2016 Annual Conference

Joshua New, Ph.D. Oak Ridge National Laboratory newjr@ornl.gov

Seminar 22 – Large-Scale Computing

Design of Experiments: Statistical Confidence with Fewer Simulations

St. Louis, Missouri

Learning Objectives

 Define design of experiment and statistical resolution
 Describe capabilities for a resolution IV statistical design.

Describe sensitivity screening method options.
 Explain additional requirements for design when variables are correlated.

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Acknowledgments

- Innovative and Novel Computation Impact on Theory and Experiment (INCITE)
- Oak Ridge Leadership Computing Facility (OLCF)
- Extreme Science and Engineering Discovery Environment (XSEDE)
- Pragnesh Patel UT
- Robert Mee UT
- Jibonananda Sanyal ORNL
- Mark Adams ORNL
- George Ostrouchov ORNL
- Kwai Wong UT

- Motivation
- Parameterization
- Design of Experiments

 Limitations
- Examples

- Motivation
- Parameterization
- Design of Experiments

 Limitations
- Examples

40 Years: Energy and Life

U.S. Energy Consumption

BEM Limited

- Motivation
- Parameterization
- Design of Experiments

 Limitations
- Examples

Most "Important" Inputs

- 3,000+ inputs per building
- Use prototype buildings

many assumptions differences from an existing or planned/new building

- Calibrate important inputs
- Pick qualitatively important parameters, quantify energy use impact (sensitivity) or quantify uncertainty of estimates (UQ)

Parametric List

		Restaura	ant Ho	ospital	Large Hotel	Large Offic	e Mediu Offic	um M :e Apa	idrise Irtment	Primar Schoo	у I	Quick Service	
#I	nputs	49		227	110	85	81		155	166		54	
#C	Groups	49		139	67	43	36		78	109		54	
		Seconda Schoo	ary I Sma	all Hotel	Small Office	Stand-alon Retail	e Strip N	Aall S Mall M	uper arket	Wareho	use	TOTAL	
#I	nputs	231		282	72	59	113		78	47		1809	
#C	Groups	122		131	58	55	85		72	44		1142	
	A			В	С	D	E	F	G	Н	1	J	
1	Class		Object		Field	Default	Minimum	Maximum	Distribut	ion Type	Group	Constraint	
2	Lights		Bakery_L	ights	Watts per Zor	ne 18.29	12.803	23.777	uniform	float			
3	Lights		Deli_Ligh	nts	Watts per Zor	ne 18.29	12.803	23.777	uniform	float			
4	ElectricEquipment		Bakery_N	Bakery_MiscPlug_Ec Design		11244	7870.8	14617.2	uniform	float			
5	5 ElectricEquipment		Deli_Mis	li_MiscPlug_Equi Design Leve		12105	8473.5	15736.5	uniform	float			
6	GasEquipme	nt	Bakery_N	/liscGas_Eq	Design Level	5622	3935.4	7308.6	uniform	float			
7	GasEquipme	nt	Deli_Mis	cGas_Equip	Design Level	6053	4237.1	7868.9	uniform	float			
8	Exterior:Ligh	ts	Exterior	Facade Ligh	Design Level	13577	9503.9	17650.1	uniform	float			
9	ZoneInfiltrat	ion:Desig	Bakery_I	nfiltration	Flow per Exte	eri 0.000302	0.000211	0.000393	uniform	float	G0001		
10	ZoneInfiltrat	ion:Desig	Deli_Infi	Itration	Flow per Exte	eri 0.000302	0.000211	0.000393	uniform	float	G0001		
11	Schedule:Co	mpact	CLGSETP	SCH	Field 4	30	21	39	uniform	float	CA1		
12	Schedule:Co	mpact	CLGSETP	SCH	Field 7	30	21	39	uniform	float	CA2	HA2 - CA2 < -	- 1
13	Schedule:Co	mpact	CLGSETP	SCH	Field 9	24	16.8	31.2	uniform	float	CA3	HA3 - CA3 < -	- 1
14	Schedule:Co	mpact	CLGSETP	SCH	Field 11	30	21	39	uniform	float	CA4	HA4 - CA4 < -	- 1
15	Schedule:Co	mpact	HTGSETP	_SCH	Field 4	15.6	10.92	20.28	uniform	float	HA1		
16	Schedule:Co	mpact	HTGSETP	_SCH	Field 7	15.6	10.92	20.28	uniform	float	HA2		
17	Schedule:Co	mpact	HTGSETP	_SCH	Field 9	21	14.7	27.3	uniform	float	HA3		
18	Schedule:Co	mpact	HTGSETP	_SCH	Field 11	15.6	10.92	20.28	uniform	float	HA4		

- Motivation
- Parameterization
- Design of Experiments

 Limitations
- Examples

DoE - Full

- Design of Experiments (a.k.a. experimental designs)
 - Full factorial, consists of 2+ variables with discrete values whose experimental units take on all possible combinations of those values across all variables. #vals^{#vars}
 - Example: 3 vars, 2 vals each = 8 sims (16 mins)
 - Example: 5 vars, 2 vals each = 32 sims (1.1 hrs)
 - Example: 10 vars, 2 vals each = 1,024 sims (1.4 days)
 - Residential Building Calibration: 156 parameters, 5x10⁵² sims, 4x10²⁸ (LOKU=13.8 billion years) on world's fastest supercomputer!

DoE – Full to Fractional

Full factorial sampling matrix for 3
 variables: 2 values each (+1, -1) represents (max, min)
 x₄= x₅=

•	Χ.	X	X	¥ X.X.	X.X.	Fractional Factorial			
	$\boldsymbol{\gamma}_1$	N ₂	N 3	~ <u>1</u> ~2	×1×3	L ^{k-p} where:			
1	-1	-1	-1	+1	+1	L = #vals			
2	+1	-1	-1	-1	-1	k = #vars			
3	-1	+1	-1	-1	+1	p = #generators			
4	+1	+1	-1	+1	-1	This example is a			
5	-1	-1	+1	+1	-1	2 ⁵⁻² design			
6	+1	-1	+1	-1	+1				
7	-1	+1	+1	-1	-1				
8	+1	+1	+1	+1	+1				
	1	6 minut	es	1.1 h	1.1 hours (or 8 minutes if X_4 and X_5 are confounded				

DoE - Fractional

• Fractional Factorial Design

. . .

- Resolution III (2⁵⁻²) estimates main effects
 (A,B,C,D,E) but may be confounded with 2factor interactions (D,E)
- Resolution IV: main effects unconfounded, two-factor interactions confounded
- Resolution V: main effects and 2-factor interactions unconfounded, three-factor interactions confounded

DoE - Fractional

• Fractional Factorial Design

- Change the alias (why X₄ and X₅?) for new designs

M is 16x9 matrix... can be used to construct one of arbitrary size (#rows = #vars)

$$M' = \begin{bmatrix} M & M \\ M & -M \end{bmatrix}$$

- #vars not factor of 16, throw out columns based on minimizing aberration
- Helped extend "FrF2" package in R

DoE – Fractional Limitations

 Charts which show design of experiment scalability (confidence level based on #sims for #vars)

- None go into hundreds of variables (extending)

- De-barred designs for 2-level (min,max) to 3-level (min,default,max)
- Accommodating distributions (more likely to be default)
- Correlated input variables

- Motivation
- Parameterization
- Design of Experiments

 Limitations
- Examples

Parametric List (retail building)

Class	Name	Short Name	Field	Default	Min	Max
	CLGSETP_SCH	SC_CL6	Field 6	23	16.1	29.9
Schedule:	HTGSETP_SCH	SC_HT4	Field 4	16	11.2	20.8
Compact	HTGSETP_SCH	SC_HT6	Field 6	22	15.4	28.6
	Back_Space_Lights	Li_BaSp	Watts per Zone Floor Area	9	6.3	11.7
	Core_Retail_Lights	Li_CoRt	Watts per Zone Floor Area	18.5	12.95	24.05
Lights	Front_Entry_Lights	Li_FrEn	Watts per Zone Floor Area	12	8.4	15.6
	Front_Retail_Lights	Li_FrRt	Watts per Zone Floor Area	18.5	12.95	24.05
	Point_Of_Sale_Lights	Li_POS	Watts per Zone Floor Area	18.5	12.95	24.05
	BackSpace_MiscPlug	Eq_BaSp	Watts per Zone Floor Area	8.2	5.74	10.66
Electric	CoreRetail_MiscPlug	Eq_CoRt	Watts per Zone Floor Area	3.3	2.31	4.29
Equipment	FrontRetail_MiscPlug	Eq_FrRt	Watts per Zone Floor Area	3.3	2.31	4.29
	PointOfSale_MiscPlug	Eq_POS	Watts per Zone Floor Area	22	15.4	28.6
	Back_Space_Infil	ZF_BaSp	Flow per Ext Surface Area	0.00033	0.00023	0.000429
	Front_Entry_Infil	ZF_FrEn	Air Changes per Hour	1.1	0.77	1.43
ZoneInfil: FlowRate	Front_Entry_Infil	ZF_FrRtA	Constant Term Coefficient	0	0	1
	Front_Retail_Infil	ZF_FrRtC	Flow per Ext Surface Area	0.00033	0.00023 1	0.000429
	Point_Of_Sale_Infil	ZF_POS	Flow per Ext Surface Area	0.00033	0.00023 1	0.000429
DsgnSpec:	SZ DSOA Back Space	DS_BaSp	Outdr Airflow per Area	0.0008	0.00056	0.00104
OutdrAir	SZ DSOA Core_Retail	DS_CoRt	Outdr Airflow per Area	0.00175	0.00122 5	0.002275
Sizing: Parameters	Sizing:Parameters	Sz_Heat	Heating Sizing Factor	1.25	0.875	1.625

Building Sim Example

- Retail building, 20 variables
 - Resolution VI design
 - -1024 simulations (instead of 1 million)
 - Record monthly energy (electricity and gas) use as response
 - All (380) 2-way interactions for 20 variables
 - -778 degrees of freedom in the error term
 - 58 of 380 interactions significant at < 0.01

Most Important

- Y-axis descending from most important input variable (Cooling setpoint)
- X-axis in kWh

Sensitivity Analysis

Sensitivity based on heating setpoint levels

Conclusions

- Sampling parametric spaces is important for sensitivity, uncertainty, and calibration of building energy models
- Design of experiments can usually allow strong results without supercomputers
- There are methods to overcome or mitigate most limitations

Bibliography

- Sanyal, Jibonananda and New, Joshua R. (2014). "Building Simulation Modelers - Are We Big Data Ready?" In *Proceedings of the ASHRAE/IBPSA-USA Building Simulation Conference*, pp. 449-456, Atlanta, GA, September 10-12, 2014. [ASHRAE] [PDF] [PPT]
- Ostrouchov, George, New, Joshua R., Sanyal, Jibonananda, and Patel, Pragnesh (2014). "Uncertainty Analysis of a Heavily Instrumented Building at Different Scales of Simulation." In *Proceedings of the 3rd International High Performance Buildings Conference*, Purdue, West Lafayette, IN, July 14-17, 2014. [PDF] [PPT]
- Castello, Charles C., Sanyal, Jibonananda, Rossiter, Jeffrey S., Hensley, Zachary P., and New, Joshua R. (2014). "Sensor Data Management, Validation, Correction, and Provenance for Building Technologies." Technical paper TRNS-00223-2013.R1. In *Proceedings of the ASHRAE Annual Conference and ASHRAE Transactions 2014*, Seattle, WA, June 28-July 2, 2014. [PDF] [PPT]

Questions?

Joshua New newjr@ornl.gov