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Innovative Computing Laboratory

● Relevant Research Efforts
● Benchmarking and Evaluation
● Performance Analysis
● Numerical Libraries
● Automated Optimization
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Architecture Evolution

● Moore’ s Law: Microprocessor CPU 
performance doubles every 18 months.

● Cost and size of storage have fallen along a 
similar exponential curve.  

● But decrease in time to access storage has 
not kept up leading to:
● deeper and more complex memory hierarchies
● “ load-store”  architecture
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Processor-DRAM Gap (latency)
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60%/yr.
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ICL Benchmarking

● ParkBench
● Microbenchmarks
● Kernels
● Applications

● LLCBench
● Blasbench
● Cachebench
● Mpbench
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LLCBench: Low Level Characterization 
Benchmarks
● Philosophy: Measure low level 

characteristics of the architecture and 
run-time system to aid in the 
parameterization of performance of large 
codes
● Easy to run
● Somewhat easy to understand
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Cachebench: HP-ZX1 Itanium 2
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Mpbench: HP-ZX1 Itanium 2
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Blasbench: HP-ZX1 Itanium 2
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References

http://icl.cs.utk.edu/projects/llcbench

http://www.parkbench.org
http://www.cs.uoregon.edu/research/paracomp/tau
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Processor Families

› Have high-level design features in 
common

› Four broad families over the past 30 
years
› CISC

› Vector

› RISC

› VLIW
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CISC
› Complex Instruction Set Computer
› Designed in the 1970s
› Goal: define a set of assembly instructions so 

that high-level language constructs could be 
translated into as few assembly language 
instructions as possible => many instructions 
access memory, many instruction types

› CISC instructions are typically broken down 
into lower level instructions called microcode.

› Difficult to pipeline instructions on CISC 
processors

› Examples: VAX 11/780, Intel Pentium Pro
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Vector Processors

› Seymour Cray introduced the Cray 1 in 
1976.

› Dominated HPC in the 1980s

› Perform operations on vectors of data

› Vector pipelining (called chaining) 

› Examples: Cray T90, Convex C-4, Cray 
SV1, Cray SX-6, Cray X1, POWER5?
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RISC
› Reduced Instruction Set Computer
› Designed in the 1980s
› Goals

› Decrease the number of clocks per instruction 
(CPI)

› Pipeline instructions as much as possible

› Features
› No microcode
› Relatively few instructions all the same length
› Only load and store instructions access memory
› Execution of branch delay slots
› More registers than CISC processors
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RISC (cont.)

› Additional features
› Branch predicition
› Superscalar processors

• Static scheduling
• Dynamic scheduling

› Out-of-order execution
› Speculative execution

› Examples: MIPS R10K/12K/14K, 
Alpha21264, Sun UltraSparc-3, IBM 
Power3/Power4



Philip J. Mucci 16

VLIW

› Very Long Instruction Word

› Explicitly designed for instruction level 
parallelism (ILP)

› Software determines which instructions 
can be performed in parallel, bundles 
this information and the instructions, 
and passes the bundle to the hardware.

› Example: Intel-HP Itanium
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Architecture Changes in the 1990s

› 64-bit addresses
› Optimization of conditional branches via 

conditional execution (e.g., conditional move)
› Optimization of cache performance via 

prefetch
› Support for multimedia and DSP instructions
› Faster integer and floating-point operations
› Reducing branch costs with dynamic 

hardware prediction
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Pipelining

› Overlapping the execution of multiple 
instructions

› Assembly line metaphor

› Simple pipeline stages
› Instruction fetch cycle (IF)

› Instruction decode/register fetch cycle (ID)

› Execution/effective address cycle (EX)

› Memory access/branch completion cycle (MEM)

› Write-back cycle (WB)
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Pipeline with Multicycle Operations

IF ID MEMWB
M1

A1 A2 A3 A4

M2 M3 M4 M5 M6 M7

EX

DIV
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Memory Hierarchy Design

› Exploits principle of locality – programs tend to reuse 
data and instructions they have used recently
› Temporal locality – recently accessed items like to 

be accessed in the near future
› Spatial locality – items whose addresses are near 

each other likely to accessed close together in 
time

› Take advantage of cost-performance of memory 
technologies

› Fast memory is more expensive.
› Goal: Provide a memory system with cost almost as 

low as the cheapest level of memory and speed 
almost as fast as the fastest level.
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Typical Memory Hierarchy

CPU

C
ache Memory I/O devices

            Register           Cache                          Memory                                            Disk
            reference       reference                       reference                                         reference

Size:     500 bytes         64 KB                          512 MB                                          100 GB

Speed:     0.25ns            1 ns                              100 ns                                              5 ms
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Cache Characteristics

› Number of caches

› Cache sizes

› Cache line size

› Associativity

› Replacement policy

› Write strategy
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POWER4 Diagram
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Node Design

1.3 GHz processor
32 KB Level 1 cache

Level 2 cache
1440 KB total
480 KB ea.

Level 3 cache
512 MB total
128 MB ea.

Four MCMs comprise 
one node of a regatta 
system.
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POWER4 vs. POWER3

› 1.3 GHz POWER 4 clock rate compared to 
375 MHz for POWER3

› But performance of floating-point intensive 
applications is typically only two to three times 
faster.

› More difficult to approach peak performance 
on POWER4 than on POWER3 because of 
› Increased FPU pipeline depth
› Reduced L1 cache size
› Higher latency (in terms of cycles) of the higher 

level caches
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Application Performance

● How well does the application map 
onto the underlying architecture?
● Effectiveness of compiler optimization
● Use of the memory hierarchy
● Keeping the pipeline full

● Application characteristics
● Instruction mix
● Type of memory access
● Communication overhead
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What are good Performance Measures?

● Time
● FLOPS
● IPC/CPICycles per instruction

● Overall
● By instruction type
● By routine and loop
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Parallel Performance - Speedup and 
Scalability

› Speedup is the ratio of the running time on a 
single processor to the parallel running time 
on N processors.

      Speedup = T(1)/T(N)
› An application is scalable if the speedup on N 

processors is close to N.
› With scaled speedup, an application is said to 

be scalable if, when the number of 
processors and the problem size are 
increased by a factor of N, the running time 
remains the same.
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Factors that Limit Scalability

› Amdahl’ s Law

› Communication Overhead

› Load Imbalance
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Importance of Optimization
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Steps in Optimizing Code

› Optimize compiler switches 

› Integrate high-performance libraries

› Profile code to determine where most time is 
being spent

› Optimize blocks of code that dominate 
execution time by using performance data to 
determine why the bottlenecks exist

› Always examine correctness and 
performance at every stage! 
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Memory Performance Measurement

› Costs of cache misses

› Average memory access time

› Average memory stalls per instruction

› Effectiveness of prefetching

Measure above using hardware counters 
and use results for performance 
modeling and analysis
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Performance of Loops

› Unroll inner loops to increase the number of 
independent computations in each iteration to 
keep the pipelines full

› Unroll outer loops to increase the ratio of 
computation to load and store instructions so 
that loop performance is limited by 
computation rather than data movement

› Measure effectiveness of loop 
transformations using hardware counter data 
– use for hand tuning or compiler feedback
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Profiling

Recording of summary information during execution
inclusive, exclusive time, # calls, hardware statistics, 

…
Reflects performance behavior of program entities

functions, loops, basic blocks
user-defined “ semantic”  entities

Very good for low-cost performance assessment
Helps to expose performance bottlenecks and hotspots
Implemented through

sampling: periodic OS interrupts or hardware 
counter traps

instrumentation: direct insertion of measurement 
code
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Tracing
Recording of information about significant points 

(events) during program execution
entering/exiting code region (function, loop, block, …)
thread/process interactions (e.g., send/receive message)

Save information in event record
timestamp
CPU identifier, thread identifier
Event type and event-specific information

 Event trace is a time-sequenced stream of event 
records

 Can be used to reconstruct dynamic program 
behavior

Typically requires code instrumentation
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PAPI
Performance Application Programming 

Interface
The purpose of the PAPI project is to design, 

standardize and implement a portable and 
efficient API to access the hardware 
performance monitor counters found on most 
modern microprocessors.

Parallel Tools Consortium project 
In use at DOE ASCI Labs, NSF PACI sites, DoD 

HPC Centers
PAPI 3.0 release planned for SC’ 03
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PAPI Implementation

Tools

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
 Dependent SubstrateMachine 

Specific
Layer

Portable
Layer
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TAU: Tuning and Analysis Utilities

● Portable profiling and tracing toolkit for 
performance analysis of parallel programs
● Fortran 77/90, C, C++, Java
● OpenMP, Pthreads, MPI, mixed mode

● In use at DOE ASCI Labs and DoD HPC 
Centers
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ATLAS

› Automatically Tuned Linear Algebra Software 
– AEOS techniques applied to linear algebra 
software, particularly the BLAS

› ATLAS-2 – generalizing ATLAS – given 
arbitrary code
› Identify region for optimzation

› Generation different version based on machine 
parameters

› Empirical search for the best optimized code



Philip J. Mucci 40

AEOS

Automated Empirical Optimization of 
Software – generates optimized 
libraries quickly on new platforms
Code generation

Multiple implementations

Parameterization

Sophisticated timers

Robust search heuristics


