
Performance Analysis
of HPC Architectures

Philip J. Mucci

Shirley Moore

Innovative Computing Laboratory

University of Tennessee

mucci@cs.utk.edu

HPC User Forum

Princeton, NJ

September 16, 2003

Philip J. Mucci 2

Innovative Computing Laboratory

● Relevant Research Efforts
● Benchmarking and Evaluation
● Performance Analysis
● Numerical Libraries
● Automated Optimization

Philip J. Mucci 3

Architecture Evolution

● Moore’ s Law: Microprocessor CPU
performance doubles every 18 months.

● Cost and size of storage have fallen along a
similar exponential curve.

● But decrease in time to access storage has
not kept up leading to:
● deeper and more complex memory hierarchies
● “ load-store” architecture

Philip J. Mucci 4

Processor-DRAM Gap (latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“ Moore’ s Law”

Philip J. Mucci 5

ICL Benchmarking

● ParkBench
● Microbenchmarks
● Kernels
● Applications

● LLCBench
● Blasbench
● Cachebench
● Mpbench

Philip J. Mucci 6

LLCBench: Low Level Characterization
Benchmarks
● Philosophy: Measure low level

characteristics of the architecture and
run-time system to aid in the
parameterization of performance of large
codes
● Easy to run
● Somewhat easy to understand

Philip J. Mucci 7

Cachebench: HP-ZX1 Itanium 2

Philip J. Mucci 8

Mpbench: HP-ZX1 Itanium 2

Philip J. Mucci 9

Blasbench: HP-ZX1 Itanium 2

Philip J. Mucci 10

References

http://icl.cs.utk.edu/projects/llcbench

http://www.parkbench.org
http://www.cs.uoregon.edu/research/paracomp/tau

Philip J. Mucci 11

Processor Families

› Have high-level design features in
common

› Four broad families over the past 30
years
› CISC

› Vector

› RISC

› VLIW

Philip J. Mucci 12

CISC
› Complex Instruction Set Computer
› Designed in the 1970s
› Goal: define a set of assembly instructions so

that high-level language constructs could be
translated into as few assembly language
instructions as possible => many instructions
access memory, many instruction types

› CISC instructions are typically broken down
into lower level instructions called microcode.

› Difficult to pipeline instructions on CISC
processors

› Examples: VAX 11/780, Intel Pentium Pro

Philip J. Mucci 13

Vector Processors

› Seymour Cray introduced the Cray 1 in
1976.

› Dominated HPC in the 1980s

› Perform operations on vectors of data

› Vector pipelining (called chaining)

› Examples: Cray T90, Convex C-4, Cray
SV1, Cray SX-6, Cray X1, POWER5?

Philip J. Mucci 14

RISC
› Reduced Instruction Set Computer
› Designed in the 1980s
› Goals

› Decrease the number of clocks per instruction
(CPI)

› Pipeline instructions as much as possible

› Features
› No microcode
› Relatively few instructions all the same length
› Only load and store instructions access memory
› Execution of branch delay slots
› More registers than CISC processors

Philip J. Mucci 15

RISC (cont.)

› Additional features
› Branch predicition
› Superscalar processors

• Static scheduling
• Dynamic scheduling

› Out-of-order execution
› Speculative execution

› Examples: MIPS R10K/12K/14K,
Alpha21264, Sun UltraSparc-3, IBM
Power3/Power4

Philip J. Mucci 16

VLIW

› Very Long Instruction Word

› Explicitly designed for instruction level
parallelism (ILP)

› Software determines which instructions
can be performed in parallel, bundles
this information and the instructions,
and passes the bundle to the hardware.

› Example: Intel-HP Itanium

Philip J. Mucci 17

Architecture Changes in the 1990s

› 64-bit addresses
› Optimization of conditional branches via

conditional execution (e.g., conditional move)
› Optimization of cache performance via

prefetch
› Support for multimedia and DSP instructions
› Faster integer and floating-point operations
› Reducing branch costs with dynamic

hardware prediction

Philip J. Mucci 18

Pipelining

› Overlapping the execution of multiple
instructions

› Assembly line metaphor

› Simple pipeline stages
› Instruction fetch cycle (IF)

› Instruction decode/register fetch cycle (ID)

› Execution/effective address cycle (EX)

› Memory access/branch completion cycle (MEM)

› Write-back cycle (WB)

Philip J. Mucci 19

Pipeline with Multicycle Operations

IF ID MEMWB
M1

A1 A2 A3 A4

M2 M3 M4 M5 M6 M7

EX

DIV

Philip J. Mucci 20

Memory Hierarchy Design

› Exploits principle of locality – programs tend to reuse
data and instructions they have used recently
› Temporal locality – recently accessed items like to

be accessed in the near future
› Spatial locality – items whose addresses are near

each other likely to accessed close together in
time

› Take advantage of cost-performance of memory
technologies

› Fast memory is more expensive.
› Goal: Provide a memory system with cost almost as

low as the cheapest level of memory and speed
almost as fast as the fastest level.

Philip J. Mucci 21

Typical Memory Hierarchy

CPU

C
ache Memory I/O devices

 Register Cache Memory Disk
 reference reference reference reference

Size: 500 bytes 64 KB 512 MB 100 GB

Speed: 0.25ns 1 ns 100 ns 5 ms

Philip J. Mucci 22

Cache Characteristics

› Number of caches

› Cache sizes

› Cache line size

› Associativity

› Replacement policy

› Write strategy

Philip J. Mucci 23

POWER4 Diagram

Philip J. Mucci 24

Node Design

1.3 GHz processor
32 KB Level 1 cache

Level 2 cache
1440 KB total
480 KB ea.

Level 3 cache
512 MB total
128 MB ea.

Four MCMs comprise
one node of a regatta
system.

Philip J. Mucci 25

POWER4 vs. POWER3

› 1.3 GHz POWER 4 clock rate compared to
375 MHz for POWER3

› But performance of floating-point intensive
applications is typically only two to three times
faster.

› More difficult to approach peak performance
on POWER4 than on POWER3 because of
› Increased FPU pipeline depth
› Reduced L1 cache size
› Higher latency (in terms of cycles) of the higher

level caches

Philip J. Mucci 26

Application Performance

● How well does the application map
onto the underlying architecture?
● Effectiveness of compiler optimization
● Use of the memory hierarchy
● Keeping the pipeline full

● Application characteristics
● Instruction mix
● Type of memory access
● Communication overhead

Philip J. Mucci 27

What are good Performance Measures?

● Time
● FLOPS
● IPC/CPICycles per instruction

● Overall
● By instruction type
● By routine and loop

Philip J. Mucci 28

Parallel Performance - Speedup and
Scalability

› Speedup is the ratio of the running time on a
single processor to the parallel running time
on N processors.

 Speedup = T(1)/T(N)
› An application is scalable if the speedup on N

processors is close to N.
› With scaled speedup, an application is said to

be scalable if, when the number of
processors and the problem size are
increased by a factor of N, the running time
remains the same.

Philip J. Mucci 29

Factors that Limit Scalability

› Amdahl’ s Law

› Communication Overhead

› Load Imbalance

Philip J. Mucci 30

Importance of Optimization

Philip J. Mucci 31

Steps in Optimizing Code

› Optimize compiler switches

› Integrate high-performance libraries

› Profile code to determine where most time is
being spent

› Optimize blocks of code that dominate
execution time by using performance data to
determine why the bottlenecks exist

› Always examine correctness and
performance at every stage!

Philip J. Mucci 32

Memory Performance Measurement

› Costs of cache misses

› Average memory access time

› Average memory stalls per instruction

› Effectiveness of prefetching

Measure above using hardware counters
and use results for performance
modeling and analysis

Philip J. Mucci 33

Performance of Loops

› Unroll inner loops to increase the number of
independent computations in each iteration to
keep the pipelines full

› Unroll outer loops to increase the ratio of
computation to load and store instructions so
that loop performance is limited by
computation rather than data movement

› Measure effectiveness of loop
transformations using hardware counter data
– use for hand tuning or compiler feedback

Philip J. Mucci 34

Profiling

Recording of summary information during execution
inclusive, exclusive time, # calls, hardware statistics,

…
Reflects performance behavior of program entities

functions, loops, basic blocks
user-defined “ semantic” entities

Very good for low-cost performance assessment
Helps to expose performance bottlenecks and hotspots
Implemented through

sampling: periodic OS interrupts or hardware
counter traps

instrumentation: direct insertion of measurement
code

Philip J. Mucci 35

Tracing
Recording of information about significant points

(events) during program execution
entering/exiting code region (function, loop, block, …)
thread/process interactions (e.g., send/receive message)

Save information in event record
timestamp
CPU identifier, thread identifier
Event type and event-specific information

 Event trace is a time-sequenced stream of event
records

 Can be used to reconstruct dynamic program
behavior

Typically requires code instrumentation

Philip J. Mucci 36

PAPI
Performance Application Programming

Interface
The purpose of the PAPI project is to design,

standardize and implement a portable and
efficient API to access the hardware
performance monitor counters found on most
modern microprocessors.

Parallel Tools Consortium project
In use at DOE ASCI Labs, NSF PACI sites, DoD

HPC Centers
PAPI 3.0 release planned for SC’ 03

Philip J. Mucci 37

PAPI Implementation

Tools

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
 Dependent SubstrateMachine

Specific
Layer

Portable
Layer

Philip J. Mucci 38

TAU: Tuning and Analysis Utilities

● Portable profiling and tracing toolkit for
performance analysis of parallel programs
● Fortran 77/90, C, C++, Java
● OpenMP, Pthreads, MPI, mixed mode

● In use at DOE ASCI Labs and DoD HPC
Centers

Philip J. Mucci 39

ATLAS

› Automatically Tuned Linear Algebra Software
– AEOS techniques applied to linear algebra
software, particularly the BLAS

› ATLAS-2 – generalizing ATLAS – given
arbitrary code
› Identify region for optimzation

› Generation different version based on machine
parameters

› Empirical search for the best optimized code

Philip J. Mucci 40

AEOS

Automated Empirical Optimization of
Software – generates optimized
libraries quickly on new platforms
Code generation

Multiple implementations

Parameterization

Sophisticated timers

Robust search heuristics

