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Exercise 1

These exercises are intended to provide you with a general 
feeling about some of the issues involved in writing high 
performance code, both on a single processor and on a 
parallel machine.

To start, login in to the Origin 2000, pagh.wes.hpc.mil

Copy the exercises over to your area.

%  cp -rf ~london/hpcug_lab .

%  cd hpcug_lab/matmul1-f

The first exercise will use a simple matrix-matrix inner product 
multiplication to demonstrate various optimization 
techniques.



Matrix-Matrix Multiplication - Simple 
Optimization by Cache Reuse

Purpose:  This exercise is intended to show how the reuse of data that has been loaded 
into cache by some previous instruction can save time and thus increase the 
performance of your code.

Information:  Perform the matrix multiplication A = A + B * C using the code 
segment below as a template and ordering the ijk loops in to the following orders (ijk, 
jki, kij, and kji ).  In the file matmul.f, one ordering has been provided for you (ijk), 
as well as a high performance BLAS routine dgemm which does double precision 
general matrix multiplication.  dgemm and other routines can be obtained from Netlib.

The variables in the matmul routine ( reproduced on the next page) are chosen for 

compatibility with the BLAS routines and have the following meanings: the variables 
ii, jj, kk, reflect the sizes of the matrix A (ii by jj), B(ii by kk) and C(kk by jj); the 
variables lda, ldb and ldc are the leading dimensions of each of those matrices and 
reflect the total size of the allocated matrix, not just the part of the matrix used. 



subroutine  ijk ( A, ii, jj, lda, B, kk, ldb, C, ldc )
double precision A(lda, *), B(ldb, *), C(ldc, *)
integer = i, j, k
do i = 1, ii

do j = 1, jj
do k = 1, kk

A(i,j) = A(i,j) + B(i,k) * C(k,j)
enddo

enddo
enddo
return
end

Instructions:  For this exercise, use the files provided in the directory matmul1-f.  
You will need to work on the file matmul.f. Again, if you are extremely stressed, 
consult matmul.f.ANS, where there is one possible solution.

(a) Compile the code: make matmul and run the code, recording the Mflops values in 
a table like the one on the next page.

(b) Edit matmul.f and alter the orderings of the loops, make, run and repeat for the 
various loop orderings.  Complete a table like the one below, which shows the 
orderings of the loops for each set of randomly generated matrices A, B, and C, or 
order Order.  Enter the Mflops achieved while computing A = A + B * C using each of 
the four different ways to perform matrix multiplication..



Order dgemm ijk jki kij kji

50

100

150

200

250

300

•Which loop ordering achieved the best performance and why?

•When you are done with this exercise, please make clean to remove the 
executable and object files.

•Note: dgemm only occupies one column of the table because its values 
should be very similar each time the program is executed.



Explanations:  To explain the reason for these timing and performance figures, the 
multiplication operation needs to be examined more closely.  The matrices are drawn 
below, with the dimensions of rows and columns indicated.  The ii indicates the size of 
the dimension which is traveled when we do the i loop, the jj indicates the dimension 
traveled when we do the j loop and the kk indicates the dimension traveled when we do 
the k loop.

A CBA= + *

1 1 1 1

ii ii ii

jj jjjj kk

kk
The pairs of routines with the same innermost loop (e.g. jki and kji) should have similar 
results.  Let’s look at jki and kji again.  These two routines achieve the best 
performance, and have the i loop as the innermost loop.  Looking at the diagram, this 
corresponds to traveling down the columns of 2 (A and B) of the 3 matrices that are 
used in the calculations.  Since in Fortran, matrices are stored in memory column by 
column, going down a column simply means using the next contiguous data item, 
which usually will already be in the cache.  Most of the data for the i loop should 
already be in the cache for both the A and B matrices when it is needed.



Some improvements to the simple loops approach to matrix multiplication 
which are implemented by dgemm include loop unrolling ( some of the 
innermost loops are expanded so that not so many branch instructions are 
necessary), and blocking ( data is used as much as possible while it is in 
cache).  These methods will be explored later in Exercise 2.



Exercise 2 Matrix-Matrix Multiplication Optimization 
using Blocking and Unrolling of Loops

Purpose:  This exercise is intended to show how to subdivide data into blocks and 
unroll loops.  Subdividing data into blocks helps them to fit into cache memory better.  
Unrolling loops decreases the number of branch instructions.  Both of these methods 
sometimes increase performance.  A final example shows how matrix multiplication 
performance can be improved by combining methods of subdividing data into blocks, 
unrolling loops, and using temporary variables and controlled access patterns.

Information:  The matrix multiplication A = A + B * C can be executed using the 
simple code segment below.  This loop ordering kji should correspond to one of the 
best access ordering the six possible simple i, j, k style loops.



subroutine kji  ( A, ii, jj, lda, B, kk, ldb, C, ldc )
double precision A( lda, *), B(ldb, *), C(ldc, *)
integer i, j, k
do k = 1, kk

do j = 1, jj
do i = 1, ii

A(i,j) = A(i,j) +B(i,k) * C(k,j)
enddo

enddo
enddo
return
enddo

However, this is not the best optimization technique.  Performance can be improved 
further by blocking and unrolling the loops.  The first optimization will demonstrate the 
effect of loop unrolling.  In the instructions, you will be asked to add code to unroll the 
j, k, and i loops by two, so that you have, for example, do j = 1, jj, 2, and add code to 
compensate for all the loops that you are skipping, for example,                               A
(i,j) = A(i,j) + B(i,k) *C(k,j) + B(i,k+1) * C(k+1, j).  Think of multiplying a 2x2 
matrix to figure out the unrolling.



The second optimization will demonstrate the effect of blocking, so that, as much as 
possible, the blocks that are being handled can be kept completely in cache memory.  
Thus each loop is broken up into blocks (ib, beginning of an i block, ie, end of an i 
block) and the variables travel from the beginning of the block to the end of the block 
for each i,j,k.  Use blocks of size 32 to start with, if you wish you can experiment with 
the size of the block to obtain the optimal size.

The next logical step is to combine these two optimizations into a routine which is both 
blocked and unrolled and you will be asked to do this.

The final example tries to extract the core of the BLAS dgemm matrix-multiply 
routine.  The blocking and unrolling are retained, but the additional trick here is to 
optimize the innermost loop.  Make sure that it only references items in columns and 
that it does not reference anything that would not be in a  column.  To that end, B is 
copied and transposed into the temp matrix T(k,i) = B(i,k).  Then multiplying B(i,k)*C
(k,j) is equivalent to multiplying T(k,i)*C(k,j) (notice the k index occurs only in the 
row).  Also, we do not store the result in A(i,j)=A(i,j)+B(i,k)*C(k,j) but in a temporary 
variable T1=T1+T(k,j)*C(k,j).  The effect of this is the inner k-loop has no extraneous 
references.  After the inner loop has executed, A(i,j) is set to its correct value.



mydgemm:
do kb = 1, kk, blk

ke = min(kb+blk-1,kk)
do ib = 1, ii, blk

ie = min(ib+blk-1, ii)
do i = ib,ie

do k = kb, ke
T(k-kb+1, i-ib+1) = B(i,k)

enddo
enddo
do jb = 1, jj, blk

je = min(jb+blk-1, jj)
do j = jb, je, 2

do i = ib, ie, 2
T1 = 0.0d0
T2 = 0.0d0
T3 = 0.0d0
T4 = 0.0d0
do k = kb, ke

T1 = T1 + T (k-kb+1,i-ib+1)*C(k,j)
T2 = T2 + T(k-kb+1, i-ib+2)*C(k,j)
T3 = T3 + T(k-kb+1, i-ib+1)*C(k,j+1)
T4 = T4 +T(k-kb+1, i-ib+2)*C(k,j+1)

enddo
A(i,j) = A(i,j)+T1
A(i+1,j) = A(i+1, j)+T2
A(i,j+1) = A(i, j+1)+T3
A(i+1, j+1) = A(i+1, j+1) +T4

enddo
enddo

enddo
enddo

enddo



Instructions:  For this exercise, use the files provided in the directory matmul2-f.  You 
will need to edit the file matmul.f.  One possible solution has been provided in the file 
matmul.f.ANS.

•Compile by typing make matmul and execute matmul, recording the Mflops values 
returned for kji, dgemm and mydgemm.  You will get some “0.000” values.  Those 
are from areas where you are expected to edit the code and are not doing anything 
currently.

•Note: In order to speed up your execution, you can comment out each routine after 
you have finished recording its execution rates.  For example, you could comment out 
the kji, dgemm and mydgemm routines now and you would not have to wait for them 
to execute in future runs.

•Edit matmul.f and uncomment and correct the routine kjib which should be a blocked 
version of kji ( use blocks of size 32). Compile and execute the code, recording the 
Mflops values.

•Edit matmul.f and uncomment and correct the routine kjiu which should be an 
unrolled version of kji.  Compile and execute the code, recording the Mflops values.

•Which optimizations achieved the best performance?  



•Why was this performance achieved?  (Review the information about dgemm and 
mydgemm for the answer)

•Why is the performance of dgemm worse than that of mydgemm? (mydgemm 
extracts the core of dgemm to make it somewhat simpler to understand.  In doing so it 
throws away the parts of dgemm which are generic and applicable to any size matrix.  
Since mydgemm cannot handle arbitrary size matrices it is somewhat faster than 
dgemm but less useful).

•When you are done with this exercise, please make clean to remove the executable 
and object files.



Order kji kjib kjiu kjibu dgemm mydgemm

50

150

250

350

450

550


