  if (i=1) call sub1(...)if (i=1) call sub1(...)

      if (i=2) call sub2(...)if (i=2) call sub2(...)

  if (i=3) call sub3(...)if (i=3) call sub3(...)

  if (i=4) call sub4(...)if (i=4) call sub4(...)

end doend do



Limits on Parallel SpeedupLimits on Parallel Speedup

■ The code is I/O bound.The code is I/O bound.
■ The problem size is fixed.The problem size is fixed.
■ The problem size is too small.The problem size is too small.
■ There is too much serial/scalar code.There is too much serial/scalar code.
■ The algorithm is inherently serial.The algorithm is inherently serial.
■ Data distribution.Data distribution.
■ Parallel overhead.Parallel overhead.



Parallel OverheadParallel Overhead

■ Creating/Scheduling threadsCreating/Scheduling threads
■ CommunicationCommunication
■ SynchronizationSynchronization
■ PartitioningPartitioning



Parallel OverheadParallel Overhead

■ For data parallel programming we can For data parallel programming we can 
estimate parallel overhead.estimate parallel overhead.

■ Time the code with only one threadTime the code with only one thread



Reducing Parallel OverheadReducing Parallel Overhead

■ Don’t parallelize ALL the loops.Don’t parallelize ALL the loops.
■ Don’t parallelize the small loops.Don’t parallelize the small loops.
■ Use the “if” modifier.Use the “if” modifier.

c$doacross if(n > 500), local(...), share(...)c$doacross if(n > 500), local(...), share(...)

do i=1,ndo i=1,n

enddoenddo



Reducing Parallel OverheadReducing Parallel Overhead

■ Use task parallelism.Use task parallelism.
– Lower overheadLower overhead
– More code runs in parallelMore code runs in parallel
– Requires a parallel algorithmRequires a parallel algorithm



Improving Load BalanceImproving Load Balance

■ Change the way loop iterations are Change the way loop iterations are 
allocated to threads.allocated to threads.
– Change the scheduling typeChange the scheduling type
– Change the chunk sizeChange the chunk size



Improving Load BalanceImproving Load Balance

■ Scheduling Scheduling 
– setenv MP_SCHEDTYPE <type>setenv MP_SCHEDTYPE <type>

– c$doacross mp_schedtype=<type>c$doacross mp_schedtype=<type>

– SIMPLE - default, iterations equally and SIMPLE - default, iterations equally and 
sequentially allocated per processor. sequentially allocated per processor. 

– INTERLEAVE - round-robin per chunk of INTERLEAVE - round-robin per chunk of 
iterations. Use when some iterations do iterations. Use when some iterations do 
more work than others.more work than others.



Improving Load BalanceImproving Load Balance

■ Scheduling Scheduling 
– DYNAMIC - iterations are allocated per DYNAMIC - iterations are allocated per 

processor during run-time. When the processor during run-time. When the 
amount of work is unknown.amount of work is unknown.

– GSS - guided self scheduling. Each GSS - guided self scheduling. Each 
processor starts with a large number and processor starts with a large number and 
finishes with a small number. finishes with a small number. 



Improving Load BalanceImproving Load Balance

■ Change the number of iterations Change the number of iterations 
performed per processor.performed per processor.
– setenv CHUNK 4setenv CHUNK 4

– c$doacross local(i) chunk_size=4c$doacross local(i) chunk_size=4



Additional MaterialAdditional Material

http://www.cs.utk.edu/~mucci/MPPopt.htmlhttp://www.cs.utk.edu/~mucci/MPPopt.html

■ Slides Slides 
■ Optimization GuidesOptimization Guides
■ PapersPapers
■ PointersPointers
■ Compiler BenchmarksCompiler Benchmarks



HTTP ReferencesHTTP References

http://www.nersc.govhttp://www.nersc.gov

http://www.mhpcc.govhttp://www.mhpcc.gov

http://www-jics.cs.utk.eduhttp://www-jics.cs.utk.edu

http://www.tc.cornell.eduhttp://www.tc.cornell.edu

http://www.netlib.orghttp://www.netlib.org

http://www.ncsa.uiuc.eduhttp://www.ncsa.uiuc.edu

http://www.cray.comhttp://www.cray.com

http://www.psc.eduhttp://www.psc.edu

http://techpubs.sgi.comhttp://techpubs.sgi.com
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